Status of NA62 experiment

NA62

100000 Nossossi

1

FORTAL ANTI Mauro Raggi, 45th meeting of the LNF scientific committee **Frascati, Nov 20th 2012**

The NA62 collaboration @ CERN SpS

Goal: BR(K⁺ $\rightarrow \pi^+ \nu \nu$) to 10%

100 signal events S/B ~ 10

$10^{13} K^+$ decays with:

Acceptance ~10% Background rejection ~10¹² Background known to ~10%

Time schedule

07-08: measurement of: $R_K = Ke2/K\mu2$ with NA48 **07-13:** design, construction, installation **Nov. 2012:** Technical run **from 2014:** Measurement of ~100 K⁺ $\rightarrow \pi^+\nu\nu$ decays

NA62 collaboration:

Birmingham, Bristol, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, IHEP Protvino, INR Moscow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Naples, Perugia, Pisa, RomeI, RomeII, Saclay, San Luis Potosí, SLAC, Sofia, TRIUMF, Turin

Searching for NP a different approach

Intensity frontier Indirect investigation on new physics	A rare decay is useful as a New Physics probe if:			
Search new degrees of freedom as alteration of SM rates. Explore symmetry properties of new d.o.f $\Lambda \sim 1-1000$ TeV	 Process is (strongly) suppressed in the SM Parameter to be measured precisely known in SM There are specific predictions for NP contributions 			
Example I LFV: R _K =K _{e2} /K _{µ2}	Example II FCNC: $K^+ \rightarrow \pi^+ \nu \nu$			
 Ke2 process is helicity suppressed R_K known theoretically to 1/10⁴ Deviation predicted by LFV 2HD models (~1%) 	 1) πνν process is GIM suppressed 2) BR(πνν) known theoretically ~10% 3) Many prediction by different NP models 			
$u \longrightarrow H^{+} \qquad \tilde{l}_{R} \bigwedge l_{R} \qquad \text{Masiero, Paradisi, Petronzio, Phys.Rev. D74 (2006) 011701}$ $g_{S,d} \longrightarrow V_{L} \bigvee_{\tau} \qquad Masiero, Paradisi, Petronzio, Phys.Rev. D74 (2006) 011701$ $R_{K}^{\text{LFV}} \approx R_{K}^{\text{SM}} \left[1 + \frac{m_{K}^{4}}{m_{H}^{4}} \frac{m_{\tau}^{2}}{m_{e}^{2}} \Delta_{R}^{31} ^{2} \tan^{6}\beta \right]$ $O(1\%) \text{ on } R_{K} \text{ for } \Delta_{13} \sim 5 \cdot 10^{-4} \tan \beta \sim 40 M_{H^{+}} \sim 500 \text{ GeV}$ $NA62 R_{K} = (2.488 \pm 0.007_{\text{stat}} \pm 0.007_{\text{syst}}) \times 10^{-5} \Delta(\text{BR})/\text{BR} = 0.49$	$(10^{-1})^{-1}_{-1} (10^$			

The Cabbibo Kobayshi Maskawa matrix

B unitarity triangle $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Observable	Measurement
$K^+ \rightarrow \pi^+ v \bar{v}$	$V_{ts}^*V_{td}$
$K_L \rightarrow \pi^0 v v$	$\operatorname{Im} V_{ts}^* V_{td} \propto \eta$
$B_d \rightarrow J / \psi K_s$	$\sin 2\beta$
$\Delta M_{B_d} \ \underline{B}_d - \overline{B}_d$	V_{td}
$\overline{\Delta M}_{B_s} = \overline{B}_s - \overline{B}_s$	V_{ts}

$K \rightarrow \pi v v$ in the Standard Model

Present status

J. Brod, M. Gorbahn, and E. Stamou Phys. Rev. D 83, 034030 (2011) $BR_{Th}(K^+ \rightarrow \pi^+ v v) = (7.81^{+0.80}_{-0.71} \pm 0.29_{theo}) \cdot 10^{-11}$

