

Overview of silicon radiation detector technologies at FBK

Nicola Zorzi

GASPARD-HYDE-TRACE Workshop 2012 - 29-31 October 2012

Outline

- FBK organization and expertise
- Examples of radiation detector productions
- R&D on radiation detectors

"Fondazione Bruno Kessler" (http://www.fbk.eu/) is a research organization of the Autonomous Province of Trento

Areas of studies:

- Information Technology
- Materials and Microsystems
- Theoretical nuclear physics
- Public policy effectiveness
- Italian-German History
- Religious sciences

More than 350 researchers

MEMS)

Centre for Materials and Microsystems (http://cmm.fbk.eu/)

Organization: Research Units focused in three main areas

- New Materials and Analytical Methods for Biosensors and Bioelectronics (M2B2)
- MiNALab Micro Nano Analytical Laboratory
- Biosint Biofunctional Surfaces and Interfaces
- Plasma and Advanced Materials (PAM-SE)
- Interdisciplinary Laboratory for Computational Science (LISC)

- Micro-Electro-Mechanical-Systems (MEMS)
- Advanced Photonics and Photovoltaic (APP)
- Silicon Radiation Sensors (SRS)

- Smart Optical Sensors and Interfaces (SOI)
- 3D Optical Metrology (3DOM)

Micro Technology Laboratory

2 separate clean rooms:

- CR Detectors
 500 m² in class 10 and 100
- CR MEMS
 200 m² in Class 100 and 1000

Equipments:

- Lithography
- Diffusion
- Implantation
- Dry Etching
- Wet Etching
- Control Area

Test Laboratories

- Manual probers
- Automatic probers
- Parametric Test
- Functional Test (partial)

Now we are working with 4" wafers

An up-grade to 6" will take place starting next month

Expertise

TCAD simulation
CAD design

		P d	rر ا		ces elo	ss pr	f n	lo e	w nt	
Ν	Λ	TLat	2 • \	VebFa	ıblS v4.2		2			
Job: MLM_alluminium Num Project: Technolgy: Mask set: Device: testing					ct: internal set: null arch unit: MTLab					
step	split	mecro	description	status	note_in	note_out	t_water	water	step_in	step_out
1	1	Alu etch wet. DETECTORS	alu etch	ок		fette da 9 a 14 da MLM_testing			2012-05-28 14:10:45	2012-05-28 15:02:13
2	1	DEFRECKEL. DETECTORS	detrekel	ок					2012-05-28	2012-05-20
3	1	TEPLA. DETECTORS	resist strip tepla w9-w14	ок					2012-05-28 15:02:18	2012-05-20
4	1	Rinser dryer Jurnaces. DETECTORS	di rinse	ок					2012-05-28 16:37:22	2012-05-2 08:25:33
5	1	T4 - Sintering. DETECTORS	sintering	ок	2 split			9-13-14	2012-05-29 08:25:34	2012-05-20 11:42:18
5	2	T4 - Sintering. DETECTORS	sintering	ОК	2 split			10-11-12	2012-05-29 11:42:18	2012-05-2 11:42:37
6	1	Rinser dryer. DETECTORS	di rinse	ок					2012-05-29 11:42:37	2012-06-0 09:06:34
7	1	SPS-MPS PECVD. DETECTORS	STOHDR PECVD	ок					2012-06-04 09:06:34	2012-06-0 11:05:53
8	1	Rinser dryer. DETECTORS	di rinse	ок					2012-06-04 11:05:53	2012-06-03 09:20:48
9	1	Track SVG coating. DETECTORS	front coating	ок					2012-06-05 09:20:48	2012-06-0

Fabrication

People:

- SRS: 8 researchers

(3 design and simulation, 1 processing, 4 testing) http://srs.fbk.eu/en/home

- MTLab: 3-4 researchers

(processing) http://mtlab.fbk.eu/

Sensors for what kind

Radiation detectors

Types of detectors:

- Pixel detectors
- Strip detectors
- Drift detectors
- Pad detectors

Available technologies:

- n-in-p, n-in-n, p-in-n
- single- or double-side
- p-spray and p-stop isolation
- guard-ring termination
- gettering techniques
- punch-through and poly-resistor biasing
- integrated AC coupling capacitors

Strip Detectors: productions

Silicon microstrip detectors:

700 <u>large-area</u> <u>double-sided</u> in spec detectors fabricated in 2002-2004.

ALICE experiment (@LHC)

Silicon microstrip detectors:

600 <u>large-area</u> <u>double-sided</u> in spec detectors fabricated in 2003-2005.

Silicon pixel detectors:

p-on-n pixel detectors fabricated in 2006-2007.

