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Precision measurements together with exact theoretical calculations have led to steady progress in
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Why Precision? Johannes Blümlein

1. Introduction

Precision matters. Any progress in the exact sciences relies both on precise measurements and

highly accurate theoretical calculations. Many of the fundamental laws of physics had unavoid-

ably to be found whenever precise data were described by theoretical concepts, often within a new

framework of relations. The Rudolphine Tables of the late Tycho Brahe [1] led J. Kepler to derive

his laws [2] and later I. Newton the law of gravity [3]. A. Michelson’s experiments [4] led A. Ein-

stein to Special Relativity [5], with numerous experimental confirmations in flat space-time. 1 The

accurate measurement of the black-body radiation by F. Kurlbaum, H. Rubens, O. Lummer and
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Differential NNLO

A young and promising field in the LHC era

➠ less than a decade old

➠ starting from simple decays and single
production processes

➠ moved to/moving towards complicated
jet production and pair production
processes at colliders

➠ already a significant impact on
phenomenology at collider experiments
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Outline

Introduction

Basics of subtraction

Local subtraction at NNLO

The tedious part: integrating the counterterms

Integrated approximate cross sections

Outlook
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Introduction
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Introduction

Accurate predictions in perturbative QCD require higher-order calculations

LO QCD predictions give only order of magnitude estimates for rates and rough
estimates for shapes of distributions

➠ large dependence on unphysical scale choices

➠ jets 6= partons: jet structure appears only beyond LO

NLO corrections are required to obtain more realistic estimates of cross
sections and better pictures of relevant distributions
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Introduction

Starting from NLO, various singularities appear at intermediate stages of
computation, even thought the final result is finite

➠ at the amplitude level, the one-loop amplitudes contain both UV and IR
singularities

➠ at the cross section level, the virtual (loop) and real emission corrections
both contain IR singularities

However, we have accumulated three decades of experience with NLO
computations, and general methods exist to handle singularities

➠ UV singularities affect only virtual corrections and are removed by
renormalization

➠ IR (soft and collinear) singularities cancel between virtual and real
corrections for properly defined (“IR safe”) observables. Several methods
are known how to make this cancellation explicit.
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Introduction

At NLO general methods exist to handle and cancel IR singularities

Frixione, Kunszt, Signer (1995)
Catani, Seymour (1996)

The bottleneck for many years has been computing the relevant one-loop
amplitudes

Massive progress in last few years

➠ powerful new methods based on unitarity, recursion relations

➠ new general tools have been/are being developed to compute one-loop
amplitudes: GoSam, Helac-NLO, MadLoop. . .

Fair to say that the problem of computing NLO corrections is essentially solved
for general processes

Can we go to NNLO?
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Do we need NNLO?

In certain cases precision QCD requires computations beyond NLO

➠ NLO corrections are large:
◮ Higgs production from gluon

fusion in hadron collisions

➠ for benchmark processes measured
with high experimental accuracy:

◮ αs measurements form e+e−

event shapes
◮ W , Z production
◮ heavy quark hadroproduction

➠ reliable error estimate is needed:

◮ processes relevant for PDF
determination

◮ important background processes

(Anastasiou, Dixon, Melnikov, Petriello,

Phys. Rev. D69 (2004) 094008.)

In short, we need NNLO when NLO fails to do its job
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Status

Processes measured to few precent accuracy

➠ e+e− → 3j

➠ ep → (2 + 1)j

➠ pp → j + X

➠ pp → V

➠ pp → V + j

➠ pp → tt̄

Processes with potentially large radiative corrections

➠ pp → H

➠ pp → H + j

➠ pp → VH

➠ pp → VV
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Status

Processes measured to few precent accuracy

➠ e+e− → 3j ✔

➠ ep → (2 + 1)j ✘

➠ pp → j + X ✘

➠ pp → V ✔

➠ pp → V + j ✘

➠ pp → tt̄ ✔/✘

Processes with potentially large radiative corrections

➠ pp → H ✔

➠ pp → H + j ✘

➠ pp → VH ✔ (V = W )

➠ pp → VV ✔ (VV = γγ)
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NNLO ingredients

A generic m-jet cross section at NNLO involves

➠ Tree-level squared matrix elements
◮ with m + 2 parton kinematics
◮ known from LO calculations
◮ ‘doubly-real’ contribution (RR)

➠ One-loop squared matrix elements
◮ with m + 1 parton kinematics
◮ usually known from NLO calculations
◮ ‘real-virtual’ contribution (RV)

➠ Two-loop squared matrix elements
◮ with m parton kinematics
◮ known for all massless 2 → 2 processes
◮ ‘doubly-virtual’ contribution (VV)
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NNLO ingredients

A generic m-jet cross section at NNLO involves

➠ Tree-level squared matrix elements
◮ with m + 2 parton kinematics
◮ known from LO calculations
◮ ‘doubly-real’ contribution (RR)

➠ One-loop squared matrix elements
◮ with m + 1 parton kinematics
◮ usually known from NLO calculations
◮ ‘real-virtual’ contribution (RV)

➠ Two-loop squared matrix elements
◮ with m parton kinematics
◮ known for all massless 2 → 2 processes
◮ ‘doubly-virtual’ contribution (VV)

Assuming we know the relevant matrix elements, can we use those matrix
elements to compute cross sections?
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The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m

dσVV
m Jm .

Doubly-real

◮ dσRR
m+2Jm+2

◮ Tree MEs with
m + 2-parton
kinematics

◮ kin. singularities as
one or two partons
unresolved: up to
O(ǫ−4) poles from
PS integration

◮ no explicit ǫ poles

Real-virtual

◮ dσRV

m+1Jm+1

◮ One-loop MEs with
m + 1-parton
kinematics

◮ kin. singularities as
one parton
unresolved: up to
O(ǫ−2) poles from
PS integration

◮ explicit ǫ poles up
to O(ǫ−2)

Doubly-virtual

◮ dσVV
m Jm

◮ One- and two-loop
MEs with m-parton
kinematics

◮ kin. singularities
screened by jet
function: PS
integration finite

◮ explicit ǫ poles up
to O(ǫ−4)
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The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m

dσVV
m Jm .

