Higher-order QCD calculations via local subtraction

Gábor Somogyi

CERN

LNF, Frascati, June 27th 2011

Why precision?

DESY 12-031, DO-TH-12/07, SFB/CPP-12-20, LPN 12-047
arxiv:1205.4991

Why Precision?

Johannes Blümlein*
Deutsches Elektronen-Synchrotron, DESY, Zeuthen, Platanenalle 6, D-15735 Zeuthen, Germany.
Why Precision? Johannes Blümlein

1. Introduction

Precision matters. Any progress in the exact sciences relies both on precise measurements and highly accurate theoretical calculations. Many of the fundamental laws of physics had unavoidably to be found whenever precise data were described by theoretical concepts, often within a new framework of relations. The Rudolphine Tables of the late Tycho Brahe [1] led J. Kepler to derive his laws [2] and later I. Newton the law of gravity [3]. A. Michelson's experiments [4] led A. Einstein to Special Relativity [5], with numerous experimental confirmations in flat space-time. ${ }^{1}$ The

Differential NNLO

A young and promising field in the LHC era

InI less than a decade old
n+4 starting from simple decays and single production processes

InIt moved to/moving towards complicated jet production and pair production processes at colliders
|uw already a significant impact on phenomenology at collider experiments

$$
\alpha_{\mathrm{s}}=0.1175 \pm 0.0020(\exp) \pm 0.0015 \text { (theo) }
$$

Outline

Introduction

Basics of subtraction

Local subtraction at NNLO

The tedious part: integrating the counterterms

Integrated approximate cross sections

Outlook

Introduction

Introduction

Accurate predictions in perturbative QCD require higher-order calculations

LO QCD predictions give only order of magnitude estimates for rates and rough estimates for shapes of distributions
|n+ large dependence on unphysical scale choices
"In jets \neq partons: jet structure appears only beyond LO

NLO corrections are required to obtain more realistic estimates of cross sections and better pictures of relevant distributions

Introduction

Starting from NLO, various singularities appear at intermediate stages of computation, even thought the final result is finite

N" at the amplitude level, the one-loop amplitudes contain both UV and IR singularities

N"I at the cross section level, the virtual (loop) and real emission corrections both contain IR singularities

However, we have accumulated three decades of experience with NLO computations, and general methods exist to handle singularities

In' UV singularities affect only virtual corrections and are removed by renormalization

In+ IR (soft and collinear) singularities cancel between virtual and real corrections for properly defined ("IR safe") observables. Several methods are known how to make this cancellation explicit.

Introduction

At NLO general methods exist to handle and cancel IR singularities
Frixione, Kunszt, Signer (1995) Catani, Seymour (1996)
The bottleneck for many years has been computing the relevant one-loop amplitudes

Massive progress in last few years
INI powerful new methods based on unitarity, recursion relations
IIIN new general tools have been/are being developed to compute one-loop amplitudes: GoSam, Helac-NLO, MadLoop. . .

Fair to say that the problem of computing NLO corrections is essentially solved for general processes

> Can we go to NNLO?

Do we need NNLO?

In certain cases precision QCD requires computations beyond NLO

NLO corrections are large:

- Higgs production from gluon fusion in hadron collisions
n|ll for benchmark processes measured with high experimental accuracy:
- α_{S} measurements form $e^{+} e^{-}$ event shapes
- W, Z production
- heavy quark hadroproduction
nult reliable error estimate is needed:
- processes relevant for PDF determination

(Anastasiou, Dixon, Melnikov, Petriello, Phys. Rev. D69 (2004) 094008.)
- important background processes

In short, we need NNLO when NLO fails to do its job

Status

Processes measured to few precent accuracy

```
In| \(e^{+} e^{-} \rightarrow 3 j\)
nut \(e p \rightarrow(2+1) j\)
nut \(p p \rightarrow j+X\)
"|14* \(p p \rightarrow V\)
N| 1 + \(p p \rightarrow V+j\)
넨 \(p p \rightarrow t \bar{t}\)
```