NA62 experiment

°°

The measurement technique

An experimental nightmare

Very small branching ratio Weak experimental signature • ~ $7x10^{-11}$

- Only a pion in the final state
- Cannot reconstruct K mass

Huge Backgrounds

- $61\% K^+ \rightarrow \mu^+ \nu \, decav$
- 21% $K^+ \rightarrow \pi^+ \pi^0(\gamma) decay$
- 5% $K^+ \rightarrow \pi^+ \pi^- decav$

Need rejection factors for BG up to 10¹² to get S/BG>10

The NA62 detector

Primary protons: Beam: Total # kaons: K⁺ momentum: Measures: 3×10¹² protons/pulse from SpS with momentum of 400 GeV 750MHz unseparated beam: 525 MHz π^+ , 170 MHz p, 45 MHz K⁺ 10% of K^+ decay in FV \Rightarrow 4.5×10¹² K⁺ decays/yr (75±1) GeV Tag K, K and π momentum and time, π tag, veto all extra particle

45th meeting of the LNF scientific commettee Frascati 20-21 Nov. 2012

The photon veto system

4 different detectors: LAV, LKr calorimeter, Intermediate ring calorimeter (IRC) and small angle calorimeter (SAC)

LNF NA62 group

- A. Antonelli, F. Gonnella, V. Kozhuharov, G. Mannocchi, M. Martini, M. Moulson, M. Raggi, T. Spadaro
- LNF SPAS: C. Capoccia, A. Cecchetti, E. Capitolo
- Group technicians: R. Lenci, V. Russo, M. Santoni, S. Valeri, T. Vassilieva
- LNF SELF: G. Corradi, C. Paglia, D. Tagnani
- LNF vacuum service: P. Chimenti, V. Lollo
- LNF mechanics workshop: G. Bisogni
- LNF metrology: M. Paris

LNF responsibilities on LAV detector

The LNF group responsibilities in the LAV detector

- Coordination of the photon Veto System
- Design of the LAV vessel & construction equipment
- Test and calibration of the PbGl blocks
- Assembly of the LAV stations
- Vacuum, HV and electronics tests
- LAV installation on ECN3 cavern

The LNF group responsibilities in the LAV readout

- Design and testing of new HV dividers for the R2238 PMTs
- Project and development of FEE prototypes
- Production, validation and testing of the final FEE board
- Installation and commissioning of the whole LAV readout in ECN3
- Firmware for the L0 LAV trigger primitive generation

The LNF group responsibilities in software and MC

- Leading role in the LAV MC reconstruction
- Leading role in the development of new analysis tools

The LAV detector (synergy w NA,Rm1,PI)

LAV numbers

- 12 stations
- 4-5 rings/layer
- 32-64 blocks/layer
- ~ 2500 blocks total
- Operation in vacuum
- All particles from axis cross min 3 blocks (20X₀)

R2238 76-mm PMTµ-metal case

Lead-glass blocks from OPAL EM barrel Schott SF57 lead glass

11 rings installed in vacuum tank +1 ring in air before LKr

45th meeting of the LNF scientific commettee Frascati 20-21 Nov. 2012

LAV construction @ LNF

45th meeting of the LNF scientific commettee Frascati 20-21 Nov. 2012

LAV in the ECN3 cavern

- We already built at LNF 9 out of the 12 LAV stations
- 8 them are already been installed inside the cavern and the vacuum tank
- The decay region has been already evacuated to the pressure of $\sim 10^{-5}$ mbar
- 3 LAV are currently in use the technical run fully equipped with readout

NA62 LAV readout chain

LAV station

FE board

Readout TEL62

PC Farm

LOTP

The LAV readout in numbers

- 2496 analog channels in 12 stations
- 4992 digital output to TEL62
- 100 FEE boards + 12 TEL62 boards
- ~ 100 KHz max rate per channel
- Requirements

ANTI-AT

- ✓ Time resolution <1 ns,
- energy resolution <10% at 1 GeV (using Time over Thr ToT)</p>

LAV front end working principle

A2 test beam CERN-PS, Aug/Sep 2010

The LAV Front End Board (LNF)

Board controller (1x) Communicate using CAN-Open Allows setting and reading: Thresholds (set/read) Power connection (read) **Test pulse controller (1 x)** Pulse height (set/read) Pulse width (set/read) Pulse rate (set/read)

ToT mezzanine card (16 x) 2 channels and 2 threshold per board. Threshold range 5-250 mV Includes the circuits for: Clamp, Amplifier, Comparator & LVDS driver.