THE KLN THEOREM

Infrared singularities cancel between real and virtual quantum corrections at the
same order in perturbation theory, for sufficiently inclusive (i.e. IR safe)
observables.

HOWEVER

How to make this cancellation explicit, so that the various contributions can be
computed numerically? Need a method to deal with implicit poles.
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Approaches

Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello; Czakon)

➠ extract ǫ poles of each contribution (RR, RV, VV) separately by expanding
the integrand in distributions

➠ resulting expansion coefficients are finite multi-dimensional integrals,
integrate numerically

➠ cancellation of poles numerical, depends on observable

➠ first method to yield physical results, but can it handle complicated final
states?

Subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian; Gehrmann, Gehrmann-De
Ridder, Glover; Weinzierl; Del Duca, Trócsányi, GS)

➠ rearrange the poles between real and virtual contributions by subtracting
and adding back suitable approximate cross sections

➠ cancellation of explicit ǫ poles achieved analytically, remaining PS integrals
are finite

➠ nice properties (generality, efficiency) expected form experience at NLO

➠ definition of subtraction terms is not unique, hence several approaches:
q⊥, antenna, local
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Approaches

Sector decomposition

(Binoth, Heinrich, Anastasiou,
Dixon, Melnikov, Petriello,
Czakon)

✔ first method to yield
physical cross
sections

✔ cancellation of
divergences fully
numerical

✘ cancellation of poles
also, and depends on
jet function

✘ can it handle
complicated final
states?

q⊥ subtraction

(Catani, Grazzini, Cieri, Ferrera,
de Florian, Tramontano)

✔ exploits universal
behavior of q⊥
distribution at small
q⊥

✔ efficient and fully
exclusive calculation

✘ limited scope:
applicable only to
production of
massive colorless
final states in hadron
collisions

Antenna subtraction

(Gehrmann, Gehrmann-De Ridder,
Glover, Heinrich, Weinzierl)

✔ successfully applied
to e+e− → 2, 3j

✔ analytic integration
of antennae over
unresolved phase
space is understood

✘ counterterms are
nonlocal

✘ treatment of color is
implicit

✘ cannot cut factorized
phase space
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Approaches - two new developments

Refinement of the sector decomposition algorithm
Anastasiou, Lazopoulos, Herzog (2010)

➠ uses non-linear mappings to disentangle overlapping singularities

➠ the aim is to increase efficiency by reducing the large number of
sectors/terms generated during decomposition

➠ first application: fully exclusive H → bb̄ decay at NNLO
Anastasiou, Lazopoulos, Herzog (2011)

Refinement of phase space integration via sector decomposition
Czakon (2010); Boughezal, Melnikov, Petriello (2011)

➠ FKS-like approach to double real radiation in tt̄ production

➠ sector decomposition used to make singular contributions explicit, guided
by known universal IR structure

➠ first NNLO computation of qq̄ → tt̄ total cross section
Baernreuther, Czakon, Mitov (2012)
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Why a new scheme?

Goal: devise a subtraction scheme with

➠ general and explicit expressions, including color
(view towards automation, color space notation is used)

➠ fully local counterterms, taking account of all color and spin correlations
(mathematical rigor, efficiency)

➠ option to constrain subtractions to near singular regions
(efficiency, important check)

➠ very algorithmic construction
(valid at any order in perturbation theory)

Gábor Somogyi | Higher-order QCD calculations via local subtraction | page 15



Basics of subtraction
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Subtraction - a caricature

Want to evaluate (at ǫ → 0)

σ =

∫ 1

0
dσR(x) + σV where

dσR(x) = x−1−ǫR(x)

R(0) = R0 < ∞

σV = R0/ǫ+ V

➠ define the counterterm

dσR,A (x) = x−1−ǫR0

➠ use it to reshuffle singularities between R and V contributions

σ =

∫ 1

0

[

dσR(x) − dσR,A (x)
]

ǫ=0
+

[

σV +

∫ 1

0
dσR,A (x)

]

ǫ=0

=

∫ 1

0

[

R(x) − R0

x1+ǫ

]

ǫ=0

+

[

R0

ǫ
+ V −

R0

ǫ

]

ǫ=0

=

∫ 1

0

R(x)− R0

x
+ V

The last integral is finite, computable with standard numerical methods.

Gábor Somogyi | Higher-order QCD calculations via local subtraction | page 17



The issue of locality

In a rigorous mathematical sense, the cancellation of both kinematical
singularities and ǫ-poles must be local. I.e. the subtraction term must have the
following general properties

➠ it must match the singularity structure of (singly- and doubly-) real
emissions pointwise, in d dimensions

➠ its integrated form must be combined with the (real- and doubly-) virtual
cross section explicitly, before phase space integration; ǫ-poles must cancel
point by point

What about singular terms in the real emission cross section that cancel upon
phase space integration (e.g. azimuthal correlations in gluon splitting)?

➠ they cancel upon integration in d dimensions, the corresponding four
dimensional integrals are ill-defined

➠ it is mandatory to treat these terms, since naive numerical integration (in
four dimensions) can give any result whatsoever

➠ however, can be treated with methods other than strict local subtraction,
e.g. auxiliary phase space slicing (as in antenna subtraction)
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A more efficient subtraction scheme?