Processes with potentially large radiative corrections
n'met $p p \rightarrow H$
)
$\xrightarrow{\text { IIII }} \mathrm{pp} \rightarrow \mathrm{VH}$
$\xrightarrow{\text { III }} \mathrm{pp} \rightarrow V V$

Status

Processes measured to few precent accuracy

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow 3 j \downarrow \\
& e p \rightarrow(2+1) j x \\
& p p \rightarrow j+X x \\
& p p \rightarrow V \checkmark \\
& p p \rightarrow V+j x
\end{aligned}
$$

Processes with potentially large radiative corrections

$$
\begin{aligned}
& p p \rightarrow H \checkmark \\
& p p \rightarrow H+j \times \\
& p p \rightarrow V H \checkmark(V=W) \\
& p p \rightarrow V V \checkmark(V V=\gamma \gamma)
\end{aligned}
$$

NNLO ingredients

A generic m-jet cross section at NNLO involves
nult Tree-level squared matrix elements

- with $m+2$ parton kinematics
- known from LO calculations
- 'doubly-real' contribution (RR)

Nume-loop squared matrix elements

- with $m+1$ parton kinematics
- usually known from NLO calculations
- 'real-virtual' contribution (RV)

Nwo-loop squared matrix elements

- with m parton kinematics
- known for all massless $2 \rightarrow 2$ processes
- 'doubly-virtual' contribution (VV)

NNLO ingredients

A generic m-jet cross section at NNLO involves
nult Tree-level squared matrix elements

- with $m+2$ parton kinematics
- known from LO calculations
- 'doubly-real' contribution (RR)

Nu| One-loop squared matrix elements

- with $m+1$ parton kinematics
- usually known from NLO calculations
- 'real-virtual' contribution (RV)

nint Two-loop squared matrix elements
- with m parton kinematics
- known for all massless $2 \rightarrow 2$ processes
- 'doubly-virtual' contribution (VV)

Assuming we know the relevant matrix elements, can we use those matrix elements to compute cross sections?

The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

$$
\sigma^{\mathrm{NNLO}}=\int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
$$

Doubly-real

- $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}$
- Tree MEs with $m+2$-parton kinematics
- kin. singularities as one or two partons unresolved: up to $\mathrm{O}\left(\epsilon^{-4}\right)$ poles from PS integration
- no explicit ϵ poles

Real-virtual

- $\mathrm{d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}$
- One-loop MEs with $m+1$-parton kinematics
- kin. singularities as one parton unresolved: up to $\mathrm{O}\left(\epsilon^{-2}\right)$ poles from PS integration
- explicit ϵ poles up to $\mathrm{O}\left(\epsilon^{-2}\right)$

Doubly-virtual

- $\mathrm{d} \sigma_{m}^{\mathrm{VV}} J_{m}$
- One- and two-loop MEs with m-parton kinematics
- kin. singularities screened by jet function: PS integration finite
- explicit ϵ poles up to $\mathrm{O}\left(\epsilon^{-4}\right)$

The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

$$
\sigma^{\mathrm{NNLO}}=\int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
$$

THE KLN THEOREM

Infrared singularities cancel between real and virtual quantum corrections at the same order in perturbation theory, for sufficiently inclusive (i.e. IR safe) observables.

HOWEVER

How to make this cancellation explicit, so that the various contributions can be computed numerically? Need a method to deal with implicit poles.

Approaches

Sector decomposition

In" extract ϵ poles of each contribution (RR, RV, VV) separately by expanding the integrand in distributions
Int resulting expansion coefficients are finite multi-dimensional integrals, integrate numerically
Int cancellation of poles numerical, depends on observable
nne first method to yield physical results, but can it handle complicated final states?