Sum mezzanine card (10 x) Sum 4 analog channels (8 x) Sum 16 analog channels (2 x) Connected to a 50W LEMO out

M. Raggi

45th meeting of the LNF scientific commettee Frascati 20-21 Nov. 2012

LAV Front end automatic test stand (LNF)

Time resolution of 26 boards

The LAV trigger primitive generator

- Corrects single hits for time slewing and detector offset
- Collect hits pertaining to the same particle
- Produce average hits time and compute event time
- Sort event times and send the list to L0TP

2012 technical run achievements (so far...)

Integration of 3 LAV station into the NA62:

- Cabling of the detector completed
- Detector Control System remote control
- Full test of readout chain
- Development of analysis tool
 - Standalone monitoring and analysis programs
 - Integration with official data reconstruction
 - Online monitor
- Analysis of first data from detectors
 - Noise levels under control in all stations
 - Time alignment with detector clocks OK
 - Physics run with " $\pi^+\pi^0$ " trigger done during Sunday night (some 10⁶ events on disks)

CERN Bulletin

05 45-46 | 5 & 12 November 2012 More articles available at http://bulletin.cern.ch

From the Jura to Jana

Afty years ago, a we physicists took place in Saint Cergue, in focus was on using emulsion tech but its legacy was much more far reach ing. Last week I was in Fukuoka, Janan on the last day of a direct de the first Asia-Europe-Pacific School of High-Energy Physics (AEPSHEP)

A Large Angle Veto detector in place in the NA62 decay volume.

This week sees the start of the first run of the new NA62 experiment. This will be a unique ity for the collaboration to test its new beam, new detectors and new data isition system before the physics run in 2014. Speaking to the Bulletin, the NA62 lical coordinator Ferdinand Hahn shares the many challe faced to be on time for beam. Dearly steady starti

Once completed, the NA62 experiment

will be CERN's flagship for the study of rare

kaon decays, in particular that where the

mother particle decays into a pion and two

neutrinos. "Studying rare processes like

those involving kaons allows us to make

precise tests of the Standard Model as their

theoretical predictions are very good," says

measuring the rate of some of these decays,

we will be able to determine a combination of Cabibbo-Kobayashi-Maskawa matrix ele-

ments Independently. Discrepancies com-

pared to expectations might be a signature

person. "By

Augusto Ceccucil, NA62 Spoke

ents from almost all the detectors in place downstream of the decay point of the mother particles - the kaons - and of the KTAG detector that tags the kaons before they decay, NA62 is ready for its first This unique run will test all ent as well as the trigger and the data acquisition systems. "This year, we will have about five weeks of hearn from the SPS before the long shutdown of all the CERN machines," says Ferdinand Hahn, NA62 Technical Co.ordinator. "During that long shutdown, and before the restart of ector chain, we plan to complete the installation of all the remaining detectors."

In this issue Nows

> All new for NAs2 From the Jura to Japan... LHC Report- Production and small angle The LHC, de-squeezed CERN, Europe and the world of education A German format for pupils' training accestal apprenticestic HinRowski broadcast line at (HW News from the Library. The Tong tail Library , and thank you for your mobile data Tako noto Safety Trainin

Conclusions

- The LNF group has played a leading role in all aspects of the construction and installation of the LAV of the NA62 experiment:
 - Detector design, testing, assembly and installation
 - Electronic design, production and testing
 - Leading role in the software development
- Our group now heavily involved in the present technical run.
- We would like to thank:
 - LNF SPAS: C. Capoccia, A. Cecchetti, E. Capitolo
 - Group technicians: R. Lenci, V. Russo, M. Santoni, S. Valeri, T. Vassilieva
 - LNF SELF: G. Corradi, C. Paglia, D. Tagnani
 - LNF vacuum service: P. Chimenti, V. Lollo
 - LNF mechanics workshop: G. Bisogni