Want to evaluate (at ǫ → 0)

σ =

∫ 1

0
dσR(x) + σV where

dσR(x) = x−1−ǫR(x)

R(0) = R0 < ∞

σV = R0/ǫ+ V

➠ define the counterterm

dσR,A (x) = x−1−ǫR0

➠ use it to reshuffle singularities between R and V contributions

σ =

∫ 1

0

[

dσR(x) − dσR,A (x)
]

ǫ=0
+

[

σV +

∫ 1

0
dσR,A (x)

]

ǫ=0

=

∫ 1

0

[

R(x) − R0

x1+ǫ

]

ǫ=0

+

[

R0

ǫ
+ V −

R0

ǫ

]

ǫ=0

=

∫ 1

0

R(x)− R0

x
+ V

The last integral is finite, computable with standard numerical methods.
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A more efficient subtraction scheme?

Want to evaluate (at ǫ → 0)

σ =

∫ 1

0
dσR(x) + σV where

dσR(x) = x−1−ǫR(x)

R(0) = R0 < ∞

σV = R0/ǫ+ V

➠ define the counterterm to be nonzero only near the singular region

dσR,A (x) = x−1−ǫR0 Θ(x0 − x)

➠ use it to reshuffle singularities between R and V contributions

σ =

∫ 1

0

[

dσR(x) − dσR,A (x)
]

ǫ=0
+

[

σV +

∫ 1

0
dσR,A (x)

]

ǫ=0

=

∫ 1

0

[

R(x)− R0Θ(x0 − x)

x1+ǫ

]

ǫ=0

+

[

R0

ǫ
+ V −

R0

ǫ
+ R0 log x0 +O(ǫ1)

]

ǫ=0

=

∫ 1

0

R(x)− R0Θ(x0 − x)

x
+ V + R0 log x0

The last integral is finite, computable with standard numerical methods.
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A more efficient subtraction scheme?

It is sufficient to perform subtraction only near the singular region

✔ gain in efficiency: subtraction term only needs to be computed over a
fraction of phase space

✔ strong check: final result is independent of value of phase space cut

✘ analytical integration of subtraction term more difficult (extra scale
involved)
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Local subtraction at NNLO
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2

4. dσ
RV,A1
m+1 regularizes the singly-unresolved limits of dσRV

m+1
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2

4. dσ
RV,A1
m+1 regularizes the singly-unresolved limits of dσRV

m+1

5. (
∫
1
dσ

RR,A1
m+2 )

A1 regularizes the singly-unresolved limit of
∫
1
dσ

RR,A1
m+2
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Defining a subtraction scheme

Strategy: IR limits are process independent and known

1. Start from defining the subtraction terms based on IR limit formulae
◮ they are trivially general, explicit and local
◮ done some time ago (2006) for colorless initial states

2. Worry about integrating them later
◮ since this is in principle a very narrowly defined problem, given 1.
◮ but in practice is very cumbersome, due to lack of technology
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Defining a subtraction scheme

The following three problems must be addressed

1. Matching of limits to avoid multiple subtraction in overlapping singular
regions of PS. Easy at NLO: collinear limit + soft limit - collinear limit of
soft limit.

A1|M
(0)
m+1|

2 =
∑

i

[

∑

i 6=r

1

2
Cir + Sr −

∑

i 6=r

CirSr

]

|M
(0)
m+1|

2

2. Extension of IR factorization formulae over full PS using momentum
mappings that respect factorization and delicate structure of cancellations
in all limits.

{p}m+1
r

−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m ;Q)[dp1,m]

{p}m+2
r,s
−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m ;Q)[dp2,m]

3. Integration of the counterterms over the phase space of the unresolved
parton(s).
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The need for extension

IR limit formulae are only well-defined in the strict limit. E.g.

➠ collinear: Cir is a symbolic operator that takes the pi ||pr limit

Cir |M
(0)
m+2(pi , pr , . . .)|

2 = 8παsµ
2ǫ 1

sir
P̂fi fr

(zi , zr , k⊥; ǫ)⊗ |M
(0)
m+1(pir , . . .)|

2

➠ soft: Sr is a symbolic operator that takes the pr → 0 limit

Sr |M
(0)
m+2(pr , . . .)|

2 = −8παsµ
2ǫ
∑

i,k

1

2
Sik(r)|M

(0)
m+1,(i,k)

(✚❩pr , . . .)|
2

NOTICE

➠ momenta in factorized ME’s on the r.h.s. conserve momentum and/or
mass shell conditions only in the strict limit

➠ arguments of AP splitting functions, e.g. momentum fractions zi , zr and
transverse momentum k⊥ are only defined in the strict limit

HENCE

➠ must specify precisely momenta entering factorized ME’s away from limit

➠ must define zi , zr and k⊥ away from limit
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Defining a subtraction scheme

Specific issues at NNLO

1. Matching is cumbersome if done in a brute force way. However, an
efficient solution that works at any order in PT is known.

2. Extension is delicate. E.g. counterterms for singly-unresolved real emission
(unintegrated and integrated) must have universal IR limits. This is not
guaranteed by QCD factorization.

3. Choosing the counterterms such that integration is (relatively)
straightforward generally conflicts with the delicate cancellation of IR
singularities.
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NNLO subtraction terms - an example

MESSAGE

➠ Subtraction terms are defined completely explicitly for any number of jets.
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NNLO subtraction terms - an example

Double collinear counterterm: among others, in dσ
RR,A2
m+2 we find

C
(0,0)
ir ;js ({p}) = (8παsµ

2ǫ)2
1

sir sjs
(1− αir − αjs)

−d(m;ǫ)Θ(α0 − αir − αjs )

× 〈M
(0)
m ({p̃}(ir ;js))|P̂fi fr

(zr,i , zi,r , k⊥,i,r ; ǫ)P̂fj fs
(zs,j , zj,s , k⊥,j,s ; ǫ)|M

(0)
m ({p̃}(ir ;js))〉
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NNLO subtraction terms - an example

Double collinear counterterm: among others, in dσ
RR,A2
m+2 we find

C
(0,0)
ir ;js ({p}) = (8παsµ

2ǫ)2
1

sir sjs
(1− αir − αjs)

−d(m;ǫ)Θ(α0 − αir − αjs )

