Hadron polarization phenomena at the LHC and their implications

Gary R. Goldstein

Tufts University

Seminar: INFN Frascati Dec. 2013

Large polarization in hadron+hadron

> TRANSVERSE MOMENTUM (GeV/c)
> $\mathrm{p}+\mathrm{p} \rightarrow \wedge+\mathrm{X} \operatorname{Polzn}\left(\mathrm{x}_{\mathrm{F}}, \mathrm{p}_{\mathrm{T}}\right)$
> compiled by K.Heller (1997)

Fig. 4. Lambda polarization versus production transverse momentum (p_{T}). For comparison, data for 400 GeV production (Ref. 10) are also shown.

Ramberg, et al.,(FNAL) PLB338, 403 (1994)

Phases \& SSA

- Single Spin Asymmetries (SSA) in 2-body
- Parity allows only <S •n> non-zero for any

single spinning

$\mathbf{n} \propto \mathbf{p}_{1} \times \mathbf{p}_{2}$

particle. Requires some helicity flip or chirality flip for $\mathrm{m}=0$ quarks \& phase.

Cross section for spin $S \cdot n=+1 / 2$ minus that for $S \cdot n=-1 / 2$ $<S \cdot n>\propto \Sigma f^{\star}{ }_{a b, c d}[\sigma \cdot n]_{d d^{\prime}} f_{a b, c d^{\prime}} \propto \Sigma \operatorname{Im}\left[f^{*}{ }_{a b, c+} f_{a b, c-}\right]$ for D's SSA
n requires some p_{2} transverse to p_{1}
(at quark level? $\mathrm{m}=0$ \& PQCD - no SSA) Kane, Pumplin, Repko $\rightarrow P_{\mathrm{L}} \sim \alpha(\hat{s}) m_{q} / \sqrt{\hat{s}}$ Inclusive $A+B->C+X$: sum over all X particles
Possibly relate to $\mathrm{A}+\mathrm{B}+$ anti- C forward elastic. gRg 8. .f.owens (76)

Inclusives - peripheral vs. central

PQCD lowest order $\mathrm{g}+\mathrm{g} \rightarrow \mathrm{s}+\mathrm{s}$-bar

Contributions to order α_{S} Imaginary Part

(Dharmaratna \& GG 1990,1996)

$P_{\text {quark }}$ vs. flavor from gluon fusion grows with flavor

Does this give larger $\mathrm{P}_{\text {hadron }}$ for heavier flavor?

What sets scales? quark "mass" or hyperon mass

1. $p+p \rightarrow \Lambda \uparrow+X$ has large negative P_{Λ} with flat s dependence \& growth with p_{T} (see Heller . . .)
2. Clues: $K^{-} p \rightarrow \Lambda \uparrow+X$ at $176 \mathrm{GeV} / \mathrm{c}$ or $\sqrt{ } \mathrm{s}=18 \mathrm{GeV}$ Polzn even larger - need s-quark?
3. Simple factorization expectation Kane, Pumplin, Repko
$\mathrm{P}_{\Lambda} \sim \alpha(\hat{s}) m_{q} / \sqrt{\hat{s}}$
helicity flip $\sim m_{\mathrm{q}} /$ hard energy scale Soft phenomenon?

Dharmaratna \& GRG: 1. Gluon fusion dominant mechanism for producing polarized
massive quark pair
2. Low p_{T} phenomenon
3. Recombination rules

Polarization in electroproduction?

- Consider electroproduction of Λ^{\prime} 's. Prelude to hadron production. QCD more under control.
- Soft matrix elements from TMDs \& SIDIS or GPDs \&/or Fracture Functions
- Measurements of Λ polarization in e $+\mathrm{p} \rightarrow \mathrm{e}+\mathrm{K}+\Lambda$ are indeterminant, but small
- Target polarization effects are legion: Sivers effect

Large polarization in hadron+hadron

> TRANSVERSE MOMENTUM (GeV/c)
> $\mathrm{p}+\mathrm{p} \rightarrow \wedge+\mathrm{X} \operatorname{Polzn}\left(\mathrm{x}_{\mathrm{F}}, \mathrm{p}_{\mathrm{T}}\right)$
> compiled by K.Heller (1997)

Fig. 4. Lambda polarization versus production transverse momentum (p_{T}). For comparison, data for 400 GeV production (Ref. 10) are also shown.