Backup slides

0

° 🤪

Theoretical expectation for BR

J. Brod, M. Gorbahn, and E. Stamou Phys. Rev. D 83, 034030 (2011) full two-loop electroweak corrections to the top-quark contribution X_t

The combination of tiny BR and high precision theoretical prediction allows to spot even for small deviations from SM induced by new physics degrees of freedom

What we can learn from $K \rightarrow \pi \nu \nu$

45th meeting of the LNF scientific commettee Frascati 20-21 Nov. 2012

What's next: $K_L \rightarrow \pi^0 \nu \nu$

- **D** Potential for future running with K_L beam?
- I $K_L \rightarrow \pi^0 \ell^+ \ell^-$ BRs could potentially be measured without significant upgrades
 - FCNC decays with *CP*-violating components
 - Useful in constraining the unitarity triangle
- $K_L \rightarrow \pi^0 vv$ need important intervention on photon vetos
 - We are starting investigation on possible LAV upgrades

Sensitivity to LFV modes in NA62

Mode	Acceptance, \boldsymbol{A}	$\mathrm{UL}(90\%\mathrm{CL}) = 2.44/\Phi_K/A$
$K^+ o \pi^+ \mu^+ e^-$	7.8% (6.7%)	$2.6(3.1) imes 10^{-12}$
$K^+ o \pi^+ \mu^- e^+$	7.9% (6.5%)	$2.6(3.2) imes 10^{-12}$
$K^+ o \pi^- \mu^+ e^+$	8.1% (6.6%)	$2.6(3.1) imes 10^{-12}$
$K^+ ightarrow \pi^- e^+ e^+$	5.0%(3.6%)	$4.1(5.8) imes 10^{-12}$
$K^+ o \pi^- \mu^+ \mu^+$	12.5%	$1.7 imes10^{-12}$
$K^+ ightarrow \mu^- u e^+ e^+$	2.9%(1.6%)	$7.2(12.8) imes 10^{-12}$
$K^+ o e^- u \mu^+ \mu^+$	5.5%(4.5%)	$3.7(4.6) imes 10^{-12}$
$\pi^0 ightarrow \mu^+ e^-$	2.4%(1.3%)	$4.1(7.6) imes 10^{-11}$
$\pi^0 ightarrow \mu^- e^+$	4.2%(2.2%)	$2.4(4.5) imes 10^{-11}$

* Lower acceptances for electrons include effect of trigger energy threshold

Only geometrical/trigger efficiency, various assumptions & simplifications:

- Nominal kaon flux: $\Phi_K = 5.9 \times 10^{12}/\text{yr}$ for 105 m < z < 180 m
- Flat phase space distributions
- 2 years of data taking
- No backgrounds

Trigger rates compatible with main physics program

NA62 R_K

 $R_{K} = (2.488 \pm 0.007_{\text{stat}} \pm 0.007_{\text{syst}}) \times 10^{-5} = (2.488 \pm 0.010) \times 10^{-5}$

Updates previous NA62 result (40% data set) $R_{K} = (2.487 \pm 0.013) \times 10^{-5}$ PLB698 (2011) 105

$\mathbf{R}_{\mathbf{K}}$ world average

45th meeting of the LNF scientific commettee Frascati 20-21 Nov. 2012

Cost review

Core funding assigned by INFN to the NA62 experiment

k€/year	2009	2010	2011	2012	2013	Total/item
GT	320	300	130	0	0	750
LAV	430	600	570	200	0	1800
RICH	590	220	140	50	0	1000
TDAQ	60	80	260	450	100	950
GRID+computers	0	0	50	100	100	250
Total/year	1400	1200	1150	800	200	4750

Charge reconstruction in LAV

Measure ToT vs. charge using QDC and TDC only during calibration not during experiment
 Fit the function Q(ToT) (i.e. polynomial function)
 During data taking, measure the time using a TDC only

Simulations

INPUT to simulation from GEANT4

- Number of photons in the event
- Arrival time of each photon
- Photon wavelength

Digitization simulation

PMT simulation correctly treats:

- Path fluctuations for optical photons
- PMT photocathode QE()
- Dynode by dynode gain fluctuations

Front end electronic simulation includes

- Cable length simulation
- Threshold simulation
- Hysteresis simulation