× 〈M
(0)
m ({p̃}(ir ;js))|P̂fi fr

(zr,i , zi,r , k⊥,i,r ; ǫ)P̂fj fs
(zs,j , zj,s , k⊥,j,s ; ǫ)|M

(0)
m ({p̃}(ir ;js))〉

➠ collinear poles: sir sjs

skl = 2pk · pl , k , l = i , r or j , s
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NNLO subtraction terms - an example

Double collinear counterterm: among others, in dσ
RR,A2
m+2 we find

C
(0,0)
ir ;js ({p}) = (8παsµ

2ǫ)2
1

sir sjs
(1− αir − αjs)

−d(m;ǫ)Θ(α0 − αir − αjs )

× 〈M
(0)
m ({p̃}(ir ;js))|P̂fi fr

(zr,i , zi,r , k⊥,i,r ; ǫ)P̂fj fs
(zs,j , zj,s , k⊥,j,s ; ǫ)|M

(0)
m ({p̃}(ir ;js))〉

➠ Altarelli-Parisi splitting functions: P̂fi fr P̂fj fs

zk,l =
ykQ

y(kl)Q
, k

µ

⊥,k,l = ζk,lp
µ

l − ζl,kp
µ

k + ζkl p̃
µ

kl , k , l = i , r or j , s

with
ζk,l = zk,l −

ykl

αkly(kl)Q
, ζkl =

ykl

αkly k̃l Q

(zl,k − zk,l )
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NNLO subtraction terms - an example

Double collinear counterterm: among others, in dσ
RR,A2
m+2 we find

C
(0,0)
ir ;js ({p}) = (8παsµ

2ǫ)2
1

sir sjs
(1− αir − αjs)

−d(m;ǫ)Θ(α0 − αir − αjs )

× 〈M
(0)
m ({p̃}(ir ;js))|P̂fi fr

(zr,i , zi,r , k⊥,i,r ; ǫ)P̂fj fs
(zs,j , zj,s , k⊥,j,s ; ǫ)|M

(0)
m ({p̃}(ir ;js))〉

➠ mapped momenta: {p̃}(ir ;js) = {p̃1, . . . , p̃ir , . . . , p̃js , . . . , p̃m+2}m

p̃
µ

kl
=

1

1− αir − αjs

(pµ
k
+ p

µ

l
− αklQ

µ) , k, l = i , r or j , s

p̃µn =
1

1− αir − αjs

pµn , n 6= i , r , j , s

with

αkl =
1

2

[
y(kl)Q −

√
y2
(kl)Q

− 4ykl
]
, k , l = i , r or j , s
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NNLO subtraction terms - an example

Double collinear counterterm: among others, in dσ
RR,A2
m+2 we find

C
(0,0)
ir ;js ({p}) = (8παsµ

2ǫ)2
1

sir sjs
(1− αir − αjs)

−d(m;ǫ)Θ(α0 − αir − αjs )

× 〈M
(0)
m ({p̃}(ir ;js))|P̂fi fr

(zr,i , zi,r , k⊥,i,r ; ǫ)P̂fj fs
(zs,j , zj,s , k⊥,j,s ; ǫ)|M

(0)
m ({p̃}(ir ;js))〉

➠ constrain subtraction to near singular region: Θ(α0 − αir − αjs)

0 < α0 ≤ 1 , α0 = 1: subtract over full phase space
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NNLO subtraction terms - an example

Double collinear counterterm: among others, in dσ
RR,A2
m+2 we find

C
(0,0)
ir ;js ({p}) = (8παsµ

2ǫ)2
1

sir sjs
(1− αir − αjs)

−d(m;ǫ)Θ(α0 − αir − αjs )

× 〈M
(0)
m ({p̃}(ir ;js))|P̂fi fr

(zr,i , zi,r , k⊥,i,r ; ǫ)P̂fj fs
(zs,j , zj,s , k⊥,j,s ; ǫ)|M

(0)
m ({p̃}(ir ;js))〉

➠ make integrated counterterm m-independent: (1− αir − αjs)
−d(m;ǫ)

d(m; ǫ) = 2m(1− ǫ)− 2d0 , d0 = D0 + d1ǫ , D0 ≥ 2
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NNLO subtraction terms - an example

Double collinear counterterm: among others, in dσ
RR,A2
m+2 we find

C
(0,0)
ir ;js ({p}) = (8παsµ

2ǫ)2
1

sir sjs
(1− αir − αjs)

−d(m;ǫ)Θ(α0 − αir − αjs )

× 〈M
(0)
m ({p̃}(ir ;js))|P̂fi fr

(zr,i , zi,r , k⊥,i,r ; ǫ)P̂fj fs
(zs,j , zj,s , k⊥,j,s ; ǫ)|M

(0)
m ({p̃}(ir ;js))〉

The complete approximate cross section is a sum of such terms

dσ
RR,A2
m+2 = dφm[dp2]A2|M

(0)
m+2|

2

where

A2|M
(0)
m+2|

2 =
∑

r

∑

s 6=r

{

∑

i 6=r,s

[

1

6
C
(0,0)
irs

+
∑

j 6=i,r,s

1

8
C
(0,0)
ir ;js +

1

2
CS

(0,0)
ir ;s

]

+
1

2
S
(0,0)
rs

−
∑

i 6=r,s

[

1

2
CirsCS

(0,0)
ir ;s +

∑

j 6=i,r,s

1

2
Cir ;jsCS

(0,0)
ir ;s +

1

2
CirsS

(0,0)
rs + CSir ;sS

(0,0)
rs

−
∑

j 6=i,r,s

1

2
Cir ;jsS

(0,0)
rs − CirsCSir ;sS

(0,0)
rs

]}
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NNLO subtraction terms - general features

Based on universal IR limit formulae

➠ Altarelli-Parisi splitting functions, soft currents (tree and one-loop, triple
AP functions)

➠ simple and general procedure for matching of limits using physical gauge

➠ extension based on momentum mappings that can be generalized to any
number of unresolved partons

