Dependency on the Silicon Detector Working Bias for Proton-Deuteron Particle Identification at Low Energies

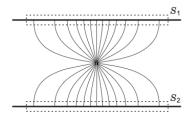
 \succ G_{ASPARD} H_{YDE} T_{RACE} Collaboration Meeting \prec

Padova, 29th-31st-October-2012

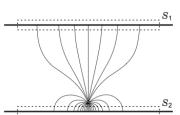
Jose Dueñas

jose.duenas@dfa.uhu.es

UHU Dpto. Física Aplicada


Outline

- How the E-field affects the charge collection.
 - Some theory
 - Some experimental data
- The Factor of Merit (FoM).
 - Mathematical equation
- **9** PSA on the 500μ m NTD at different working bias (GHT experiment, February 2012)
 - · Looking at the current signal pulses
 - The algorithm
 - Results
- What now?



Charge generation theory

Some theory I

- Integrating the field on a Gaussian surface $S: \oint_S \vec{E} d\vec{a} = q$
- @ midway induced charge on S_x is -q/2.
- More field lines when close to S_x so induced charge increases.

- a charge moving from S_1 to S_2 will inicially induce most of its charge on S_1 .
- shifting proportionally to S_2 as it moves toward it.
- If $S_1 \& S_2$ form a closed circuit a current can be measured.

Some theory II

Instantaneous current in terms of the weighting field:

$$i_k = -q\vec{\nu} \cdot \vec{E}_q$$

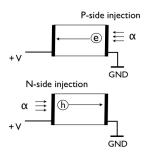
- \vec{E}_q is determined by applying unit potential to the k electrode and zero to all others.
- For parallel plates:

$$E = \frac{V_{bias}}{d}$$
 & $E_Q = \frac{1}{d}$

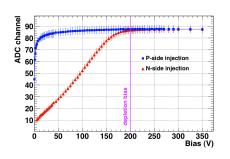
• the *E* gives the motion of the charge carrier:

$$\nu = \mu E = \mu \frac{V_{bias}}{d}$$

• Therefore, the induced current is given by:


$$i = q\nu E_Q = q\mu \frac{V_{bias}}{d} \frac{1}{d} = q\mu \frac{V_{bias}}{d^2}$$

• and the collection time (i.e. time required to traverse the distance d):

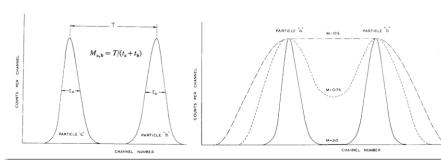

$$t_c = \frac{\nu}{d} = \frac{d^2}{\mu V_{bias}}$$

Some experimental data

Charge collection efficiency plot

- t_c much longer for N-side injection
- E_{max} @ P- decreasing to E_{min} @ N-sdie.

- P-side injection need lower bias for collecting charges.
- N-side injection reveals appropriate depletion value.

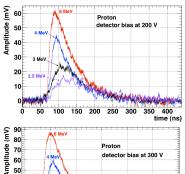

The old fashion way

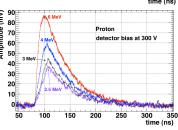
NUCLEAR INSTRUMENTS AND METHODS 95 (1971) 141-153; ® NORTH-HOLLAND PUBLISHING CO.

PULSE SHAPE DISCRIMINATION IN INORGANIC AND ORGANIC SCINTILLATORS. I

R. A. WINYARD, J. E. LUTKIN and G. W. McBETH

Applied Physics Department, Brighton Polytechnic, Brighton, England

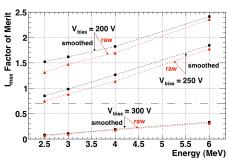


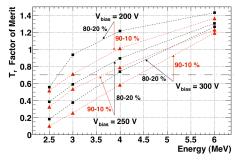

Looking at the current signal pulses

(GHT Experiment, Feb 2012)


Complex noise contributions

- Different sources of noise: external EM, electronics & detector.
- Limits the ability to distinguish signal levels or measure them precisely.
- In semiconductor detectors baseline noise is critical.
- Low frequency noise, its spectrum becomes nonuniform whenever the fluctuations are not purely random in time (carriers are trapped and then released).
- High sampling digitazer may be another source of noise.




Ditigal Pulse Shape Analysis

- Experimental conditions will dictate the final algorithm.
- General algorithms will serve as monitor during experiments.
- A trade-off between effectiveness and cpu process time.
- Reliable as your electronics.
- Aim to be stored in a FPGA for online analysis.
- Neuronal networks approach is quite good.

Bias effect on PSA

- Overbias $\Rightarrow \nu_{sat}$ and is not longer field dependent.
- Identification better at V_{depl} .
- Noise reduction algorithm works.

- Time measurements affected by noise. Best look at 80 20%.
- ullet Identification also better $V_{depl}.$
- Higher energy less differences.

What now?

Future steps

- We've already "extrapolated" our results to strips detectors (It'll be shown in this meeting).
- Is the identification limit of p-t-d around 1 MeV?
- what about our FEE?
- We should think about cooling down ($< 0^{\circ}$ C)

THANKS FOR YOU ATTENTION