Subtraction
num rearrange the poles between real and virtual contributions by subtracting and adding back suitable approximate cross sections
n|w cancellation of explicit ϵ poles achieved analytically, remaining PS integrals are finite
|n" nice properties (generality, efficiency) expected form experience at NLO
|"II+ definition of subtraction terms is not unique, hence several approaches: q_{\perp}, antenna, local

Approaches

Sector decomposition

(Binoth, Heinrich, Anastasiou, Dixon, Melnikov, Petriello, Czakon)
\checkmark first method to yield physical cross sections
\checkmark cancellation of divergences fully numerical
x cancellation of poles also, and depends on jet function
x can it handle complicated final states?

q_{\perp} subtraction

(Catani, Grazzini, Cieri, Ferrera, de Florian, Tramontano)
\checkmark exploits universal
behavior of q_{\perp}
distribution at small
q_{\perp}
\checkmark efficient and fully exclusive calculation
x limited scope: applicable only to production of massive colorless final states in hadron collisions

Antenna subtraction

(Gehrmann, Gehrmann-De Ridder, Glover, Heinrich, Weinzierl)
\checkmark successfully applied to $e^{+} e^{-} \rightarrow 2,3 j$
\checkmark analytic integration of antennae over unresolved phase space is understood
x counterterms are nonlocal
x treatment of color is implicit
x cannot cut factorized phase space

Approaches - two new developments

Refinement of the sector decomposition algorithm

|n" uses non-linear mappings to disentangle overlapping singularities
nw the aim is to increase efficiency by reducing the large number of sectors/terms generated during decomposition
In' first application: fully exclusive $H \rightarrow b \bar{b}$ decay at NNLO
Anastasiou, Lazopoulos, Herzog (2011)
Refinement of phase space integration via sector decomposition
Czakon (2010); Boughezal, Melnikov, Petriello (2011)
|nw FKS-like approach to double real radiation in $t \bar{t}$ production
nIn* sector decomposition used to make singular contributions explicit, guided by known universal IR structure
nim first NNLO computation of $q \bar{q} \rightarrow t \bar{t}$ total cross section
Baernreuther, Czakon, Mitov (2012)

Why a new scheme?

Goal: devise a subtraction scheme with
|"IIt general and explicit expressions, including color (view towards automation, color space notation is used)
|nut fully local counterterms, taking account of all color and spin correlations (mathematical rigor, efficiency)

N (efficiency, important check)

Int very algorithmic construction (valid at any order in perturbation theory)

Basics of subtraction

Subtraction - a caricature

Want to evaluate (at $\epsilon \rightarrow 0$)

$$
\sigma=\int_{0}^{1} \mathrm{~d} \sigma^{\mathrm{R}}(x)+\sigma^{\mathrm{V}} \quad \text { where } \quad \begin{aligned}
& \mathrm{d} \sigma^{\mathrm{R}}(x)=x^{-1-\epsilon} R(x) \\
& \\
& R(0)=R_{0}<\infty \\
& \\
& \\
& \sigma^{\mathrm{V}}=R_{0} / \epsilon+V
\end{aligned}
$$

IIII define the counterterm

$$
\mathrm{d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)=x^{-1-\epsilon} R_{0}
$$

|"IW use it to reshuffle singularities between R and V contributions

$$
\begin{aligned}
\sigma & =\int_{0}^{1}\left[\mathrm{~d} \sigma^{\mathrm{R}}(x)-\mathrm{d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)\right]_{\epsilon=0}+\left[\sigma^{\mathrm{V}}+\int_{0}^{1} \mathrm{~d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)\right]_{\epsilon=0} \\
& =\int_{0}^{1}\left[\frac{R(x)-R_{0}}{x^{1+\epsilon}}\right]_{\epsilon=0}+\left[\frac{R_{0}}{\epsilon}+V-\frac{R_{0}}{\epsilon}\right]_{\epsilon=0} \\
& =\int_{0}^{1} \frac{R(x)-R_{0}}{x}+V
\end{aligned}
$$

The last integral is finite, computable with standard numerical methods.

The issue of locality

In a rigorous mathematical sense, the cancellation of both kinematical singularities and ϵ-poles must be local. I.e. the subtraction term must have the following general properties
num it must match the singularity structure of (singly- and doubly-) real emissions pointwise, in dimensions
Ints its integrated form must be combined with the (real- and doubly-) virtual cross section explicitly, before phase space integration; ϵ-poles must cancel point by point

What about singular terms in the real emission cross section that cancel upon phase space integration (e.g. azimuthal correlations in gluon splitting)?
|nw they cancel upon integration in dimensions, the corresponding four dimensional integrals are ill-defined
n 1 In it is mandatory to treat these terms, since naive numerical integration (in four dimensions) can give any result whatsoever
n 1 In however, can be treated with methods other than strict local subtraction, e.g. auxiliary phase space slicing (as in antenna subtraction)

A more efficient subtraction scheme?

