INFN

Status of the Standard Model Higgs boson searches with the ATLAS detector

Andrea Gabrielli on behalf of the ATLAS Collaboration

Winter Institute LNF-2013-1, Frascati 22-24 January 2013

Outline

- ✓ Higgs @ LHC;
- ✓ LHC and ATLAS detector;
- ✓ Higgs discovery;
- ✓ Latest results;
- ✓ Higgs properties:
 - Mass;
 - Couplings;
 - J^P;
- ✓ Conclusions.

Higgs @ LHC

SM Higgs production ($m_H = 125 \text{ GeV } \text{c}^{-2} \otimes 8 \text{ TeV}$):

- gluon-gluon Fusion (ggF): 19.52 pb (uncertainty 15-20%);
- Vector Boson Fusion (VBF): 1.58 pb (uncertainty 5%);
- Associated production with W/Z (VH): 0.7/0.4 pb (uncertainty 5%);
- Associated production with ttbar (ttH): 0.13 pb (uncertainty 15%).

A. Gabrielli - INFN - Università di Roma

"Sapienza"

Higgs @ LHC

Standard Model Higgs decays:

 $H \rightarrow \gamma \gamma:$

High mass resolution

High Branching Ratio

low mass, high bkg and mass resolution;

• $H \rightarrow ZZ^{(*)} \rightarrow 4I$:

full mass range, low BR, high purity

and mass resolution;

 $H \rightarrow WW^{(*)} \rightarrow Iv Iv:$

full mass range, small mass resolution, high rate;

H → ττ:

low mass;

• $VH \rightarrow V + bb$:

associated production VH, V= Z or W.

Expected events per fb⁻¹, BEFORE the selection:

	125	300
γγ	53	-
ZZ	2.9	5.6
WW	59	32
ττ	1500	-
bb Only VH	600 Only VH	-

Large Hadron Collider

Performance of LHC:

- Proton-proton collider @ \sqrt{s} = 7 (2011) and 8 (2012) TeV;
- Peak luminosity 7.7 10³³ cm⁻² s⁻¹;
- Integrated lumi delivered:
 - \simeq 23 fb⁻¹ at 8 TeV and \simeq 5 fb⁻¹ at 7 TeV;
- Bunch crossing 50 ns.

A candidate Z boson event in the dimuon decay with **25 reconstructed vertices**:

A Toroidal Lhc ApparatuS

Inner detector:

- ✓ Silicon;
- ✓ Transition radiation Tracker;
- ✓ Solenoid (2 T).

EM calorimeter:

✓ Sampling LAr.

HAD calorimiter:

- ✓ Plastic scintillator (barrel);
- ✓ LAr technology (endcap).

Muon system:

- ✓ 3 air-core toroids;
- ✓ Reco and trigger chambers.

ATLAS p-p run: April-Sept. 2012

Inner Tracker		Calorimeters		Muon Spectrometer			Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
100	99.3	99.5	97.0	99.6	99.9	99.8	99.9	99.9	99.7	99.2

All good for physics: 93.7%

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at vs=8 TeV between April 4th and September 17th (in %) – corresponding to 14.0 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Higgs discovery

4th July 2012, ATLAS [1] and CMS[2] collaborations announced the observation of a new particle.

ATLAS channels 7 + 8 TeV

(4.8 fb⁻¹ 7 TeV and 5.8 fb⁻¹ 8 TeV) :

- $H \rightarrow \gamma \gamma;$
- $H \rightarrow ZZ \rightarrow 4I;$
- $H \rightarrow WW \rightarrow Iv Iv$.

[1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].

24/01/2013

24/01/2013

A. Gabrielli - INFN - Università di Roma "Sapienza"

$H \rightarrow \gamma \gamma$

Higgs to gamma gamma:

- BR: ~ 10⁻³ (@ m_H = 125 GeV c⁻²);
- Bkg: γγ, γ+jets, jet-jet;
- Ten exclusive categories (to increase sensitivity):
 - γ converted (unconverted);
 - γ pseudorapidity;
 - P_T trust $\gamma\gamma$;
 - VBF selection;
- Signal purity (S/B) ~ 2%-20%;
- Strong jet rejection is needed;
- Lumi 4.8 fb⁻¹ @ 7 TeV and 5.8 fb⁻¹
 @ 8 TeV (4th July 2012).

Irreducible bkg: pp $\rightarrow \gamma\gamma$ + X (~ 75% total bkg) Normalization and shape from MC + control region:

A. Gabrielli - INFN - Università di Roma "Sapienza"

$H \to \gamma \gamma$

1/N dN/dm_{YY} / 0.5 GeV

0.12

0.1

0.08

0.06

0.04

0.02

Tracking calorimeter:

measure the photon direction and the position of the primary vertex (small pileup dependence).

Distribution of expected $m_{\gamma\gamma}$ for different algorithm used to determine the longitudinal vertex position:

True vertex

Max Σp_{-}^{2}

Likelihood

Calo pointing

120

118

116

122 124

126

128

130

132

134

ATLAS Simulation

 $gg \to H \to \gamma\gamma$

m_µ = 125 GeV

s = 8 TeV

Preliminary

Observed and expected CLs limit on the normalized signal strength vs Higgs mass:

Higgs to gamma gamma (4th July 2012):

The SM Higgs boson is excluded at 95% CL: 112-122.5 and 132-143 GeV c^{-2} (exp. 110-139.5 GeV c⁻²);

with the background only hypothesis

- Observed $p_0 \sim 4.5$ standard deviation (exp 2.5) @ $m_H = 126.5$ GeV c⁻²;
- Signal strength $\mu = 1.9 + / 0.5$.

$H \rightarrow \gamma \gamma$: latest results

Higgs to gamma gamma update:

- Lumi 4.8 fb⁻¹ @ 7 TeV and 13 fb⁻¹ @ 8 TeV (Council December 2012);
- Analysis has been re-optimized;
- Added two new categories for the VH production.

24/01/2013

A. Gabrielli - INFN - Università di Roma

"Sapienza"

$H \rightarrow \gamma \gamma$: latest results

Observed and expected CLs limit on the normalized signal strength vs Higgs mass:

Observed and expected p-value vs Higgs mass:

- The SM Higgs boson is excluded at 95% CL: 110-122.5 and 129.5-144.5 GeV c⁻² (exp. 110-139.5 GeV c⁻²);
- Observed $p_0 \approx 6.1$ standard deviation (exp 4.1) @ $m_H = 126.6$ GeV c⁻²;
- Signal strength $\hat{\mu} = 1.8 \pm 0.3 (stat)^{+0.29}_{-0.21} (syst)$

The compatibility with the SM prediction is estimated to be at the 2.4 σ level

"Sapienza"

95% CL limit on σ/σ_{SM}

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

$H \rightarrow ZZ^{(*)} \rightarrow 4I$

Higgs to four leptons ("golden channel"):

- BR: ~ 10⁻⁴ (@ m_H = 125 GeV c⁻²);
- Bkg: ZZ, Z+jets, top;
- Signal purity (S/B) ~ 1;
- Lumi 4.8 fb⁻¹ @ 7 TeV and 5.8 fb⁻¹ @ 8 TeV (4th July 2012).

Irreducible bkg: $pp \rightarrow ZZ$ (~ 70 % total bkg) rejection: kinematic cuts e.g. m_{12} and m_{34} Shape and normalization from MC: Reducible bkg: $pp \rightarrow Z+jet$, tt... rejection: isolation of leptons, ... Z+jet from control region, Zbb shape from MC and normalization from data:

A. Gabrielli - INFN - Università di Roma "Sapienza"

$H \rightarrow ZZ^{(*)} \rightarrow 4I$

 m_{41} distribution for the combined $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV data:

A. Gabrielli - INFN - Università di Roma

24/01/2013

"Sapienza"

$H \rightarrow ZZ^{(*)} \rightarrow 4I$

UDD UDD UDD Observed and expected CLs limit on the normalized signal strength vs Higgs mass: Observed CL_a ATLAS Preliminary ----- Expected CL_s ±1σ √s=7 TeV, ∫Ldt =4.8 fb⁻¹ ±2σ √s=8 TeV,∫Ldt =5.8 fb⁻¹ 10^{-1} 200 300 400 500 110 600 m_µ [GeV]

Higgs to four leptons (4th July 2012):

- The SM Higgs boson is excluded at 95% CL: 131-162 and 170-460 GeV c⁻² (exp. 124-164 and 176-500 GeV c^{-2});
- Observed $p_0 \approx 3.6$ standard deviation (exp 2.7) @ $m_{\rm H} = 125 \text{ GeV } \text{c}^{-2}$;
- Signal strength $\mu = 1.2 + / 0.6$.

Observed and expected p-value vs Higgs mass:

Phys. Lett. B 716 (2012) 1–29

A. Gabrielli - INFN - Università di Roma

"Sapienza"

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: latest results

Higgs to four leptons update:

- Lumi 4.8 fb⁻¹ @ 7 TeV and 13 fb⁻¹ @ 8 TeV (Council December 2012);
- Analysis has been re-optimized.