Fully local in color ⊗ spin space

➠ no need to consider the color decomposition of real emission ME’s

➠ azimuthal correlations correctly taken into account in gluon splitting

➠ can check explicitly that the ratio of the sum of counterterms to the real
emission cross section tends to unity in any IR limit

Straightforward to constrain subtractions to near singular regions

➠ gain in efficiency

➠ independence of physical results on phase space cut is strong check

Given completely explicitly for any process with non colored initial state
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The tedious part: integrating the counterterms
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Basic setup

Momentum mappings used to define the counterterms

{p}n+p
R

−→ {p̃}n

➠ implement exact momentum conservation

➠ recoil distributed democratically (can be generalized to any p)

➠ different collinear and soft mappings (R labels precise limit)

➠ exact factorization of phase space

dφn+p({p};Q) = dφn({p̃}
(R)
n ;Q)[dp(R)

p,n ]

Counterterms are products (in color and spin space) of

➠ factorized ME’s independent of variables in [dp
(R)
p,n ]

➠ singular factors (AP functions, soft currents), to be integrated over [dp
(R)
p,n ]

Strategy for computing the integrals

➠ explicit parametrization of factorized phase space leads to parametric
integral representations

➠ evaluate the parametric integrals
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Types of integrated counterterms

NNLO correction is the sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1
]}

Jm
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Types of integrated counterterms

NNLO correction is the sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1
]}

Jm

➠ tree-level and one-loop singly-unresolved integrals
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Types of integrated counterterms

NNLO correction is the sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1 dσ
RR,A1
m+2

)

A1
]}

Jm

➠ tree-level and one-loop singly-unresolved integrals

➠ tree-level iterated singly-unresolved integrals
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Types of integrated counterterms

NNLO correction is the sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1
]}

Jm

➠ tree-level and one-loop singly-unresolved integrals

➠ tree-level iterated singly-unresolved integrals

➠ tree-level doubly-unresolved integrals
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Types of integrated counterterms

NNLO correction is the sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1
]}

Jm

➠ tree-level and one-loop singly-unresolved integrals

➠ tree-level iterated singly-unresolved integrals

➠ tree-level doubly-unresolved integrals
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Phase space integrals - an example

MESSAGE

➠ The integral is (very) difficult, but the result is numerically (very) simple.
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Phase space integrals - an example

Abelian soft-double soft counterterm: among many others, in dσ
RR,A12
m+2 we find

(

StS
(0)
rt

)ab

= (8παsµ
2ǫ)2

∑

i,j,k,l

1

8
S
î k̂
(r̂)Sjl (t)|M

(0)
m,(i,k)(j,l)

({p̃})|2

× (1− ytQ)
d′0−m(1−ǫ)(1− yr̂Q)

d′0−m(1−ǫ)Θ(y0 − ytQ)Θ(y0 − yr̂Q)

The set of m momenta, {p̃}, is obtained by an iterated mapping which leads to
an exact factorization of phase space

{p}m+2
St
−→ {p̂}m+1

Sr̂
−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp̂1,m][dp1,m+1]

b
b

b
b

1

R

S

m + 2

b
b

b
b

1̃

m̃ + 2

⊗
R

K

⊗
Ŝ

K
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Phase space integrals - an example

Abelian soft-double soft counterterm: among many others, in dσ
RR,A12
m+2 we find

(

StS
(0)
rt

)ab

= (8παsµ
2ǫ)2

∑

i,j,k,l

1

8
S
î k̂
(r̂)Sjl (t)|M

(0)
m,(i,k)(j,l)

({p̃})|2

× (1− ytQ)
d′0−m(1−ǫ)(1− yr̂Q)

d′0−m(1−ǫ)Θ(y0 − ytQ)Θ(y0 − yr̂Q)

The set of m momenta, {p̃}, is obtained by an iterated mapping which leads to
an exact factorization of phase space

{p}m+2
St
−→ {p̂}m+1

Sr̂
−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp̂1,m][dp1,m+1]

Then we must compute
∫

[dp̂1,m][dp1,m+1]StS
(0)
rt ≡

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2 ∑

i,k,j,l

[StS
(0)
rt ]ikjl |M

(0)
m,(i,k)(j,l)({p̃})|

2

where [StS
(0)
rt ]ikjl ≡ [StS

(0)
rt ]ikjl(pi , pk , pj , pl , ǫ, y0, d

′
0) is a kinematics dependent

function.
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Abelian soft-double soft integral

For simplicity, consider the terms in the sum where j = i and l = k : [StS
(0)
rt ]ikik .

Kinematical dependence is through cosχik = ∡(pi , pk), we set
cosχik = 1− 2Yik,Q .

Using angles and energies in some specific Lorentz frame to parametrize the
factorized phase space measures, [dp̂1,m] and [dp1,m+1], we find that [StS

(0)
rt ]ikik

is proportional to

I
(11)
S (Yik,Q ; ǫ, y0, d

′
0) = −

4Γ4(1 − ǫ)

πΓ2(1− ǫ)

By0 (−2ǫ, d ′
0 + 1)

ǫ
Yik,Q

∫ y0

0
dy y−1−2ǫ(1− y)d

′
0−1+ǫ

×

∫ 1

−1
d(cos ϑ) (sin ϑ)−2ǫ

∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ

[

f (ϑ, ϕ; 0)
]−1[

f (ϑ, ϕ;Yik,Q)
]−1

×
[

Y (y , ϑ, ϕ;Yik,Q)
]−ǫ

2F1

(

− ǫ,−ǫ, 1− ǫ, 1− Y (y , ϑ, ϕ;Yik,Q)
)

where

f (ϑ, ϕ;Yik,Q) = 1− 2
√

Yik,Q(1 − Yik,Q) sinϑ cosϕ− (1 − 2Yik,Q)χ cos ϑ

Y (y , ϑ, ϕ;χ) =
4(1 − y)Yik,Q

[2(1 − y) + y f (ϑ, ϕ; 0)][2(1− y) + y f (ϑ, ϕ;Yik,Q)]
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Abelian soft-double soft integral