Strip Detectors: custom

Custom development of strip detectors for private companies:

- single-side,
- DC/AC coupled,
- very low leakage,
- high yield

Pixel detectors: examples

Medipix 1&2

NA48/ALICE experiment

Medipix1: pixel size 170x170μm²
Medipix2: pixel size 55x55μm²

Substrate thick.: up to 1.5mm

ALICE SPD layout

• pixel size 50x400µm²

Substrate thickness: 200 μ m

Leakage current ~100pA/cm² for 300µm substrates

ladder

Thick detectors: example

1.5mm-thick wafer (also 200µm-thick, same design)

PAD detectors for TRACE:

INFN-PD/LNL

- 12x5 elements
- 4mm pitch (X and Y)
- AC coupling
- punch-through biasing
- termination structure

(voltage handling, lateral depletion)

Non standard processing:

- Special quartz supports
- Critical automatic handling
- Starting substrates play a role

Detectors for FAZIA

side

Requirements for ΔE -E and pulse-shape analysis

- Non standard substrate orientation: ~8° off from <100>
- NTD wafers (high uniformity in resistivity \rightarrow high voltage)
- 2 thicknesses (300 μ m and 500 μ m, V_{depl} ~ 120V ÷ 300V)
- very low dead layers and dead borders
- 2x2cm² active area
- low sheet resistance
- capable to see visible light

Dedicated technology

- double side process
- thick + thin (~30nm) metal levels on both sides
- thin junction on front-side; dead layer ~150nm
- dead layer at back-side ~ 700nm^{*}
- dead region at border ~ 800µm^{*}

different solutions give lower values but kill the yield

INFN-FI

Silicon Drift Detectors: R&D

Gatti and Rehak, 1984

Applications:

- spectroscopy
- gamma-ray spectrometry (with scintillator)
- position sensitive detector

3 running projects:

- private contract
- ESA
- INFN

Silicon Drift Detectors: ESA project

ESA/PoliMI/INFN-MI

- double side technology
- γ-ray detector

FONDAZIONE BRUNO KESSLER

- LaBr₃:Ce scintillator (2" and 3" Ø)
- optical entrance window for ~370nm light

3X3 SDD matrices 2011FBK • 26mm

Silicon Drift Detectors: INFN project

- double side technology
- large area linear SDD device (ALICE-type)
- X-ray detection

FONDAZIONE BRUNO KESS

test production capability for LOFT (~12x7.4cm²)

INFN-TS

3D sensors: R&D activity

First proposed by S. Parker et. al. in NIMA 395 (1997), 328

INFN CERN

ADVANTAGES:

- Electrode distance and substrate thickness decoupled:
- low depletion voltage
- high speed
- good charge collection efficiency
 → High radiation hardness
- Active edges:
- Dead area reduced to few µm from the edge

DISADVANTAGES:

- Non uniform response due to electrodes
- Complicated technology
- Higher capacitance with respect to planar

FBK 3D technology

Double side fabrication process

- junction holes etched from front
- ohmic holes etched from back
- empty holes (~11µm diam.) (no poly-Si)
- holes depth equal to the wafer thickness (230µm)
- p-type FZ wafer
- p-spray isolation
- edge protection

STRUME RESER 3D detectors for ATLAS IBL up-grade

- Common layout of ATLAS 3D sensor Collaboration (CNM-IMB, SINTEF, SNF, FBK)
- ATLAS FE-I4 compatible 3D pixel detectors
- ~20% of pixel sensors for IBL will be 3D

Active edge: example

- 4.5µm wide trench
- 200µm deep
- polysilicon filled
- test structures to study collection efficiency at the border

INFN-BA, CERN

2 running projects:

- pixel sensors compatible with ALICE ROC (epi wafers, 100µm thick + sub)
 - pixel sensors compatible with ATLAS FE-I4 (200µm-thick FZ + waf-bond sub)

LPNHE Paris

0

Low-level light sensors

Avalanche Geiger-mode photodiodes

Each photon triggers a discharge which is shortly quenched

- Gain ~10⁶
- Timing ~ 100ps /1ph.e.
- Bias voltage <100V
- Sensitivity ~1 ph. e.
- QE ~ medium

Array of tiny GM APDs: proportionality

SiPM: Silicon Photo-Mulitplier

From vacuum...

...to solid-state

Device Layout: example

Metal line connecting all cells in parallel (one common anode) Polysilicon resistor Field-plate to reduce electric field around the junction 4x4mm² 50x50µm² cell

The cathode is contacted on the back side

Resistor is located outside the active Area → no fill factor loss

Fill Factor

- ~ 45% 40x40 µm² cell
- ~ 55% 50x50 µm² cell
- ~ 72% 100x100 µm² cell

FBK original technology

- 2) Very thin n⁺ layer
- 3) Quenching resistance made of doped polysilicon
- 4) Anti-reflective coating optimized for λ ~420nm

!!Spin-off company on this subject: AdvanSi

...what applications?

Nuclear medicine: PET intra-operative probes

Biology:

Confocal Fluorescence Microscopy Real Time PCR Flow Citometry

Physics experiments: Cosmic rays detections Gamma X-rays detections

Homeland security

5

FONDAZIONE BRUNO KESSLER

Neutron detector for HYDE

- R&D project with INFN TN-PD
- idea: increase interaction volume and light collection surface
- use of polysiloxane based scintillator

Silicon buried channels

... not only detectors

- R&D project with INFN PI
- integrate in the same silicon substrate the cooling system
- based on microchannels obtained by DRIE
- channel section determined by DRIE process
- channel length defined by the layout

Other activities

- Rad-hard studies on different Si sub types (FZ, Cz, epi, p-type, ...)
- JFET based active elements integrated on the detector substrate
- BJT-based detectors for radon detection
- Diode array for dosimetry applications
- Supports for CNT: surface preparation and electrode definition