250 m_{4l} [GeV]

18

200

100

150

250 m_{4|} [GeV]

0

100

150

200

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: latest results

Higgs to four leptons (Council 2012):

- The SM Higgs boson is excluded at 95% CL: 127.7-166 and 174-600 GeV c⁻² (exp. 120-580 GeV c⁻²);
- Observed $p_0 \sim 4.1$ standard deviation (exp 3.1) @ $m_H = 123.5$ GeV c⁻²;
- Signal strength $\ \hat{\mu} = 1.3 \pm 0.4$

$H \rightarrow WW^{\,(*)} \rightarrow I\nu \, I\nu$

$\mathrm{H} \rightarrow \mathrm{WW}^{\,(*)} \rightarrow \mathrm{Iv} \, \mathrm{Iv}$

Higgs to WW:

- BR: ~ 2.5x10⁻³ (@ m_H = 125 GeV c⁻²);
- Bkg: WW, W+jets, jet-jet, top;
- Different-flavour e/μ (D-Y rejection);
- Signal purity (S/B) ~ 10%;
- Discriminant variables: m_{\parallel} , $\Delta \phi_{\parallel}$, m_{τ} ;
- Lumi 4.8 fb⁻¹ @ 7 TeV and 13 fb⁻¹ @ 8 TeV (HCP 2012).

Irreducible bkg: pp \rightarrow WW, rejection: $\Delta \varphi_{II}$ H has spin 0, WW bkg from simulation + control region:

Reducible bkg: $pp \rightarrow WZ$, Z/W+jet, tt. rejection: isolation of leptons , ..., W+jets from data, other simulation + control region:

A. Gabrielli - INFN - Università di Roma "Sapienza"

21

$\mathrm{H} \rightarrow \mathrm{WW}^{\,(*)} \rightarrow \mathrm{Iv} \, \mathrm{Iv}$

24/01/2013

"Sapienza"

$H \rightarrow WW^{(*)} \rightarrow Iv Iv: Iatest results$

Higgs to WW (HCP 2012):

- Only Different-flavour e/µ updated (higher sensitivity);
- Observed p₀ ~ 2.8 standard deviation (exp 3.1)
 @ m_H = 125 GeV c⁻²;
- Signal strength μ = 1.5 +/- 0.6.

Observed and expected p-value vs Higgs mass:

$H \to \tau\tau$

$H \rightarrow \tau \tau$

Higgs to $\tau\tau$:

- BR: ~ $6x10^{-2}$ (@ m_H = 125 GeV c⁻²);
- Bkg: Z, Z+jets, top;
- Signal purity (S/B) ~ 0.3%-30%;
- Many exclusive categories

 τ_{lep} , τ_{had} : boosted, 0-1-2 jets (2 jets for VBF)... to increase sensitivity;

Lumi 4.8 fb⁻¹ @ 7 TeV and 13 fb⁻¹ @ 8 TeV (HCP 2012).

 $Z \rightarrow \tau \tau$ from embedding: Start from real $Z \rightarrow \mu \mu$ events, replace muons with fully-simulated taus with proper polarization and spin correlations:

$\tau_{lep} \tau_{lep}$	$\tau_{lep} \tau_{had}$	$ au_{had} au_{had}$
12%	46%	42%

A. Gabrielli - INFN - Università di Roma "Sapienza"

$H \to \tau\tau$

$H \rightarrow \tau \tau$

Higgs to ττ (HCP 2012):

- 2-3 times SM Higgs boson is excluded at 95% CL: ~ 100-150 GeV c⁻²;
- Observed $p_0 \approx 1.1$ standard deviation @ $m_H = 125$ GeV c⁻²;
- Signal strength μ = 0.7 +/- 0.7.

Higgs to bb:

- BR: ~ 0.6 (@ m_H = 125 GeV c⁻²);
- Production: VH;
- Bkg: Zbb, Wbb, top...;
- Three channels:
 - 0 leptons: $Z \rightarrow v v + H \rightarrow bb$; 1 lepton: $W \rightarrow I v + H \rightarrow bb$; 2 leptons: $Z \rightarrow I I + H \rightarrow bb$;
- Signal purity (S/B) ~ 1%-10%;
- Discriminant variables: lep, E_t^{miss}, m_{ii}...;
- Lumi 4.8 fb⁻¹ @ 7 TeV and 13 fb⁻¹ @ 8 TeV (HCP 2012).

Backgrounds: W/Z + jet, tt... are estimated using a combination of techniques based on the comparison of data and MC predictions. ZZ, WW from simulation and MultiJet only form data:

A. Gabrielli - INFN - Università di Roma "Sapienza"

m_{bb} distributions after full event selection for 2jets and 0-1-2 leptons.

The normalizations of backgrounds are determined by a maximum likelihood fit to control and signal regions.

Observed and expected CLs limit on the normalized signal strength vs Higgs mass:

Higgs to bb (HCP2012):

- The SM Higgs boson is excluded @ 95% CL: 110 GeV c⁻²;
- 2 times SM Higgs boson is excluded at 95% CL: ~ 110-130 GeV c^{-2} ;
- No significant excess is observed.

ATLAS-CONF-2012-161

What is it?

Is it really the Standard Model Higgs boson? Needed study its properties:

- Mass; •
- Couplings; ۲
- Spin/CP.

Higgs combination

Observed and expected CLs limit on the normalized signal strength vs Higgs mass:

Observed and expected p-value vs Higgs mass:

Higgs combination (July 2012):

- The SM Higgs boson is excluded at 95% CL: 111-122 and 131-559 GeV c⁻² (exp 110-582 GeV c⁻²);
- Observed $p_0 \approx 6.0$ standard deviation (exp 4.9) @ $m_H = 126 \text{ GeV } \text{c}^{-2}$;
- Signal strength μ = 1.4 +/- 0.3.

24/01/2013

Higgs combination: latest results

Observed and expected p-value vs Higgs mass:

Signal strength for all channels and combined:

Higgs mass

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ(*) \rightarrow 4I$ best-fit values of m_H and μ , and the corresponding 1-2 σ contours:

Higgs mass

Taking all systematics into account the two masses, the compatibility of the two masses is estimated to be at the 2.7 σ level (A more conservative treatment of scale systematics (rectangular PDFs) leads to a compatibility of 2.3 σ).

ATLAS-CONF-2012-170
The framework makes the following assumptions:

- Only modifications of couplings strengths, i.e. of absolute values of couplings, are taken into account: the observed state is assumed to be a CP-even scalar as in the SM.
- The signals observed in the different search channels originate from a single narrow resonance;
- The width of the Higgs boson with a mass of 126 GeV is assumed to be negligible.

Strategy:

Choose a model: More accurate with higher order corrections and external constraints;

Test small deviations from the SM predictions.

$$(\sigma \cdot \mathbf{BR}) (ii \to \mathbf{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathbf{H}}}$$

Following prescriptions of LHC Higgs Cross-section Light Mass Subgroup.

A. Gabrielli - INFN - Università di Roma "Sapienza"

Benchmark model $k_g - k_{\gamma}$.

The potential new particles contributing to the $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ loops, may or may not contribute to the total width of the observed state from direct invisible decays.

$$\begin{split} \kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) &= \frac{|\kappa_{\rm b}A_{\rm b}(m_{\rm H}) + \kappa_{\rm t}A_{\rm t}(m_{\rm H})|^2}{|A_{\rm b}(m_{\rm H}) + A_{\rm t}(m_{\rm H})|^2} \quad \text{gg} \rightarrow \text{H loop} \\ \kappa_{\gamma}^2(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm W},m_{\rm H}) &= \frac{|\kappa_{\rm b}A_{\rm b}'(m_{\rm H}) + \kappa_{\rm t}A_{\rm t}'(m_{\rm H}) + \kappa_{\rm W}A_{\rm W}'(m_{\rm H})|^2}{|A_{\rm b}'(m_{\rm H}) + A_{\rm t}'(m_{\rm H}) + A_{\rm W}'(m_{\rm H})|^2} \quad \text{H} \rightarrow \gamma\gamma \text{ loop} \end{split}$$

A. Gabrielli - INFN - Università di Roma "Sapienza"

Simplified benchmark models were used to study the correlations of production and decay modes in different final states, and compare them to the predictions for the SM Higgs boson:

- ✓ Couplings to Fermions and Vector Gauge Bosons $(k_V k_{F_r} k_g k_{VV} \lambda_{FV})$;
- ✓ Probing the custodial symmetry of the W and Z coupling (λ_{WZ} , k_{ZZ} , λ_{FZ});
- ✓ Probing the up- and down-type fermion symmetry (λ_{du} , k_{uu} , λ_{Vu});
- ✓ Probing the quark and lepton symmetry(λ_{Vq} , k_{qq} , λ_{lq}).

Within the current statistical uncertainties and assumptions, no significant deviations from the Standard Model couplings are observed.

Higgs $J^{P}: H \rightarrow ZZ^{(*)} \rightarrow 4I$

Final state allows measuring J^P:

- 5 angles (production, decay);
- m₁₂, m₃₄;

Discriminate 0^+ (SM) hypothesis against: 0^- , 2^+_m (graviton-like

tensor with minimal couplings) 2⁻ (pseudo-tensor).