Ramberg, et al.,(FNAL) PLB338, 403 (1994)

Recent collection of data

P+fixed target HERA-B

Fig. 4. Λ polarization dependence on x_{F}. The curves correspond to Eq. (2) [13] for infinite p_{\perp} (dashed curve) and for the measured $\left\langle p_{\perp}\right\rangle$ (solid curve).

HERA-B Collaboration / Physics Letters B 638 (2006) 415-421

Evolving Ideas about Source of L Polarization in Hadrons

- Semi-classical: Lund; Thomas precession; SU(6)
- Q Field Th: Single polarization requires interference =>Real x Im part \& helicity flip
- Kane, Pumplin, Repko: PQCD (PRL41,1689(1978) $\rightarrow P_{\mathrm{L}} \sim \alpha(\hat{s}) m_{q} / \sqrt{\hat{S}}$
- Complete order a_{s} calculation of quark, antiquark, gluon 2-body scattering $\rightarrow s$ +sbar imbedded in hadron+hadron pdf's (but small m_{s}) (Dharmaratna \& GG 1990,1996)
- How does s §get translated to $\wedge 介 \&$ enhanced?
- Soft "Recombination" with (ud) remnant of N.
- Final State Interactions
- NPQCD must play a significant role in our understanding of orbital angular momentum \& hadron formation.

$$
\begin{equation*}
P_{\mathrm{ext}}\left(x_{F}, p_{\perp}\right)=\left(C_{1} x_{F}+C_{2} x_{F}^{3}\right)\left(1-e^{C_{3} p_{1}^{2}}\right) . \tag{2}
\end{equation*}
$$

The fitted coefficients are: $C_{1}=-0.268 \pm 0.003, C_{2}=$ -0.338 ± 0.015 and $C_{3}=-4.5 \pm 0.6(\mathrm{GeV} / c)^{-2}$.

Curve from Lundberg, et al. Ref. 2 Ramberg E799 PLB 338, 403 (1994) Ref. 14 NA48 (SPS) EPJ C6, 265 (1999)

Fig. 4. Λ polarization dependence on x_{F}. The curves correspond to Eq. (2) [13] for infinite p_{\perp} (dashed curve) and for the measured $\left\langle p_{\perp}\right\rangle$ (solid curve).

Polarization experiments up to 1999

NA48 V.Fanti, et al. E.P.J. C6, 265 (1999)

\wedge from ALICE at $0.9 \mathrm{TeV}(|y|<0.75)$ Unpolarized cross section

hep-ex:1012.3257 Fig. 16

p_{T} event distribution ^ polarization "Vector's" slide 15
 Lambda pT (GeV/c)

p_{T} vs. η event distribution ^ polarization "Vector's" Slide 15

\diamond positive
\square negative

p_{T} vs. η \& y comparing ${ }^{\cdot \mathrm{ss*}}$

 Plot of $y \& p_{T}$

Polzn points: HERA-B sqrt(s) 41.6GeV onc\& W

Polzn points: NA48 450 GeV on N

Polarization measurements ($\mathrm{y}, \mathrm{p}_{\mathrm{T}}$)

y \& xF for FNAL@400GeV on Be				
xF	pT	mT	y	Polzn percent
0.2	0	1.116	1.650553888	
0.2	1	1.498484568	1.383257094	-7
0.3	0	1.116	2.035682047	
0.3	2.5	2.737783045	1.213524278	-10
0.4	0	1.116	2.315946925	
0.4	43.2	3.389019917	1.276429821	-15
0.5	0	1.116	2.535601107	
0.5	2.4	2.646782197	1.699677814	-16
0.6	0	1.116	2.716011852	
0.6	- 2.2	2.466871703	1.939323634	-20

y \& xF for HERA-B @ sqrt(s) 41.6 GeV on C \& W				
-0.099	0.82	1.384866781	-1.187491366	0.046
-0.054	0.81	1.37896918	-0.743967498	0.017
-0.02	0.84	1.396802062	-0.293587387	-0.018