This integral is equal to

I
(11)
S (Yik,Q ; ǫ, y0, d

′
0) =

1

ǫ4
−2

[
ln(Yik,Q)+Σ(y0,D

′
0)+Σ(y0,D

′
0−1)

]
1

ǫ3
+O(ǫ−2)

where D ′
0 = d ′

0|ǫ=0 and the dependence on the PS cut parameter, y0, enters in

Σ(z ,N) = ln z −
∑N

k=1
1−(1−z)k

k

Higher order expansion coefficients computed numerically (y0 = 1, D ′
0 = 3)

0
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
1

102

2 · 102

3 · 102

4 · 102

5 · 102

I
(1

1
)

S
(
Y i
k
,Q
;
ǫ,
y 0
=

1
,d
0 0
=

3
)

Yik,Q

Order: ǫ
−2

0
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
1

103

2 · 103

3 · 103

4 · 103

5 · 103

6 · 103

7 · 103

8 · 103

I
(1

1
)

S
(
Y i
k
,Q
;
ǫ,
y 0
=

1
,d
0 0
=

3
)

Yik,Q

Order: ǫ
−1

0
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
1

104

2 · 104

3 · 104

4 · 104

5 · 104

6 · 104

7 · 104

8 · 104

I
(1

1
)

S
(
Y i
k
,Q
;
ǫ,
y 0
=

1
,d
0 0
=

3
)

Yik,Q

Order: ǫ
0
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Analytical vs. numerical

As a matter of principle

➠ Rigorous proof of cancellation of IR poles requires poles of integrated
counterterms in analytical form.

➠ Analytical forms are fast and accurate compared to numerical ones.

However

➠ Analytical results show (in all cases where they are available) that
integrated counterterms are smooth functions of kinematic variables.

Hence

➠ Numerical forms of integrated counterterms are sufficient for practical
purposes. Final results can be conveniently given by interpolating tables or
approximating functions computed once and for all. Thus, efficient
implementation is possible even if the full analytical calculation is not
feasible or practical (e.g. finite parts of integrated counterterms).

➠ In particular, suitable approximating functions may be obtained by fitting.
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C (x ĩr
, x

j̃s
; ǫ, , 3− 3ǫ, k , l)

I2C (x ĩr
, x

j̃s
; ǫ, α0, d0; k, l) = x

ĩr
x
j̃s

∫ 1

0
dαdβ

∫ 1

0
dv du α−1−ǫβ−1−ǫ(1− α− β)2d0−2(1−ǫ)

× [α+ (1− α− β)x
ĩr
]−1−ǫ[β + (1− α− β)x

j̃s
]−1−ǫv−ǫ(1− v)−ǫu−ǫ(1− u)−ǫ

×

(

α+ (1− α− β)x
ĩr
v

2α + (1− α− β)x
ĩr

)k (β + (1− α− β)x
j̃s
u

2β + (1− α− β)x
j̃s

)l

Θ(α0 − α− β)
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C (x ĩr
, x

j̃s
; ǫ, , 3− 3ǫ, k , l)

➠ poles (up to O(ǫ−4)) extracted via sector decomposition

➠ numerical values of pole coefficients computed for a 17× 17 grid with
precision of ∼ 10−7

➠ define three regions (note: result is symmetric in x
ĩr
, x

j̃s
)

◮ asymptotic: x
ĩr
, x

j̃s
< 10−4

◮ non-asymptotic: x
ĩr
, x

j̃s
> 10−2

◮ border: x
ĩr

< 10−2 or x
j̃s

< 10−2

➠ in each region, fit with ansatz

F(x1, x2) =
∑

pi ,li

Cm;p1,p2;l1,l2(x
p1
1 x

p2
2 )(logl1(x1) log

l2(x2))

where p1 + p2 ≤ m with m a free parameter, while l1 + l2 ≤ n and n is
predicted
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C (x ĩr
, x

j̃s
; ǫ, , 3− 3ǫ, k , l)
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Phase space integrals - methods

Several different methods to compute the integrals have been explored

➠ use of IBPs to reduce to master integrals + solution of MIs by differential
equations

➠ use of MB representations to extract pole structure + summation of
nested series

➠ use of sector decomposition
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Phase space integrals - methods

Method Analytical
M
M

Numerical

IBP

✔ singly-unresolved
integrals

✘ bottleneck is the
proliferation of
denominators

✔ by evaluating the
analytic expressions

✘ no numbers without
full analytical results

MB

✔ iterated singly-
unresolved integrals

✘ bottleneck is the
evaluation of sums

✔ direct numerical
evaluation of MB
integrals possible

✔ fast and accurate

SD

✔ easy to automate

✘ only in principle,
except for lowest
order poles

✘ numerical behavior
is generally worse
than MB method
(speed, accuracy)
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Spinoff - angular integrals in d dimensions

Consider the d dimensional angular integral with n denominators
(GS, J. Math. Phys. 52 (2011) 083501.)

Ωj1,...,jn =

∫
dΩd−1(q)

1

(p1 · q)j1 · · · (pn · q)jn

We find (with j = j1 + . . .+ jn)

Ωj1,...,jn = 22−j−2ǫπ1−ǫH[v; (α,A); (β,B); Ls]

where H is the so-called H-function of N = n(n+1)
2

variables.
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Spinoff - angular integrals in d dimensions

Consider the d dimensional angular integral with n denominators
(GS, J. Math. Phys. 52 (2011) 083501.)