Two Multi-Variate discriminants used:

- Boosted Decision Tree (BDT);
- Matrix-Element-Likelihood-Analysis (J^P-MELA).

Expected distributions for 0⁺ and 0⁻ hypothesis of ϕ_1 cos θ_1 and m₃₄ for the combined $\sqrt{s} = 8$ TeV and $\sqrt{s} = 7$ TeV luminosity:

Higgs $J^P : H \to ZZ^{(*)} \to 4I$

Distributions of the BDT and J^P-MELA discriminants for data and Monte Carlo expectations for the combined $\sqrt{s} = 8$ TeV and $\sqrt{s} = 7$ TeV data sets:

0⁺ vs 0⁻: 2.3 σ (2.7 σ) observed (1.7 σ, 1.9 σ expected); 0⁺ vs 2⁺: excluded @ 85% CL.

ATLAS-CONF-2012-169

Higgs $J^{P}: H \rightarrow \gamma \gamma$

Expected sensitivity: exclusion of the spin 2⁺ hypothesis @ the 97% CL; Observed exclusion of spin 2+ hypothesis @the 91% CL.

Conclusions

- Excellent performance of LHC and of the ATLAS detector allowed to strengthen the observation of the new boson;
- ✓ The discovery is fully confirmed on all the most sensitive channel;
- ✓ First measurements of its coupling properties and its mass;
- ✓ All properties measured until now are consistent with a SM Higgs;
- ✓ The analyses are now moving from searches to measurement: more results to

comeusing the full set of \sim 21 fb⁻¹ collected in 2012.

References

Higgs to gamma gamma:

arXiv:1207.7214 [hep-ex], ATLAS-CONF-2012-168

Higgs to four leptons:

arXiv:1207.7214 [hep-ex], ATLAS-CONF-2012-169

Higgs to WW:

arXiv:1207.7214 [hep-ex], ATLAS-CONF-2012-158

Higgs to tautau:

ATLAS-CONF-2012-160

Higgs to bb

ATLAS-CONF-2012-161

Higgs properties:

arXiv:1207.7214 [hep-ex], ATLAS-CONF-2012-168, ATLAS-CONF-2012-127, ATLAS-CONF-

2012-169, ATLAS-CONF-2012-170, arXiv:1209.0040 [hep-ph]

Table 1: Number of events in the data (N_D) and expected number of expected signal events (N_S) for $m_H = 126.5$ GeV from the $H \rightarrow \gamma \gamma$ analysis, for each category in the mass range 100-160 GeV, based on SM predictions. The mass resolution Full Width at Half Maximum (FWHM) is also given. Numbers for the 7 TeV analysis can be found in Ref. [7]. The statistical uncertainties on N_S and FWHM are less than 1%. The breakdown of expected signal events in the $gg \rightarrow H$, VBF, WH, ZH, ttH processes is detailed. For more details, see the text.

\sqrt{s}					8 TeV			
Category	N _D	N_S	$gg \to H [\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]	FWHM [GeV]
Unconv. central, low p_{Tt}	6797	32	93	4.2	1.4	0.9	0.2	3.45
Unconv. central, high p_{Tt}	319	4.7	76	15.2	3.9	2.9	1.7	3.22
Unconv. rest, low p_{Tt}	26802	69	93	4.2	1.7	1.1	0.2	3.75
Unconv. rest, high p_{Tt}	1538	9.7	76	15.1	4.5	3.3	1.2	3.59
Conv. central, low p_{Tt}	4480	21	93	4.2	1.4	0.9	0.2	3.86
Conv. central, high p_{Tt}	199	3.1	77	14.5	4.1	2.8	1.7	3.51
Conv. rest, low p_{Tt}	24107	60	93	4.1	1.7	1.1	0.2	4.32
Conv. rest, high p_{Tt}	1324	8.3	75	15.1	4.9	3.4	1.3	4.00
Conv. transition	10891	28	90	5.6	2.3	1.5	0.3	5.57
High Mass two-jet	345	7.6	31	68.2	0.3	0.2	0.1	3.65
Low Mass two-jet	477	4.7	60	5.1	20.7	12.1	1.6	3.45
One-lepton	151	2.0	3.2	0.4	62.5	15.8	18.0	3.85
All categories (inclusive)	77430	249	88	7.4	2.8	1.6	0.5	3.87

Best fit value for the signal strength in the different categories and combined:

The pTt of the diphoton system is defined as the transverse component of the diphoton momentum, when projected on the axis given by the difference of the photon momenta

Table 6: The numbers of expected signal and background events together with the number of observed events, in a window of ± 5 GeV around 125 GeV for 13.0 fb⁻¹ at $\sqrt{s} = 8$ TeV and 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV as well as for their combination.

		$\overline{s} = 8 \text{ TeV}$		
	Signal (m_H =125 GeV)	$ZZ^{(*)}$	Z + jets, $t\bar{t}$	Observed
4μ	3.1 ± 0.4	1.55 ± 0.07	0.31 ± 0.09	6
$2\mu 2e$	1.4 ± 0.2	0.56 ± 0.04	0.78 ± 0.16	1
$2e2\mu$	1.9 ± 0.3	0.80 ± 0.04	$0.26 \pm \ 0.07$	3
4e	1.5 ± 0.2	0.77 ± 0.08	1.20 ± 0.19	4
total	7.9 ± 1.1	3.7 ± 0.2	2.6 ± 0.3	14
		$\overline{s} = 7$ TeV		
4μ	0.88 ± 0.11	0.48 ± 0.02	0.05 ± 0.02	2
$2\mu 2e$	0.32 ± 0.05	0.14 ± 0.01	$0.43 \pm \ 0.09$	1
$2e2\mu$	0.48 ± 0.06	0.22 ± 0.01	0.04 ± 0.02	1
4e	0.28 ± 0.04	0.17 ± 0.02	0.52 ± 0.13	0
total	2.0 ± 0.3	1.0 ± 0.1	1.0 ± 0.2	4
	$\sqrt{s} = 8$ Te	V and $\sqrt{s} = 2$	7 TeV	
4μ	4.0 ± 0.5	2.03 ± 0.09	0.36 ± 0.09	8
$2\mu 2e$	1.7 ± 0.2	0.70 ± 0.05	1.21 ± 0.18	2
$2e2\mu$	2.4 ± 0.3	1.02 ± 0.05	0.30 ± 0.07	4
4e	1.8 ± 0.3	0.94 ± 0.09	1.72 ± 0.23	4
total	9.9 ± 1.3	$4.7\ \pm 0.3$	3.6 ± 0.3	18

A. Gabrielli - INFN - Università di Roma

A. Gabrielli - INFN - Università di Roma

 m_{12} distribution for the combined Vs = 7 TeV and Vs =

 m_{4l} distribution at Z peak for the combined $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV data (loose selection):

 m_{4l} distribution at Z peak for the combined $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV data (loose selection):

A. Gabrielli - INFN - Università di Roma "Sapienza"

Tested J^P hypotheses for an assumed 0^+										
	0-			2_{m}^{+}			2-			
	expected observed obs 0 ⁺			expected	observed	obs 0 ⁺	expected	observed	obs 0 ⁺	
	BDT analysis									
p_0 -value	0.041	0.011	0.69	0.20	0.16	0.57	0.046	0.029	0.56	
σ	1.7	2.3	-0.50	0.84	0.99	-0.18	1.7	1.9	-0.15	
				J ^P -MELA	analysis			-		
p_0 -value	0.031	0.0028	0.76	0.18	0.17	0.53	0.04	0.025	0.56	
σ	1.9	2.7	-0.72	0.91	0.97	-0.08	1.7	2.0	-0.15	

Table 4: The expected numbers of signal and background events after the requirements listed in the first column, as well as the observed numbers of events, are shown for the different signal regions (upper table) and the main control regions (middle table). The signal is shown for $m_H = 125$ GeV. The W+jets background is estimated entirely from data, whereas MC predictions normalised to data in control regions are used for the WW, $t\bar{t}$, tW/tb/tqb and $Z/\gamma^* \rightarrow \tau\tau$ processes in all the stages of the selection. Contributions from other diboson background sources are taken entirely from MC predictions. For the middle table, the W+jets contribution is also estimated entirely from data, however no normalisation factors are applied, except that the top normalisation factor is applied for the top background estimate in the WW control regions. The lower table lists the numbers of expected and observed events after the $\Delta\phi_{\ell\ell}$ cut, for both 0-jet and 1-jet events and separately depending on the flavour of the leading lepton. Only statistical uncertainties associated with the numbers of events in the MC samples are shown.