Want to evaluate (at $\epsilon \rightarrow 0$)

$$
\sigma=\int_{0}^{1} \mathrm{~d} \sigma^{\mathrm{R}}(x)+\sigma^{\mathrm{V}} \quad \text { where } \quad \begin{aligned}
& \mathrm{d} \sigma^{\mathrm{R}}(x)=x^{-1-\epsilon} R(x) \\
& \\
& R(0)=R_{0}<\infty \\
& \\
& \sigma^{\mathrm{V}}=R_{0} / \epsilon+V
\end{aligned}
$$

III* define the counterterm

$$
\mathrm{d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)=x^{-1-\epsilon} R_{0}
$$

|"W use it to reshuffle singularities between R and V contributions

$$
\begin{aligned}
\sigma & =\int_{0}^{1}\left[\mathrm{~d} \sigma^{\mathrm{R}}(x)-\mathrm{d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)\right]_{\epsilon=0}+\left[\sigma^{\mathrm{V}}+\int_{0}^{1} \mathrm{~d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)\right]_{\epsilon=0} \\
& =\int_{0}^{1}\left[\frac{R(x)-R_{0}}{x^{1+\epsilon}}\right]_{\epsilon=0}+\left[\frac{R_{0}}{\epsilon}+V-\frac{R_{0}}{\epsilon}\right]_{\epsilon=0} \\
& =\int_{0}^{1} \frac{R(x)-R_{0}}{x}+V
\end{aligned}
$$

The last integral is finite, computable with standard numerical methods.

A more efficient subtraction scheme?

Want to evaluate (at $\epsilon \rightarrow 0$)

$$
\sigma=\int_{0}^{1} \mathrm{~d} \sigma^{\mathrm{R}}(x)+\sigma^{\mathrm{V}} \quad \text { where } \quad \begin{aligned}
& \mathrm{d} \sigma^{\mathrm{R}}(x)=x^{-1-\epsilon} \\
& \\
& R(0)=R_{0}<\infty \\
& \\
& \sigma^{\mathrm{V}}=R_{0} / \epsilon+V
\end{aligned}
$$

In' define the counterterm to be nonzero only near the singular region

$$
\mathrm{d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)=x^{-1-\epsilon} R_{0} \Theta\left(x_{0}-x\right)
$$

|nW use it to reshuffle singularities between R and V contributions

$$
\begin{aligned}
\sigma & =\int_{0}^{1}\left[\mathrm{~d} \sigma^{\mathrm{R}}(x)-\mathrm{d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)\right]_{\epsilon=0}+\left[\sigma^{\mathrm{V}}+\int_{0}^{1} \mathrm{~d} \sigma^{\mathrm{R}, \mathrm{~A}}(x)\right]_{\epsilon=0} \\
& =\int_{0}^{1}\left[\frac{R(x)-R_{0} \Theta\left(x_{0}-x\right)}{x^{1+\epsilon}}\right]_{\epsilon=0}+\left[\frac{R_{0}}{\epsilon}+V-\frac{R_{0}}{\epsilon}+R_{0} \log x_{0}+\mathrm{O}\left(\epsilon^{1}\right)\right]_{\epsilon=0} \\
& =\int_{0}^{1} \frac{R(x)-R_{0} \Theta\left(x_{0}-x\right)}{x}+V+R_{0} \log x_{0}
\end{aligned}
$$

The last integral is finite, computable with standard numerical methods.

A more efficient subtraction scheme?