Table 1. The mean values of p_{t}, x_{F} and P_{x} measured in corresponding p_{t} intervals (systematic errors are presented following the statistical errors)

p_{t} interval $[\mathrm{GeV} / \mathrm{c}]$	p_{t} $[\mathrm{GeV} / \mathrm{c}]$	x_{F}	P_{x}
$0.2-0.3$	0.28 ± 0.02	0.13 ± 0.01	$-0.053 \pm 0.034_{-0.019}^{+0.001}$
$0.3-0.4$	0.36 ± 0.03	0.16 ± 0.01	$-0.066 \pm 0.018_{-0.037}^{+0.007}$
$0.4-0.5$	0.45 ± 0.03	0.21 ± 0.01	$-0.114 \pm 0.017_{-0.021}^{+0.006}$
$0.5-0.6$	0.54 ± 0.03	0.25 ± 0.01	$-0.155 \pm 0.025_{-0.010}^{+0.010}$
$0.6-0.7$	0.64 ± 0.03	0.30 ± 0.01	$-0.208 \pm 0.035_{-0.039}^{+0.015}$
$0.7-1.0$	0.86 ± 0.05	0.37 ± 0.02	$-0.298 \pm 0.074_{-0.077}^{+0.026}$

Gluon fusion - tree level

6 independent helicity amps

Figure 3.4: Lowest order Feynman diagrams for Gluon Fusion.

$$
\begin{aligned}
\mathcal{M}= & -g^{2}\left(\lambda^{c} \lambda^{b}\right)_{i k}\left[\frac{\bar{u}\left(p_{3}\right)\left[2 p_{3} \cdot \epsilon_{1}-\phi_{1} p_{1}\right] \xi_{2} v\left(p_{4}\right)}{2 p_{1} \cdot p_{3}}+\left(\bar{u}\left(p_{3}\right) \frac{\gamma^{\kappa}}{\hat{s}} v\left(p_{4}\right)\right) C_{\mu \nu \kappa} \epsilon_{1}^{\mu} \epsilon_{2}^{\nu}\right] \\
& -g^{2}\left(\lambda^{b} \lambda^{c}\right)_{i k}\left[\frac{\bar{u}\left(p_{3}\right) \psi_{2}\left[p_{1} \phi_{1}-2 p_{4} \cdot \epsilon_{1}\right] v\left(p_{4}\right)}{-2 p_{1} \cdot p_{4}}-\left(\bar{u}\left(p_{3}\right) \frac{\gamma^{\kappa}}{\hat{s}} v\left(p_{4}\right)\right) C_{\mu \nu \kappa} \epsilon_{1}^{\mu} \epsilon_{2}^{\nu}\right],
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{1}(++\rightarrow++) \\
& \Phi_{2}(++\rightarrow--) \\
& \Phi_{3}(+-\rightarrow+-) \\
& \Phi_{4}(+-\rightarrow-+) \\
& \Phi_{5}(++\rightarrow-+) \\
& \Phi_{6}(+-\rightarrow++)
\end{aligned}
$$

where

$$
C_{\mu \nu \kappa}=g_{\mu \nu}\left(p_{1}-p_{2}\right)_{\kappa}+g_{\nu \kappa}\left(2 p_{2}+p_{1}\right)_{\mu}+g_{\kappa \mu}\left(-2 p_{1}-p_{2}\right)_{\nu}
$$

Gluon fusion -- cont'd

$$
\phi_{\alpha}=-g^{2}\left[\left(\lambda^{c} \lambda^{b}\right)_{i k} f_{\alpha}+\left(\lambda^{b} \lambda^{c}\right)_{i k} h_{\alpha}\right]
$$