Cutflow evolution in the different signal regions									
<i>H</i> +0-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
Jet veto	110 ± 1	3004 ± 12	242 ± 8	387 ± 8	215 ± 8	1575 ± 20	340 ± 5	5762 ± 28	5960
$\Delta \phi_{\ell \ell, E_T^{\mathrm{miss}}} > \pi/2$	108 ± 1	2941 ± 12	232 ± 8	361 ± 8	206 ± 8	1201 ± 21	305 ± 5	5246 ± 28	5230
$p_{\mathrm{T},\ell\ell} > 30 \mathrm{GeV}$	99 ± 1	2442 ± 11	188 ± 7	330 ± 7	193 ± 8	57 ± 8	222 ± 3	3433 ± 19	3630
$m_{\ell\ell} < 50 \text{ GeV}$	78.6 ± 0.8	579 ± 5	69 ± 4	55 ± 3	34 ± 3	11 ± 4	65 ± 2	814 ± 9	947
$\Delta\phi_{\ell\ell} < 1.8$	75.6 ± 0.8	555 ± 5	68 ± 4	54 ± 3	34 ± 3	8 ± 4	56 ± 2	774 ± 9	917
H+ 1-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
One jet	59.5 ± 0.8	850 ± 5	158 ± 7	3451 ± 24	1037 ± 17	505 ± 9	155 ± 5	6155 ± 33	6264
<i>b</i> -jet veto	50.4 ± 0.7	728 ± 5	128 ± 5	862 ± 13	283 ± 10	429 ± 8	126 ± 4	2555 ± 20	2655
$Z \rightarrow \tau \tau$ veto	50.1 ± 0.7	708 ± 5	122 ± 5	823 ± 12	268 ± 9	368 ± 8	122 ± 4	2411 ± 19	2511
$m_{\ell\ell} < 50 { m ~GeV}$	37.7 ± 0.6	130 ± 2	39 ± 2	142 ± 5	55 ± 4	99 ± 3	30 ± 2	495 ± 8	548
$\Delta \phi_{\ell\ell} < 1.8$	34.9 ± 0.6	118 ± 2	35 ± 2	134 ± 5	52 ± 4	22 ± 2	24 ± 1	386 ± 8	433

Events / 10 GeV

57

$\mathrm{H} \rightarrow \mathrm{WW}^{\,(*)} \rightarrow \mathrm{Iv} \, \mathrm{Iv}$

24/01/2013

"Sapienza"

$\mathrm{H} \rightarrow \mathrm{WW}^{\,(^*)} \rightarrow \mathrm{Iv} \, \mathrm{Iv}$

Observed and expected CLs limit on the normalized signal strength vs Higgs mass:

Higgs to WW (July 2012):

- The SM Higgs boson is excluded at 95% CL: 137-261 GeV c⁻² (exp 124-233 GeV c⁻²);
- Observed $p_0 \approx 2.8$ standard deviation (exp 2.3) @ $m_H = 125$ GeV c⁻²;
- Signal strength μ = 1.3 +/- 0.5.

Table 3: Event requirements applied in the different categories of the $H \rightarrow \tau_{lep}\tau_{had}$ analysis. Requirements marked with a triangle (>) are categorization requirements, meaning that if an event fails that requirement it is still considered for the remaining categories. Requirements marked with a bullet (•) are only applied to events passing all categorization requirements in a category; events failing such requirements are discarded.

7 Te	eV	8 TeV	
VBF Category	Boosted Category	VBF Category	Boosted Category
$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	_	$\triangleright p_{\mathrm{T}} \tau_{\mathrm{had-vis}} > 30 \mathrm{~GeV}$	$\triangleright p_{\mathrm{T}} \tau_{\mathrm{had-vis}} > 30 \mathrm{GeV}$
$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 \text{ GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$
$\triangleright \geq 2$ jets	$\triangleright p_{\mathrm{T}}^{\mathrm{H}} > 100 \mathrm{GeV}$	$\triangleright \ge 2$ jets	$\triangleright p_{\rm T}^{\rm H} > 100 {\rm GeV}$
▶ $p_{\rm T} {}^{j1}, p_{\rm T} {}^{j2} > 40 \text{ GeV}$	$> 0 < x_1 < 1$	$\triangleright p_{\rm T}^{j1} > 40, p_{\rm T}^{j2} > 30 \text{ GeV}$	$\triangleright 0 < x_1 < 1$
$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$
▶ m _{jj} > 500 GeV	⊳ Fails VBF	$ ightarrow m_{jj} > 500 \text{ GeV}$	⊳ Fails VBF
▷ centrality req.	-	▷ centrality req.	_
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-
$\triangleright p_{\rm T}^{\rm Total} < 40 { m GeV}$	-	$\triangleright p_{\rm T}^{\rm Total} < 30 {\rm GeV}$	-
-	-	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	-
• $m_{\rm T} < 50 { m ~GeV}$	• $m_{\rm T}$ <50 GeV	• <i>m</i> _T <50 GeV	• $m_{\rm T}$ <50 GeV
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-
_	-	• <i>b</i> -tagged jet veto	• b-tagged jet veto
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category
▶ ≥ 1 jet, $p_{\rm T}$ >25 GeV	\triangleright 0 jets $p_{\rm T}$ >25 GeV	$\triangleright \geq 1$ jet, $p_{\rm T} > 30$ GeV	\triangleright 0 jets $p_{\rm T}$ >30 GeV
$\triangleright E_{\rm T}^{\rm miss} > 20 \text{ GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$
▹ Fails VBF, Boosted	 Fails Boosted 	▹ Fails VBF, Boosted	▹ Fails Boosted
• <i>m</i> _T <50 GeV	• $m_{\rm T} < 30 {\rm ~GeV}$	• $m_{\rm T}$ <50 GeV	• $m_{\rm T} < 30 {\rm ~GeV}$
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$
_	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	-	$\bullet p_{\rm T}^{\ell} - p_{\rm T}^{\tau} < 0$

61

"Sapienza"

Table 6: The expected numbers of signal and background events for the $\sqrt{s} = 8$ TeV data after the profile likelihood fit, as well as the observed number of events, are shown. The expected number of signal events are shown for *WH* and *ZH* production separately for $m_H = 125$ GeV. The quoted error on the total background represents one standard deviation of the profiled nuisance parameters incorporating both the systematic and statistical uncertainties.

	0-le	pton, 2 je	et	0-le	pton, 3 je	t			1-lepton	1				2-leptor	1	
Bin			$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]					$p_{\rm T}^W$ [GeV]				$p_{\rm T}^{\rm Z}[{\rm GeV}]$]	
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Тор	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c,light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c,light	35	14	14	8	5	8	17	17	4	1	0	201	230	91	12	15
Z + b	144	51	43	41	22	16	50	63	13	5	1	1010	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	1	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	- 98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	± 14	± 90	± 110	± 47	± 12	± 12
Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ masses

Mass scale and resolution uncertainties cross checked in great detail for both channels (more details in the backup)

 γγ error dominated by systematics, mainly photon energy scale
 (total syst. 0.5%, stat error is 0.3%)

- $H \rightarrow ZZ^* \rightarrow 4I$: error dominated by statistics, most of the sensitivity is coming from the 4μ channel (total syst is 0.3%, stat error is 0.7%)

Measurements consistency is evaluated via a likelihood function of the mass difference, when fitting a common mass

The difference corresponds to 2.7 σ

A more conservative treatment of scale systematics (rectangular PDFs) leads to 2.3 σ

$H \rightarrow \gamma \gamma$ mass systematic uncertainties

Absolute energy scale	0.3%
Uncertainties on upstream material simulation	0.3%
Pre-sampler energy scale	0.1%
Non-linearity of EM calo electronics	0.15%
Conversion fraction	0.1%
Relative calibration of first and second sampling	0.2%
Lateral leakage corrections	0.1%
Resolution	0.15%

+other smaller effects Total systematic error is 0.55% (0.7 GeV)

41 mass measurement dominated by the 4μ channel

Muon momentum scale	0.2%
Electron energy scale (4e)	0.4%
Low E _T electrons	0.1%

Possible local detector biases checked event by event

FSR contribution negligible

ID and MS measurements also checked separately

Relative global mass scale difference between the measured resonance mass and the PDG value

Production modes

$$\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = \begin{cases} \kappa_g^2(\kappa_b, \kappa_t, m_H) \\ \kappa_g^2 \end{cases} \quad (3)$$

$$\frac{\sigma_{VBF}}{\sigma_{VBF}^{SM}} = \kappa_{VBF}^2(\kappa_W, \kappa_Z, m_H) \quad (4)$$

$$\frac{\sigma_{WH}}{\sigma_{WH}^{SM}} = \kappa_W^2 \qquad (5)$$

$$\frac{\sigma_{ZH}}{\sigma_{ZH}^{SM}} = \kappa_Z^2 \qquad (6)$$

$$\frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}} = \kappa_t^2 \qquad (7)$$

Currently undetectable decay modes

$$\begin{array}{rcl} \displaystyle \frac{\Gamma_{t\bar{t}}}{\Gamma_{t\bar{t}}^{SM}} &=& \kappa_t^2 \\ \displaystyle \frac{\Gamma_{gg}}{\Gamma_{gg}^{SM}} &:& \text{see Section 3.1.2} \\ \displaystyle \frac{\Gamma_{c\bar{c}}}{\Gamma_{c\bar{c}}^{SM}} &=& \kappa_t^2 \\ \displaystyle \frac{\Gamma_{s\bar{s}}}{\Gamma_{s\bar{s}}^{SM}} &=& \kappa_b^2 \\ \displaystyle \frac{\Gamma_{\mu^-\mu^+}}{\Gamma_{\mu^-\mu^+}^{SM}} &=& \kappa_\tau^2 \end{array}$$