Ωj1,...,jn =

∫
dΩd−1(q)

1

(p1 · q)j1 · · · (pn · q)jn

We find (with j = j1 + . . .+ jn)

Ωj1,...,jn = 22−j−2ǫπ1−ǫH[v; (α,A); (β,B); Ls]

where H is the so-called H-function of N = n(n+1)
2

variables. We have

v = (v11, v12, . . . , v1n, v22, v23, . . . , vn−1n, vnn), vkl ≡















pk · pl

2
; k 6= l

p2
k

4
; k = l

α = (0N , j1, . . . , jn, 1− j − ǫ), β = (j1, . . . , jn, 2− j − 2ǫ)

and Ls = Ls1 × . . . LsN , where Lsk is an infinite contour in the complex sk -plane
running from −i∞ to +i∞.
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Spinoff - angular integrals in d dimensions

Consider the d dimensional angular integral with n denominators
(GS, J. Math. Phys. 52 (2011) 083501.)

Ωj1,...,jn =

∫
dΩd−1(q)

1

(p1 · q)j1 · · · (pn · q)jn

We find (with j = j1 + . . .+ jn)

Ωj1,...,jn = 22−j−2ǫπ1−ǫH[v; (α,A); (β,B); Ls]

where H is the so-called H-function of N = n(n+1)
2

variables. We have

A =





−1N×N

Mn×N

−1 · · · − 1



 , B = [(0)(n+1)×N ]

i.e. B is zero, while the n × N dimensional matrix M has the block form:

Mn×N =
[

mn×n mn×(n−1) · · · mn×1
]

with mn×p =















0 (0)(n−p)×(p−1)

2 1 · · · 1
0
... 1(p−1)×(p−1)

0
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Spinoff - angular integrals in d dimensions

Consider the d dimensional angular integral with n denominators
(GS, J. Math. Phys. 52 (2011) 083501.)

Ωj1,...,jn =

∫
dΩd−1(q)

1

(p1 · q)j1 · · · (pn · q)jn

We find (with j = j1 + . . .+ jn)

Ωj1,...,jn = 22−j−2ǫπ1−ǫH[v; (α,A); (β,B); Ls]

where H is the so-called H-function of N = n(n+1)
2

variables. We have

Ωj1,...,jn ({vkl}; ǫ) = 22−j−2ǫπ1−ǫ
1

∏n
k=1 Γ(jk )Γ(2 − j − 2ǫ)

×

∫ +i∞

−i∞

[

n
∏

k=1

n
∏

l=k

dzkl

2πi
Γ(−zkl ) (vkl )

zkl

][

n
∏

k=1

Γ(jk + zk)

]

Γ(1− j − ǫ− z) .

where

z =
n∑

k=1

n∑

l=k

zkl , and zk =
k∑

l=1

zlk +
n∑

l=k

zkl .
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Integrated approximate cross sections
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Structure of the results

Integrated approximate cross sections

➠ After summing over unobserved flavors, all integrated approximate cross
sections can be written as products (in color space) of various insertion
operators with lower point cross sections.

Insertion operators

➠ color and flavor structure of all insertion operators known

➠ first two leading poles of kinematical functions entering insertion operators
known analytically in all cases (except I

(0)
2 )

➠ higher order expansion coefficients computed numerically
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Integrated approximate cross sections - an example

MESSAGE

➠ Done once and for all (though admittedly lots of tedious work).
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Integrated approximate cross sections - an example

NNLO correction is the sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

Each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1
]}

Jm

➠ tree-level and one-loop singly-unresolved integrals

➠ tree-level iterated singly-unresolved integrals

➠ tree-level doubly-unresolved integrals
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Integrated approximate cross sections - an example

Iterated singly-unresolved

∫

2
dσ

RR,A12
m+2 = dσB

m ⊗ I
(0)
12 ({p}m ; ǫ)

➠ structure of insertion operator in color ⊗ flavor space

I
(0)
12 ({p}m ; ǫ) =

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2{
∑

i

[

C
(0)
12,fi

T
2
i +

∑

k

C
(0)
12,fi fk

T
2
k

]

T
2
i

+
∑

j,l

[

S
(0),(j,l)
12 CA +

∑

i

CS
(0),(j,l)
12,fi

T
2
i

]

TjTl

+
∑

i,k,j,l

S
(0),(i,k)(j,l)
12 {TiTk ,TjTl}

}

➠ C
(0)
12,fi

, C
(0)
12,fi fk

, S
(0),(j,l)
12 , CS

(0),(j,l)
12,fi

and S
(0),(i,k)(j,l)
12 are kinematical functions

with poles up to O(ǫ−4) (also depend on PS cut parameters)

➠ kinematical dependence through

xi = yiQ ≡
2pi ·Q

Q2
and Yik,Q =

yik

yiQykQ
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Integrated approximate cross sections - an example

Iterated singly-unresolved

➠ example: e+e− → 3 jets (momentum assignment is 1q , 2q̄ , 3g )

I
(0)
12 (p1, p2, p3; ǫ) =

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2{6C2
F
+ 2CACF + C2

A

ǫ4
+

[

12C2
F +

101CACF

6

+
67C2

A

12
−

13CFTRnf

3
−

3CATRnf

2
−

(

8C2
F + CACF −

5C2
A

2

)

ln y12

−

(

4CACF +
5C2

A

2

)

(ln y13 + ln y23)− (4C2
F − 6CACF − C2

A)Σ(y0,D
′
0)

− (4C2
F
− 4CACF)Σ(y0,D

′
0 − 1)

]

1

ǫ3
+O(ǫ−2)

}

➠ notice x and Y dependence combine to produce just yik dependence, as
expected

➠ dependence on PS cut parameters through

Σ(z ,N) = ln z −
∑N

k=1
1−(1−z)k

k

should vanish once all integrated approximate cross sections are combined
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Integrated approximate cross sections - an example

Iterated singly-unresolved

➠ example: e+e− → 3 jets (momentum assignment is 1q , 2q̄ , 3g )

I
(0)
12 (p1, p2, p3; ǫ) =

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2{6C2
F
+ 2CACF + C2

A

ǫ4
+

[

12C2
F +

101CACF

6

+
67C2

A

12
−

13CFTRnf

3
−

3CATRnf

2
−

(

8C2
F + CACF −

5C2
A

2

)

ln y12

−

(

4CACF +
5C2

A

2

)