f_{α} and $h_{\alpha}(\alpha$ takes 1 to 6$)$ are

$$
\begin{array}{ll}
f_{1}=\frac{m(p+k)}{p(p-k \cos \theta)} & h_{1}=\frac{m(p+k)}{p(p+k \cos \theta)} \\
f_{2}=\frac{-m(p-k)}{p(p-k \cos \theta)} & h_{2}=\frac{-m(p-k)}{p(p+k \cos \theta)} \\
f_{3}=\frac{4 k \sin \frac{\theta}{2} \cos { }^{3} \frac{\theta}{2}}{(p-k \cos \theta)} & h_{3}=\frac{4 k \sin \frac{\theta}{2} \cos 3}{(p+k \cos \theta)} \\
f_{4}=\frac{4 k \sin ^{3} \frac{\theta}{2} \cos \frac{\theta}{2}}{(p-k \cos \theta)} & h_{4}=\frac{4 k \sin ^{3} \frac{\theta}{2} \cos \frac{\theta}{2}}{(p+k \cos \theta)} \\
f_{5}=0 & h_{5}=0 \\
f_{6}=\frac{-4 m k \sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}}{p(p-k \cos \theta)} & h_{6}=\frac{-4 m k \sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}}{p(p+k \cos \theta)}
\end{array}
$$

$$
p \& k \text { are }
$$

initial \& final
CM momenta

$$
\boldsymbol{\theta} \text { is } p_{3} \text { polar }
$$

angle

$$
\text { Relate to } \mathrm{x}_{1}, \mathrm{x}_{2}
$$

$$
p_{L}, p_{T}
$$

2-body interpretation $\mathrm{g}+\mathrm{g} \rightarrow \mathrm{s}+\mathrm{s}-\mathrm{bar} \rightarrow \wedge+\wedge$ bar

$$
\frac{d \sigma}{d t}=\frac{1}{64 \pi \hat{s} p^{2}} \frac{|\mathcal{M}|^{2}}{4}
$$

$$
\frac{|\mathcal{M}|^{2}}{4}=\frac{1}{2}\left[\Phi_{1}{ }^{2}+{\Phi_{2}}^{2}+{\Phi_{3}}^{2}+{\Phi_{4}}^{2}+2 \Phi_{5}{ }^{2}+2 \Phi_{6}{ }^{2}\right]
$$

$$
\mathcal{P}=2 \operatorname{Im} \frac{\left[\Phi_{5}\left(\Phi_{1}+\Phi_{2}\right)^{*}+\Phi_{6}\left(\Phi_{3}-\Phi_{4}\right)^{*}\right]}{\left[\Phi_{1}^{2}+\Phi_{2}^{2}+\Phi_{3}^{2}+\Phi_{4}^{2}+2 \Phi_{5}^{2}+2 \Phi_{6}^{2}\right]}
$$

Inclusive polarization \& optical theorem

$$
p+p \rightarrow \wedge+X 20 \text { helicity amps - } 4 \text { combinations in Polzn }
$$

$$
P=\frac{2 \sum_{a b} \operatorname{Im} D g_{a b+, a b-}}{\sum_{a b \bar{c}} D g_{a b \bar{c}, a b \bar{c}}}=\sin \theta \frac{\sum_{a b} \operatorname{Im} D \bar{g}_{a b+, a b-}}{\sum_{a b \bar{c}} D g_{a b \bar{c}, a b \bar{c}}} .
$$

$$
\begin{aligned}
& s \frac{\mathrm{~d}^{2} \sigma}{\mathrm{dtd} M_{\mathrm{x}}^{2}}=\frac{1}{\left(2 s_{\mathrm{a}}+1\right)} \frac{1}{\left(2 s_{\mathrm{b}}+1\right)} \frac{1}{32 \pi^{2} s} \sum_{a b c \Delta} \sum_{i=1}^{\infty} \int \mathrm{d} \phi_{i}\left|f_{c \Delta, a b}^{(i)}\left(s, t, M_{\mathrm{x}}^{2}\right)\right|^{2} \\
& \mathrm{Dg}_{a^{\prime} b^{\prime} c^{\prime}, a b \bar{c}}\left(s, t, M_{\mathrm{x}}^{2}\right)=\frac{1}{2} \sum_{\mathrm{X}, \Delta} f_{c \Delta, a b} f_{c^{*} \Delta, a^{\prime} b^{\prime}}
\end{aligned}
$$

Inclusives - peripheral vs. central

Questions

Is x_{F} or y the significant scaled momentum variable? Are there rapidity gaps around central region \wedge 's or graduated central emissions ?
Does s-quark or \wedge rescatter before or after central creation?