Total width

$$\frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} = \begin{cases} \kappa_{\rm H}^2(\kappa_i, m_{\rm H}) \\ \kappa_{\rm H}^2 \end{cases}$$
70

24/01/2013

Boson	Boson and fermion scaling assuming no invisible or undetectable widths							
Free parameters: $\kappa_{\rm V}(=\kappa_{\rm W}=\kappa_{\rm Z}), \kappa_{\rm f}(=\kappa_{\rm t}=\kappa_{\rm b}=\kappa_{\rm t}).$								
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow WW^{(*)}$	${ m H} ightarrow { m b} { m b}$	$\mathrm{H} \to \tau^- \tau^+$			
ggH	$\kappa_{\rm f}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm V})$	к	$r_{f}^{2} \cdot \kappa_{V}^{2}$	к	${}_{f}^{2}\cdot\kappa_{f}^{2}$			
$t\bar{t}H$	$\kappa_{\rm H}^2(\kappa_i)$	κ	$\frac{2}{4}(\kappa_i)$	κ ² _H	$I(\kappa_i)$			
VBF	x ² x ² (x ₂ x ₂ x ₃ x ₃ x ₃)		2 2		22			
WH	$\frac{\kappa_V \cdot \kappa_\gamma (\kappa_f, \kappa_f, \kappa_f, \kappa_V)}{\kappa^2 (\kappa_v)}$		V V 2 (x.)	$rac{\kappa_V^2 \cdot \kappa_{ extsf{f}}}{\kappa_{ extsf{H}}^2(\kappa_i)}$				
ZH	*H(*!)	~1	$I(\kappa_i)$					
Boson	and fermion scaling without ass	sumptions on	the total width					
Free par	rameters: $\kappa_{VV} (= \kappa_V \cdot \kappa_V / \kappa_H), \lambda_{fV} (= \kappa_f$	/κ _V).						
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow WW^{(*)}$	${ m H} ightarrow { m b} \overline{ m b}$	$\mathrm{H} \to \tau^- \tau^+$			
ggH	r^2 , λ^2 , $r^2(\lambda_{11}, \lambda_{12}, \lambda_{13}, 1)$	r ²	. 22	×2 . 3	2.12			
$t\bar{t}H$	$\kappa_{\rm VV}$ $\kappa_{\rm fV}$ κ_{γ} $(\kappa_{\rm fV}, \kappa_{\rm fV}, \kappa_{\rm fV}, 1)$	NVV	fV	NVV 1	fV ⁺ fV			
VBF								
WH	$\kappa_{VV}^2 \cdot \kappa_{\gamma}^2(\lambda_{fV},\lambda_{fV},\lambda_{fV},1)$	к	2 VV	κ ² _{VV}	$\gamma \cdot \lambda_{\rm fV}^2$			
ZH								
	1	0						

$\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{SM}$

Probing custodial symmetry assuming no invisible or undetectable widths									
Free pa	Free parameters: κ_Z , $\lambda_{WZ}(=\kappa_W/\kappa_Z)$, $\kappa_f(=\kappa_t=\kappa_b=\kappa_\tau)$.								
	$\mathrm{H} \to \gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow WW^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^- \tau^+$					
ggH	$\kappa_f^2 \cdot \kappa_\gamma^2(\kappa_f, \kappa_f, \kappa_f, \kappa_Z \lambda_{WZ})$	$\kappa_f^2 \cdot \kappa_Z^2$	$\kappa_f^2 \cdot (\kappa_Z \lambda_{WZ})^2$	$\kappa_f^2 \cdot \kappa_f^2$					
$t\bar{t}H$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$					
VBF	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})}{2}$	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm Z}^2}{2}$	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot(\kappa_{\rm Z}\lambda_{\rm WZ})^2}{2}$	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm f}^2}{2}$					
	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$					
WH	$\frac{(\kappa_{\rm Z}\lambda_{\rm WZ})^2 \cdot \kappa_{\rm T}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})}{2}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_Z^2}{2}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot (\kappa_Z \lambda_{WZ})^2}{2}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_f^2}{2}$					
	$\kappa_{\rm H}^{\epsilon}(\kappa_i)$	$\kappa_{\rm H}(\kappa_i) = \kappa_{\rm H}^2 (\kappa_i)$		$\kappa_{\rm H}^{\epsilon}(\kappa_i)$					
ZH	$\frac{\kappa_{Z}^{2} \cdot \kappa_{\gamma}^{2} (\kappa_{f}, \kappa_{f}, \kappa_{f}, \kappa_{Z} \wedge_{WZ})}{2}$	KŽ KŽ	KZ·(KZAWZ) ²	KZ'Kf					
	$\kappa_{\rm H}^{*}(\kappa_{i})$	$\kappa_{\rm H}^{*}(\kappa_i) = \kappa_{\rm H}^{*}(\kappa_i)$		$\kappa_{\rm H}^*(\kappa_i)$					
Probi	ng custodial symmetry without assumptions of	on the total width							
Free pa	rameters: $\kappa_{\rm ZZ} (= \kappa_{\rm Z} \cdot \kappa_{\rm Z} / \kappa_{\rm H}), \lambda_{\rm WZ} (= \kappa_{\rm W} / \kappa_{\rm Z}), \lambda_{FZ} (= \kappa_{\rm W} / \kappa_{\rm Z})$	$\kappa_{\rm f}/\kappa_{\rm Z}$).							
	$\mathrm{H} \to \gamma\gamma$	$H \rightarrow ZZ^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	${ m H} ightarrow { m b} { m \overline{b}} { m H} ightarrow { m au^-} { m au^+}$					
ggH	r^{2} λ^{2} $r^{2}(\lambda - r)$ $\lambda - r$ $\lambda - r)$	r ² 2 ²	x ² 2 ² 2 ²	$x^2 + x^2 + x^2$					
ttH	$\kappa_{ZZ}\kappa_{FZ}$, $\kappa_{\gamma}(\kappa_{FZ},\kappa_{FZ},\kappa_{FZ},\kappa_{WZ})$	KZZ∧FZ	KZZAFZ · AWZ	KZZKFZ · KFZ					
VBF	$\kappa^2_{\mathrm{ZZ}}\kappa^2_{\mathrm{VBF}}(1,\lambda^2_{\mathrm{WZ}})\cdot\kappa^2_{\gamma}(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{\rm ZZ}^2 \kappa_{\rm VBF}^2(1,\lambda_{\rm WZ}^2)$	$\kappa^2_{\rm ZZ} \kappa^2_{\rm VBF}(1,\lambda^2_{\rm WZ})\cdot\lambda^2_{\rm WZ}$	$\kappa^2_{\mathrm{ZZ}}\kappa^2_{\mathrm{VBF}}(1,\lambda^2_{\mathrm{WZ}})\cdot\lambda^2_{FZ}$					
WH	$\kappa^2_{\mathrm{ZZ}}\lambda^2_{\mathrm{WZ}}\cdot\kappa^2_{\gamma}(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa^2_{ZZ} \cdot \lambda^2_{WZ}$	$\kappa^2_{ZZ} \lambda^2_{WZ} \cdot \lambda^2_{WZ}$	$\kappa^2_{\mathrm{ZZ}} \lambda^2_{\mathrm{WZ}} \cdot \lambda^2_{FZ}$					
ZH	$\begin{array}{c c} \mathrm{ZH} & \kappa_{\mathrm{ZZ}}^2 \cdot \kappa_{\mathrm{Y}}^2 (\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{\mathrm{WZ}}) & \kappa_{\mathrm{ZZ}}^2 & \kappa_{\mathrm{ZZ}}^2 \cdot \lambda_{\mathrm{WZ}}^2 & \kappa_{\mathrm{ZZ}}^2 \cdot \lambda_{FZ}^2 \end{array}$								
		$\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{SM}$							

Table 5: A benchmark parametrization where custodial symmetry is probed through the $\lambda_{\rm WZ}$ parameter.