(ln y13 + ln y23)− (4C2
F − 6CACF − C2

A)Σ(y0,D
′
0)

− (4C2
F
− 4CACF)Σ(y0,D

′
0 − 1)

]

1

ǫ3
+O(ǫ−2)

}

➠ notice x and Y dependence combine to produce just yik dependence, as
expected

➠ dependence on PS cut parameters through

Σ(z ,N) = ln z −
∑N

k=1
1−(1−z)k

k

should vanish once all integrated approximate cross sections are combined
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Integrated approximate cross sections - an example

Iterated singly-unresolved

➠ example: e+e− → 3 jets (momentum assignment is 1q , 2q̄ , 3g )

➠ higher order expansion coefficients can be computed numerically

I
(0)
12 (p1, p2, p3; ǫ) =

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2 0
∑

i=−4

∑

color

Col

ǫi
I
(Col,i)
12,3j (p1, p2, p3) +O(ǫ1)

➠ kinematical point parametrized by yij

y12 = 0.333333, y13 = 0.333333, y23 = 0.333333

Col O(ǫ−4) O(ǫ−3) O(ǫ−2) O(ǫ−1) O(ǫ0)

C 2
F 6 34.12 82.98 34.59 −543.8

CACF 2 9.721 1.209 −142.2 −696.6

C 2
A 1 6.497 12.80 15.87 −47.92

CFTRnf 0 − 13
3

−32.40 −127.9 −355.2

CATRnf 0 − 3
2

−12.01 −46.90 −104.1
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Integrated approximate cross sections - an example

Iterated singly-unresolved

➠ example: e+e− → 3 jets (momentum assignment is 1q , 2q̄ , 3g )

➠ higher order expansion coefficients can be computed numerically

I
(0)
12 (p1, p2, p3; ǫ) =

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2 0
∑

i=−4

∑

color

Col

ǫi
I
(Col,i)
12,3j (p1, p2, p3) +O(ǫ1)

➠ kinematical point parametrized by yij

y12 = 0.238667, y13 = 0.758153, y23 = 0.003180

Col O(ǫ−4) O(ǫ−3) O(ǫ−2) O(ǫ−1) O(ǫ0)

C 2
F 6 36.79 106.0 120.6 −431.0

CACF 2 25.38 143.6 537.3 1505

C 2
A 1 15.24 119.5 660.5 2902

CFTRnf 0 − 13
3

−31.30 −121.7 −346.0

CATRnf 0 − 3
2

−17.72 −109.1 −470.9
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Integrated approximate cross sections - an example

Iterated singly-unresolved

➠ example: e+e− → 3 jets (momentum assignment is 1q , 2q̄ , 3g )

➠ higher order expansion coefficients can be computed numerically

I
(0)
12 (p1, p2, p3; ǫ) =

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2 0
∑

i=−4

∑

color

Col

ǫi
I
(Col,i)
12,3j (p1, p2, p3) +O(ǫ1)

➠ kinematical point parametrized by yij

y12 = 0.937044, y13 = 0.024207, y23 = 0.038749

Col O(ǫ−4) O(ǫ−3) O(ǫ−2) O(ǫ−1) O(ǫ0)

C 2
F 6 25.85 34.59 −84.25 −566.8

CACF 2 27.79 136.8 330.6 46.20

C 2
A 1 21.02 195.4 1174 5355

CFTRnf 0 − 13
3

−57.59 −405.2 −2120

CATRnf 0 − 3
2

−24.07 −194.7 −1083
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Overview

Counterterm Types of integrals
M
M

Done

∫
1
dσ

RR,A1
m+2 tree level singly-unresolved

M
M
M

✔

∫
1
dσ

RV,A1
m+1 one-loop singly-unresolved

M
M
M

✔

∫
1
(
∫
1
dσ

RR,A1
m+2 )

A1 tree level iterated singly-unresolved (1)
M
M
M

✔

∫
2
dσ

RR,A12
m+2 tree level iterated singly-unresolved (2)

M
M
M

✔

∫
2
dσ

RR,A2
m+2 tree level doubly-unresolved

M
M
M

✔/✘
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Outlook
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Present status

NNLO correction is the sum of three terms

σ
NNLO = σ

RR

m+2 + σ
RV

m+1 + σ
VV

m = σ
NNLO

m+2 + σ
NNLO

m+1 + σ
NNLO

m

Each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1 dσ
RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1 dσ
RR,A1
m+2

)

A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]

+
∫

1

[

dσ
RV,A1
m+1 +

(

∫

1 dσ
RR,A1
m+2

)

A1
]}

Jm

✔ unintegrated RR counterterms

✔ unintegrated RV counterterms

✔ tree-level and one-loop singly-unresolved integrals

✔ tree-level iterated singly-unresolved integrals

➠ tree-level doubly-unresolved integrals
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Present status

NNLO correction is the sum of three terms

σ
NNLO = σ

RR

m+2 + σ
RV

m+1 + σ
VV

m = σNNLO
m+2 + σNNLO

m+1 + σ
NNLO

m

Numerical Monte Carlo integration (single CPU, ∼ 50 hours)
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0
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0

(1
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Conclusions

Hope to have convinced you

➠ differential NNLO is interesting and relevant

➠ subtraction is the method of choice for general, efficient calculations

Local subtraction at NNLO

➠ general, explicit, local subtraction scheme for computing NNLO jet cross
sections, for processes with no colored particles in the initial state

➠ investigated various methods to compute the integrated counterterms:
IBP’s, MB, SD

➠ integration of all singly-unresolved and iterated singly-unresolved
counterterms finished

➠ integration of doubly-unresolved counterterms underway

Next steps

➠ finish doubly-unresolved integrals: < 10 double soft counterterms left

➠ physical applications

➠ extend scheme to hadron-initiated and massive processes
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