The high granularity and large solid angle detection array EXPADES

Emanuele Strano

For the EXOTIC collaboration

INFN

Especially tailored for experiments with low intensity and loosely bound RIBs: 8192 2 mm x 2 mm pixels

BEAM -

ΔE Ionization Chambers EXPADES

All home-made electronics developed by our collaboration

Motherboard

40 μm Silicon DSSD (ΔE)

300 μm Silicon DSSD (E_{res})

- 8 Ionization Chambers (ΔE stage) NA
- 8 40 μm Silicon DSSDs 32 x 32 strips (ΔE stage) MI
- 8 300 μm Silicon DSSDs 32 x 32 strips (E_{res} stage) PD
- 8 500 μm silicon pads (3rd stage) NA
- Newly dedicated DAQ LNL

EXPADES – Ionization Chamber (ΔE)

The original project has been improved to avoid gas lackage from the mylar windows.
The layout is more modular (the replacement after a window breaking is a 10'-operation).
An energy resolution ΔΕ/Ε ~ 11% has been obtained with a mixed ²⁴¹Am-²⁴⁴Cm α source.

EXPADES – Silicon DSSD 40 \mum (\DeltaE)

Conteggi

Connected to a home-made charge preamplifier and to an ad-hoc ampliflier+CFD module.
Energy resolution ΔΕ/Ε ~ 0.8% (45 keV), with 5.486-MeV α-particles from a ²⁴¹Am source.
Time Resolution Δt ~ 0.9 ns with α-particles, (Intrinsic) Time Resolution Δt ~ 85-190 ps with 500-50 mV and 20 ns rise-time pulses.

t (canali)

EXPADES – Silicon DSSD 300 µm (Eres)

Read-out electronics based on innovative ASIC chips. One multiplexed signal contains the energy deposit information of 32 strips.

Threshold Test in HV supply

Chip ASIC VA32HDR14.2 and TA32CG3 from IDEAS (Norway)

EXPADES – Silicon DSSD 300 µm (Eres)

Read-out electronics based on innovative ASIC chips. One multiplexed signal contains the energy deposit information of 32 strips.

Measuring the capacitance of a detector

 $C = \frac{Q}{V}$

Linear relation: slope ∝ capacitance

Vpulser choice: high for low capacitances low for high capacitances

System calibration By known capacitances

Capacitance of a surface barrier detector

Body capacitance of the 300um DSSSD detector

Body capacitance of the 300µm DSSSD detector

Interstrip capacitance of the 300um DSSSD detector

No. 15

Interstrip capacitance of the 300µm DSSSD detector

2500-4 interstrip back alim front

In beam test of the 300µm DSSSD detector

Energy resolution ΔE/E ~ 1.5 % (85 keV) for α particles from calibration sources.

Two modules **tested** with **energetic heavy-ions** (¹⁷O in the energy range 40-100 MeV) in April 2011.

Primary Beam: ¹⁷O⁴⁺ Intensity: 1-4 enA Energy: 42.5-55 MeV in 2.5-MeV steps Target: ⁵⁸Ni+²⁰⁸Pb backing Pixel by pixel analysis.

In beam test: pixel by pixel analysis

In beam test: geometric best-fit

In beam test: preliminary results

σ_{el}^{Ni} (ρ^{Ni})	$\sigma_{Ruth}^{Pb}(\theta_{CM}^{Pb})$
$\sigma_{Ruth}^{Ni}(O_{CM}) =$	$N_{el}^{Pb}(heta_{lab})$

 $\frac{N_{el}^{Ni}(\theta_{lab})}{\sigma_{Ruth}^{Ni}(\theta_{CM}^{Ni})} \frac{\xi_{Pb}}{\xi_{Ni}} \left(\frac{E_{CM}^{Pb}}{E_{CM}^{Ni}}\right)^{2}$ Auto-normalization of solid angles and beam current

Conclusions and perspectives

Setup in the final in-beam commissioning phase. Ionization chambers test with an alpha source $\Delta E^{-11\%}$. ΔE silicon module test with an alpha source ΔE^{-45} KeV

Capacitance of the 300 μ m module. 300 μ m module test with an alpha source Δ E~85KeV. 300 μ m module in beam test ¹⁷O+⁵⁸Ni.

- Pixel by pixel analysis
- Scattering on Pb fit
- σ/σ_{Ruth} for ¹⁷O scattering on ⁵⁸Ni

Next: testing the overall capabilities of the three modules in a "in beam" setup

The EXOTIC collaboration: A. Boiano³, C. Boiano⁴, P. Di Meo³, T. Glodariu⁵, J. Grebosz⁶, A. Guglielmetti^{4,7}, M. La Commara^{3,8}, C. Manea², M. Mazzocco^{1,2}, P. Molini^{1,2}, M. Nicoletto², **C. Parascandolo^{1,2}**, L. Parascandolo³, D. Pierroutsakou³, C. Signorini^{1,2}, F. Soramel^{1,2}, **E. Strano^{1,2}**, L. Stroe⁵, N. Toniolo⁹, D. Torresi^{1,2} ¹Phyics and Astronomy Dept., Padova University, via Marzolo 8, I-35131 Padova ²INFN - Sezione di Padova, Via Marzolo 8, 35131 Padova - Italy ³INFN - Sezione di Napoli, via Cintia, I-80126, Napoli, Italy. ⁴INFN - Sezione di Milano, Via Celoria 16, Milano, Italy. ⁵NIPNE Măgurele, Bucharest, Romania. ⁶IFJ ul. Radzikowskiego 152 31-342 Krakow, Poland, ⁷Physics Dept., Milano University, via Celoria 16, Milano, Italy. ⁸Physics Dept., Napoli University, via Cintia, I-80126, Napoli, Italy. ⁹INFN - LNL Legnaro (Padova)