A. Gabrielli - INFN - Università di Roma "Sapienza"

Probing up-type and down-type fermion symmetry assuming no invisible or undetectable widths							
Free pa	rameters: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm du}(=\kappa_{\rm d}/\kappa_{\rm u}), \kappa_{\rm u}$	$(=\kappa_t).$					
	${ m H} ightarrow \gamma\gamma$	$H \rightarrow ZZ^{(*)}$ $H \rightarrow WW^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^- \tau^+$				
ggH	$\frac{\kappa_{g}^{2}(\kappa_{u}\lambda_{du},\kappa_{u})\cdot\kappa_{\gamma}^{2}(\kappa_{u}\lambda_{du},\kappa_{u},\kappa_{u}\lambda_{du},\kappa_{V})}{2}$	$\frac{\kappa_g^2(\kappa_u \lambda_{du}, \kappa_u) \kappa_V^2}{\kappa_V^2}$	$\frac{\kappa_{g}^{2}(\kappa_{u}\lambda_{du},\kappa_{u})\cdot(\kappa_{u}\lambda_{du})^{2}}{2}$				
	$\mathbf{k}_{\mathrm{H}}(\mathbf{k}_{i})$	κ _H (κ _i)	$\kappa_{\rm H}(\kappa_i)$				
$t\bar{t}H$	$\frac{\kappa_{\mathrm{u}}^{2}\cdot\kappa_{\gamma}^{2}(\kappa_{\mathrm{u}}\lambda_{\mathrm{du}},\kappa_{\mathrm{u}},\kappa_{\mathrm{u}}\lambda_{\mathrm{du}},\kappa_{\mathrm{V}})}{\kappa_{\mathrm{H}}^{2}(\kappa_{\mathrm{i}})}$	$rac{\kappa_u^2 \cdot \kappa_V^2}{\kappa_H^2(\kappa_i)}$	$rac{\kappa_{\mathrm{u}}^2 \cdot (\kappa_{\mathrm{u}} \lambda_{\mathrm{du}})^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}$				
VBF	$\mathbf{x}^2 \cdot \mathbf{x}^2 (\mathbf{x}_n) \cdot \mathbf{x}_n \cdot \mathbf{x}_n \cdot \mathbf{x}_n$	x ² x ²	$(r_{1}, \lambda_{2})^{2}$				
WH	======================================	$\frac{n\sqrt{n\sqrt{n}}}{r^2(r_1)}$	$\frac{v_V(u_{du})}{v_{du}^2(v_{du})}$				
ZH	$\kappa_{\rm H}(\kappa_1)$	$\kappa_{\rm H}(\kappa_i)$	$\kappa_{\rm H}(\kappa_i)$				
Probi	ng up-type and down-type fermion s	ymmetry without assumptior	is on the total width				
Probin Free pa	ng up-type and down-type fermion s rameters: $\kappa_{uu} (= \kappa_u \cdot \kappa_u / \kappa_H), \lambda_{du} (= \kappa_d / \kappa_u),$	ymmetry without assumption $\lambda_{Vu} (= \kappa_V / \kappa_u).$	ns on the total width				
Probin Free pa	$ \begin{array}{l} \textbf{ng up-type and down-type fermion s} \\ \textbf{rameters: } \kappa_{uu}(=\kappa_{u}\cdot\kappa_{u}/\kappa_{H}), \lambda_{du}(=\kappa_{d}/\kappa_{u}), \\ H \rightarrow \gamma\gamma \end{array} $	$ \begin{array}{l} \text{ymmetry without assumption} \\ \lambda_{Vu}(=\kappa_V/\kappa_u). \\ H \to ZZ^{(*)} H \to WW^{(*)} \end{array} $	is on the total width $H \rightarrow b\overline{b} H \rightarrow \tau^- \tau^+$				
Probin Free pa ggH	$\begin{split} & \textbf{ng up-type and down-type fermion s} \\ & \textbf{rameters: } \kappa_{uu}(=\kappa_u\cdot\kappa_u/\kappa_H), \lambda_{du}(=\kappa_d/\kappa_u), \\ & H \rightarrow \gamma\gamma \\ & \kappa_{uu}^2\kappa_g^2(\lambda_{du},1)\cdot\kappa_\gamma^2(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \end{split}$	$ \begin{array}{c c} \mbox{ymmetry without assumption} \\ \lambda_{Vu}(=\kappa_V/\kappa_u). \\ \hline H \rightarrow ZZ^{(*)} & H \rightarrow WW^{(*)} \\ \hline \kappa^2_{uu}\kappa^2_g(\lambda_{du},1)\cdot\lambda^2_{Vu} \end{array} $	hs on the total width $\begin{array}{c c} H \rightarrow b\overline{b} & H \rightarrow \tau^{-}\tau^{+} \\ \hline \kappa_{uu}^{2}\kappa_{g}^{2}(\lambda_{du},1) \cdot \lambda_{du}^{2} \end{array}$				
Probin Free pa ggH ttH	$\begin{split} & \text{ng up-type and down-type fermion s} \\ & \text{rameters: } \kappa_{uu}(=\kappa_{u}\cdot\kappa_{u}/\kappa_{H}), \lambda_{du}(=\kappa_{d}/\kappa_{u}), \\ & H \to \gamma\gamma \\ & \kappa_{uu}^{2}\kappa_{g}^{2}(\lambda_{du},1)\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \\ & \kappa_{uu}^{2}\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \end{split}$	$\begin{array}{c c} \textbf{ymmetry without assumption} \\ \lambda_{Vu}(=\kappa_V/\kappa_u). \\ \hline H \rightarrow ZZ^{(*)} & H \rightarrow WW^{(*)} \\ \hline \kappa_{uu}^2 \kappa_g^2(\lambda_{du},1) \cdot \lambda_{Vu}^2 \\ \hline \kappa_{uu}^2 \cdot \lambda_{Vu}^2 \end{array}$	$\begin{array}{c c} H \rightarrow b\overline{b} & H \rightarrow \tau^{-}\tau^{+} \\ \hline \kappa^{2}_{uu}\kappa^{2}_{g}(\lambda_{du},1) \cdot \lambda^{2}_{du} \\ \hline \kappa^{2}_{uu} \cdot \lambda^{2}_{du} \end{array}$				
Probin Free pa ggH ttH VBF	$\begin{split} & \text{ng up-type and down-type fermion symmetry:} \\ & \text{rameters: } \kappa_{uu}(=\kappa_u\cdot\kappa_u/\kappa_H), \lambda_{du}(=\kappa_d/\kappa_u), \\ & H \to \gamma\gamma \\ & \kappa_{uu}^2\kappa_g^2(\lambda_{du},1)\cdot\kappa_\gamma^2(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \\ & \kappa_{uu}^2\cdot\kappa_\gamma^2(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \end{split}$	$\begin{array}{c c} \textbf{ymmetry without assumption} \\ \lambda_{Vu}(=\kappa_V/\kappa_u). \\ \hline H \to ZZ^{(*)} & H \to WW^{(*)} \\ \hline \kappa_{uu}^2 \kappa_g^2(\lambda_{du},1) \cdot \lambda_{Vu}^2 \\ \hline \kappa_{uu}^2 \cdot \lambda_{Vu}^2 \end{array}$	is on the total width $\begin{array}{c c} H \to b\overline{b} & H \to \tau^{-}\tau^{+} \\ \hline \kappa_{uu}^{2}\kappa_{g}^{2}(\lambda_{du}, 1) \cdot \lambda_{du}^{2} \\ \hline \kappa_{uu}^{2} \cdot \lambda_{du}^{2} \end{array}$				
Probin Free pa ggH ttH VBF WH	$\begin{split} & \text{ng up-type and down-type fermion sy}\\ & \text{rameters: } \kappa_{uu}(=\kappa_{u}\cdot\kappa_{u}/\kappa_{H}), \lambda_{du}(=\kappa_{d}/\kappa_{u}), \\ & H \to \gamma\gamma \\ & \kappa_{uu}^{2}\kappa_{g}^{2}(\lambda_{du},1)\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \\ & \kappa_{uu}^{2}\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \\ & \kappa_{uu}^{2}\lambda_{Vu}^{2}\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \\ \end{split}$	$\begin{array}{c c} \mbox{ymmetry without assumption} \\ \lambda_{Vu}(=\kappa_V/\kappa_u). \\ H \rightarrow ZZ^{(*)} & H \rightarrow WW^{(*)} \\ \hline \kappa^2_{uu}\kappa^2_g(\lambda_{du},1) \cdot \lambda^2_{Vu} \\ \hline \kappa^2_{uu} \cdot \lambda^2_{Vu} \\ \hline \kappa^2_{uu} \lambda^2_{Vu} \cdot \lambda^2_{Vu} \\ \hline \end{array}$	is on the total width $\begin{array}{c c} H \to b\overline{b} & H \to \tau^-\tau^+ \\ \hline \kappa^2_{uu}\kappa^2_g(\lambda_{du}, 1) \cdot \lambda^2_{du} \\ \hline \kappa^2_{uu} \cdot \lambda^2_{du} \\ \hline \kappa^2_{uu}\lambda^2_{Vu} \cdot \lambda^2_{du} \\ \end{array}$				
Probin Free pa ggH ttH VBF WH ZH	$\begin{split} & \text{ng up-type and down-type fermion sy}\\ \text{rameters: } & \kappa_{uu}(=\kappa_{u}\cdot\kappa_{u}/\kappa_{H}), \lambda_{du}(=\kappa_{d}/\kappa_{u}), \\ & H \rightarrow \gamma\gamma \\ & \kappa_{uu}^{2}\kappa_{g}^{2}(\lambda_{du},1)\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \\ & \kappa_{uu}^{2}\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \\ & \kappa_{uu}^{2}\lambda_{Vu}^{2}\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \end{split}$	$\begin{split} & \textbf{ymmetry without assumption} \\ & \lambda_{Vu}(=\kappa_V/\kappa_u). \\ & \textbf{H} \rightarrow ZZ^{(*)} \mid \textbf{H} \rightarrow WW^{(*)} \\ & \kappa_{uu}^2 \kappa_g^2(\lambda_{du}, 1) \cdot \lambda_{Vu}^2 \\ & \kappa_{uu}^2 \cdot \lambda_{Vu}^2 \\ & \kappa_{uu}^2 \lambda_{Vu}^2 \cdot \lambda_{Vu}^2 \end{split}$	$ \begin{split} & H \rightarrow b\overline{b} H \rightarrow \tau^{-}\tau^{+} \\ & \kappa_{uu}^{2}\kappa_{g}^{2}(\lambda_{du},1) \cdot \lambda_{du}^{2} \\ & \kappa_{uu}^{2} \cdot \lambda_{du}^{2} \\ & \kappa_{uu}^{2} \cdot \lambda_{du}^{2} \\ \end{split} $				

Table 6: A benchmark parametrization where the up-type and down-type symmetry of fermions is probed through the λ_{du} parameter.

Probing quark and lepton fermion symmetry assuming no invisible or undetectable widths									
Free pa	Free parameters: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm iq}(=\kappa_{\rm l}/\kappa_{\rm q}), \kappa_{\rm q}(=\kappa_{\rm t}=\kappa_{\rm b}).$								
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	${ m H} \rightarrow { m WW}^{(*)}$	${\rm H} \rightarrow {\rm b} \overline{\rm b}$	$H\to\tau^-\tau^+$				
ggH	$\kappa_{\rm q}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm q},\!\kappa_{\rm q},\!\kappa_{\rm q}\lambda_{\rm lq},\!\kappa_{\rm V})$	ĸ	$^{2}_{4} \cdot \kappa_{V}^{2}$	$\kappa_q^2 \cdot \kappa_q^2$	$\kappa_{\rm q}^2 \cdot (\kappa_{\rm q} \lambda_{\rm lq})^2$				
ttH	$\kappa_{\rm H}^2(\kappa_i)$	κ _I	$I(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$				
VBF	$r^2 r^2 (r - r - r - h - r r)$		2	x ² x ²	$(x_{-}^{2})^{2}$				
WH	$\frac{\kappa_V \cdot \kappa_\gamma (\kappa_q, \kappa_q, \kappa_q \kappa_{lq}, \kappa_V)}{\kappa_{-}^2 (\kappa_z)}$	x2	(x.)	$\frac{\kappa_V \cdot \kappa_q}{\kappa_r^2 \cdot (\kappa_r)}$	$\frac{\kappa_V \cdot (\kappa_q \kappa_{lq})}{\kappa_r^2 \cdot (\kappa_r)}$				
ZH	"H("I)		[(4)]	"H("i)	"H(")				
Probi	ng quark and lepton fermio	n symmetry v	vithout assumpt	ions on the	total width				
Free pa	rameters: $\kappa_{qq} (= \kappa_q \cdot \kappa_q / \kappa_H), \lambda_{lq} (=$	$=\kappa_l/\kappa_q), \lambda_{Vq}(=$	κ_V/κ_q).						
	$\mathrm{H} \to \gamma\gamma$	$H \rightarrow ZZ^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	${\rm H} \rightarrow {\rm b} \overline{\rm b}$	$H\to\tau^-\tau^+$				
ggH ttH	$\kappa_{qq}^2\cdot\kappa_{\gamma}^2(1,1,\lambda_{lq},\lambda_{Vq})$	κ_{qq}^2	$\cdot\lambda_{Vq}^2$	$\kappa_{\rm qq}^2$	$\kappa_{qq}^2\cdot\lambda_{lq}^2$				
VBF									
WH	$\kappa_{\alpha\alpha}^2 \lambda_{V\alpha}^2 \cdot \kappa_s^2(1, 1, \lambda_{l\alpha}, \lambda_{V\alpha})$	$\kappa_{\alpha\alpha}^2 \lambda_1^2$	$\lambda_{V\alpha}^2 \cdot \lambda_{V\alpha}^2$	$\kappa_{aa}^2 \cdot \lambda_{Va}^2$	$\kappa_{\alpha\alpha}^2 \lambda_{V\alpha}^2 \cdot \lambda_{l\alpha}^2$				
ZH	44 44 1477 47747	,							
$\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{\mathrm{SM}}, \kappa_{\mathrm{I}} = \kappa_{\mathrm{T}}$									

Table 7: A benchmark parametrization where the quark and lepton symmetry of fermions is probed through the λ_{lq} parameter.
Probing loop structure assuming no invisible or undetectable widths							
Free parameters: κ_g , κ_γ .							
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	${ m H} ightarrow { m b} { m b}$	$\mathrm{H} \to \tau^- \tau^+$		
ggH	$rac{\kappa_{ m g}^2 \cdot \kappa_{ m \gamma}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{\kappa_g^2}{\kappa_H^2(\kappa_i)}$					
ttH							
VBF	κ ² _γ		1				
WH	$\overline{\kappa_{\mathrm{H}}^2(\kappa_i)}$		$\kappa_{\rm H}^2(\kappa_i)$				
ZH							
Probing loop structure allowing for invisible or undetectable widths							
Free pa	Free parameters: κ_g , κ_γ , BR _{inv.,undet} .						
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow WW^{(*)}$	$H \rightarrow b\overline{b}$	$\mathrm{H} \to \tau^- \tau^+$		
σσΗ	κ ² _g ·κ ² _γ		κ _g ²				
	$\kappa_{\rm H}^2(\kappa_i)/(1-{\rm BR_{inv.,undet.}})$		$\kappa_{\rm H}^2(\kappa_i)/(1-{\rm BR}_i)$	nv.,undet.)			
ttH							
VBF	κ _γ ²		1				
WH	$\kappa_{\rm H}^2(\kappa_i)/(1-{\rm BR_{inv.,undet.}})$		$\kappa_{\rm H}^*(\kappa_i)/(1-{\rm BR}_{\rm i})$	nv.,undet.)			
ZH							
$\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{\rm SM}$							

Table 8: A benchmark parametrization where effective vertex couplings are allowed to float through the κ_g and κ_γ parameters. Instead of absorbing κ_H , explicit allowance is made for a contribution from invisible or undetectable widths via the BR_{inv.,undet} parameter.

Probing loops while allowing other couplings to float assuming no invisible or undetectable widths							
Free parameters: κ_g , κ_γ , $\kappa_V (= \kappa_W = \kappa_Z)$, $\kappa_f (= \kappa_t = \kappa_b = \kappa_\tau)$.							
	$\mathrm{H} \to \gamma \gamma$	$H \rightarrow ZZ^{(*)}$ $H \rightarrow WW^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^- \tau^+$				
ggH	$rac{\kappa_{ m g}^2\cdot\kappa_{ m y}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{\kappa_{\rm g}^2 \cdot \kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm g}^2 \cdot \kappa_{\rm f}^2}{\kappa_{\rm H}^2 (\kappa_i)}$				
tīH	$rac{\kappa_{ m f}^2\cdot\kappa_{ m \gamma}^2}{\kappa_{ m H}^2(\kappa_i)}$	$rac{\kappa_{ m f}^2 \cdot \kappa_{ m V}^2}{\kappa_{ m H}^2(\kappa_i)}$	$rac{\kappa_{ extsf{f}}^2 \cdot \kappa_{ extsf{f}}^2}{\kappa_{ extsf{H}}^2 (\kappa_i)}$				
VBF	x ² x ²	x ² x ²	x ² x ²				
WH	$\frac{\kappa_V \kappa_{\gamma}}{\kappa^2 (\kappa_{\gamma})}$	$\frac{k_V k_V}{r^2 (r_1)}$	$\frac{\kappa_V \kappa_f}{\kappa_r^2 (\kappa_r)}$				
ZH	"H("i)	H(Ki)	$\kappa_{\rm H}(\kappa_i)$				
Probi	ng loops while allow	wing other couplings to float a	allowing for invisible or undetectable widths				
Probin Free par	ng loops while allow rameters: $\kappa_{gV} (= \kappa_g \cdot \kappa_V)$	wing other couplings to float a $\lambda_{\rm V/KH}$, $\lambda_{\rm Vg} (= \kappa_{\rm V}/\kappa_{\rm g})$, $\lambda_{\rm vy} (= \kappa_{\rm v}/\kappa_{\rm y})$	allowing for invisible or undetectable widths), $\lambda_{fV} (= \kappa_f / \kappa_V)$.				
Probin Free par	rameters:	$ \begin{array}{c c} \text{wing other couplings to float a} \\ \lambda_{\rm /KH}, \lambda_{\rm Vg} (= \kappa_{\rm V}/\kappa_{\rm g}), \lambda_{\rm VV} (= \kappa_{\rm Y}/\kappa_{\rm V}) \\ H \rightarrow {\rm ZZ}^{(*)} & H \rightarrow {\rm WW}^{(*)} \end{array} $	$ \begin{array}{ c c c c c } \hline \mbox{allowing for invisible or undetectable widths} \\ \mbox{$\lambda_{\rm fV}(=\kappa_{\rm f}/\kappa_{\rm V})$}. \\ \hline \mbox{$H \to bb$} & \mbox{$H \to \tau^-\tau^+$} \\ \hline \end{array} $				
Probin Free par ggH	$\begin{array}{c} \textbf{ng loops while allow}\\ \textbf{rameters: } \kappa_{gV}(=\kappa_{g}\cdot\kappa_{V})\\ \hline H \rightarrow \gamma\gamma\\ \kappa_{gV}^{2}\cdot\lambda_{\gamma V}^{2} \end{array}$	$ \begin{array}{c} \text{wing other couplings to float a} \\ \frac{\kappa_{\mathrm{H}}}{\kappa_{\mathrm{H}}}, \lambda_{\mathrm{Vg}}(=\kappa_{\mathrm{V}}/\kappa_{\mathrm{g}}), \lambda_{\mathrm{VV}}(=\kappa_{\mathrm{V}}/\kappa_{\mathrm{V}}) \\ \hline \mathrm{H} \to \mathrm{ZZ}^{(*)} \mid \mathrm{H} \to \mathrm{WW}^{(*)} \\ \hline \kappa_{\mathrm{gV}}^{2} \end{array} $	$ \begin{array}{c c} \mbox{allowing for invisible or undetectable widths} \\ \lambda_{fV}(=\kappa_f/\kappa_V). \\ \hline H \rightarrow b\overline{b} & H \rightarrow \tau^-\tau^+ \\ \hline \kappa_{gV}^2 \cdot \lambda_{fV}^2 \end{array} $				
Probin Free par ggH ttH	$\begin{array}{l} \textbf{ng loops while allow}\\ \textbf{rameters:} & \kappa_{gV} (= \kappa_g \cdot \kappa_V \\ H \rightarrow \gamma\gamma \\ \hline \kappa_{gV}^2 \cdot \lambda_{\gamma V}^2 \\ \hline \kappa_{gV}^2 \lambda_{Vg}^2 \lambda_{fV}^2 \cdot \lambda_{\gamma V}^2 \end{array}$	$ \begin{array}{c c} \mbox{wing other couplings to float a} \\ \mbox{wing other couplings to float a} \\ \mbox{$\lambda_{\rm /}(\kappa_{\rm H}), \lambda_{\rm Vg}(=\kappa_{\rm V}/\kappa_{\rm g}), \lambda_{\rm V}(=\kappa_{\rm Y}/\kappa_{\rm V})$} \\ \hline \mbox{$H \to ZZ^{(*)}$} & \mbox{$H \to WW^{(*)}$} \\ \hline \mbox{$\kappa_{gV}^2$} \\ \hline \\mbox{$\kappa_{gV}^2$} \\ \hline \\m$	$ \begin{array}{c c} \mbox{allowing for invisible or undetectable widths} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
Probin Free par ggH ttH VBF	$\begin{array}{l} \textbf{ng loops while allow}\\ \textbf{rameters: } \kappa_{gV}(=\kappa_{g}\cdot\kappa_{V}\\ \hline H \rightarrow \gamma\gamma\\ \hline \kappa_{gV}^{2}\cdot\lambda_{\gamma V}^{2}\\ \hline \kappa_{gV}^{2}\lambda_{Vg}^{2}\lambda_{fV}^{2}\cdot\lambda_{\gamma V}^{2} \end{array}$	$ \begin{array}{c c} \mbox{wing other couplings to float a} \\ \mbox{$\chi'(\kappa_{\rm H}), \lambda_{\rm Vg}(=\kappa_{\rm V}/\kappa_{\rm g}), \lambda_{\rm VV}(=\kappa_{\rm Y}/\kappa_{\rm V})$} \\ \hline \mbox{$H \rightarrow ZZ^{(*)}$} & \mbox{$H \rightarrow WW^{(*)}$} \\ \hline \mbox{$\kappa^2_{g\rm V}$} \\ \hline \\mbox{$\kappa^2_{g\rm V}$} \\ \hline \\mb$	$ \begin{array}{c c} \mbox{allowing for invisible or undetectable widths} \\ \mbox{$), \lambda_{\rm fV}(=\kappa_{\rm f}/\kappa_{\rm V})$}, \\ \hline \mbox{$H \rightarrow b\overline{b}$} & \mbox{$H \rightarrow \tau^{-}\tau^{+}$} \\ \hline \mbox{$\kappa_{gV}^2 \cdot \lambda_{fV}^2$} \\ \hline \mbox{$\kappa_{gV}^2 \lambda_{Vg}^2 \lambda_{fV}^2 \cdot \lambda_{fV}^2$} \\ \hline \mbox{$\kappa_{gV}^2 \lambda_{Vg}^2 \lambda_{fV}^2 \cdot \lambda_{fV}^2$} \\ \hline \end{array} $				
Probin Free par ggH ttH VBF WH	$\begin{aligned} & \text{ng loops while allow} \\ & \text{rameters: } \kappa_{gV} (= \kappa_g \cdot \kappa_V \\ & H \to \gamma\gamma \\ & \kappa_{gV}^2 \cdot \lambda_{\gamma V}^2 \\ & \kappa_{gV}^2 \lambda_{Vg}^2 \lambda_{fV}^2 \cdot \lambda_{\gamma V}^2 \\ & \kappa_{gV}^2 \lambda_{Vg}^2 \cdot \lambda_{\gamma V}^2 \end{aligned}$	$ \begin{array}{c c} \mbox{wing other couplings to float a} \\ \mbox{wing other couplings to float a} \\ \mbox{$\chi'(\kappa_{\rm H}), \lambda_{\rm Vg}(=\kappa_{\rm V}/\kappa_{\rm g}), \lambda_{\rm VV}(=\kappa_{\rm Y}/\kappa_{\rm V}}$\\ \hline \mbox{$H \to ZZ^{(*)}$} & \mbox{$H \to WW^{(*)}$} \\ \hline \mbox{$\kappa_{gV}^2$} \\ \hline \end{array} $	$\label{eq:constraint} \begin{array}{ c c c c c } \hline \textbf{allowing for invisible or undetectable widths} \\ \hline \textbf{allowing for invisible or undetectable widths} \\ \hline \textbf{block} & \textbf{block} \\ \hline \textbf{H} \rightarrow \textbf{bb} & \textbf{H} \rightarrow \tau^{-}\tau^{+} \\ \hline \textbf{K}_{gV}^{2} \cdot \lambda_{fV}^{2} \\ \hline \textbf{K}_{gV}^{2} \lambda_{Vg}^{2} \lambda_{fV}^{2} \lambda_{fV}^{2} \\ \hline \textbf{K}_{gV}^{2} \lambda_{Vg}^{2} \cdot \lambda_{fV}^{2} \\ \hline \textbf{K}_{gV}^{2} \lambda_{Vg}^{2} \cdot \lambda_{fV}^{2} \\ \hline \end{array}$				
Probin Free par ggH ttH VBF WH ZH	$\begin{split} & \text{ng loops while allow} \\ & \text{rameters: } \kappa_{gV} (= \kappa_g \cdot \kappa_V \\ & H \to \gamma \gamma \\ & \kappa_{gV}^2 \cdot \lambda_{\gamma V}^2 \\ & \kappa_{gV}^2 \lambda_{Vg}^2 \lambda_{fV}^2 \cdot \lambda_{\gamma V}^2 \\ & \kappa_{gV}^2 \lambda_{Vg}^2 \cdot \lambda_{\gamma V}^2 \end{split}$	$\begin{split} & \underset{\ell}{\text{wing other couplings to float a}}{\kappa_{H}}, & \\ \lambda_{V}\kappa_{H}, \lambda_{Vg}(=\kappa_{V}/\kappa_{g}), & \\ \lambda_{\gamma V}(=\kappa_{\gamma}/\kappa_{V}), & \\ H \to ZZ^{(*)} & H \to WW^{(*)} \\ & \\ \kappa_{gV}^{2} \\ & \\ \kappa_{gV}^{2} \\ \kappa_{gV}^{2} \\ \lambda_{Vg}^{2} \\ & \\ \kappa_{gV}^{2} \\ \lambda_{Vg}^{2} \end{split}$	$\label{eq:constraint} \begin{array}{c c} \mbox{allowing for invisible or undetectable widths} \\ \mbox{$\lambda_{\rm fV}(=\kappa_{\rm f}/\kappa_{\rm V})$}, \\ \hline \mbox{$H\to bb$} & \mbox{$H\to \tau^-\tau^+$} \\ \hline \mbox{$\kappa_{\rm gV}^2 \cdot \lambda_{\rm fV}^2$} \\ \hline \mbox{$\kappa_{\rm gV}^2 \lambda_{\rm Vg}^2 \cdot \lambda_{\rm fV}^2$} \\ \hline \mbox{$\kappa_{\rm gV}^2 \lambda_{\rm Vg}^2 \cdot \lambda_{\rm fV}^2$} \\ \hline \mbox{$\kappa_{\rm gV}^2 \lambda_{\rm Vg}^2 \cdot \lambda_{\rm fV}^2$} \\ \hline \end{array}$				

24/01/2013

Table 9: A benchmark parametrization where effective vertex couplings are allowed to float through the κ_g and κ_γ parameters and the gauge and fermion couplings through the unified parameters κ_V and κ_f .