It is sufficient to perform subtraction only near the singular region
\checkmark gain in efficiency: subtraction term only needs to be computed over a fraction of phase space
\checkmark strong check: final result is independent of value of phase space cut
x analytical integration of subtraction term more difficult (extra scale involved)

Local subtraction at NNLO

Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
\sigma_{m+2}^{\mathrm{NNLO}} & =\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}} & =\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}} & =\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

1. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ regularizes the doubly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$

Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
\sigma_{m+2}^{\mathrm{NNLO}} & =\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}} & =\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}} & =\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

1. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ regularizes the doubly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$
2. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ regularizes the singly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$

Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
\sigma_{m+2}^{\mathrm{NNLO}} & =\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}} & =\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}} & =\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

1. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ regularizes the doubly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$
2. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ regularizes the singly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$
3. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}$ accounts for the overlap of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ and $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$

Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions
$\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}} J_{m}\right]\right\}$
$\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\}$
$\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}$

1. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ regularizes the doubly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$
2. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ regularizes the singly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$
3. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}$ accounts for the overlap of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ and $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$
4. $\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}$ regularizes the singly-unresolved limits of $\mathrm{d} \sigma_{m+1}^{\mathrm{RV}}$

Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions
$\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}} J_{m}\right]\right\}$
$\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\}$
$\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}$

1. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ regularizes the doubly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$
2. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ regularizes the singly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$
3. $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}$ accounts for the overlap of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ and $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$
4. $\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}$ regularizes the singly-unresolved limits of $\mathrm{d} \sigma_{m+1}^{\mathrm{RV}}$
5. $\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}$ regularizes the singly-unresolved limit of $\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$

Defining a subtraction scheme

Strategy: IR limits are process independent and known

1. Start from defining the subtraction terms based on IR limit formulae

- they are trivially general, explicit and local
- done some time ago (2006) for colorless initial states

2. Worry about integrating them later

- since this is in principle a very narrowly defined problem, given 1.
- but in practice is very cumbersome, due to lack of technology

Defining a subtraction scheme

The following three problems must be addressed

1. Matching of limits to avoid multiple subtraction in overlapping singular regions of PS. Easy at NLO: collinear limit + soft limit - collinear limit of soft limit.

$$
\mathbf{A}_{1}\left|\mathcal{M}_{m+1}^{(0)}\right|^{2}=\sum_{i}\left[\sum_{i \neq r} \frac{1}{2} \mathbf{C}_{i r}+\mathbf{S}_{r}-\sum_{i \neq r} \mathbf{C}_{i r} \mathbf{S}_{r}\right]\left|\mathcal{M}_{m+1}^{(0)}\right|^{2}
$$

2. Extension of IR factorization formulae over full PS using momentum mappings that respect factorization and delicate structure of cancellations in all limits.

$$
\begin{array}{ll}
\{p\}_{m+1} \xrightarrow{r}\{\tilde{p}\}_{m}: & \mathrm{d} \phi_{m+1}\left(\{p\}_{m+1} ; Q\right)=\mathrm{d} \phi_{m}\left(\{\tilde{p}\}_{m} ; Q\right)\left[\mathrm{d} p_{1, m}\right] \\
\{p\}_{m+2} \xrightarrow{r, s}\{\tilde{p}\}_{m}: & \mathrm{d} \phi_{m+2}\left(\{p\}_{m+2} ; Q\right)=\mathrm{d} \phi_{m}\left(\{\tilde{p}\}_{m} ; Q\right)\left[\mathrm{d} p_{2, m}\right]
\end{array}
$$

3. Integration of the counterterms over the phase space of the unresolved parton(s).

The need for extension

IR limit formulae are only well-defined in the strict limit. E.g.
num collinear: $\mathbf{C}_{i r}$ is a symbolic operator that takes the $p_{i} \| p_{r}$ limit

$$
\mathbf{C}_{i r}\left|\mathcal{M}_{m+2}^{(0)}\left(p_{i}, p_{r}, \ldots\right)\right|^{2}=8 \pi \alpha_{s} \mu^{2 \epsilon} \frac{1}{s_{i r}} \hat{P}_{f_{i} f_{r}}\left(z_{i}, z_{r}, k_{\perp} ; \epsilon\right) \otimes\left|\mathcal{M}_{m+1}^{(0)}\left(p_{i r}, \ldots\right)\right|^{2}
$$

noft: \mathbf{S}_{r} is a symbolic operator that takes the $p_{r} \rightarrow 0$ limit

$$
\mathbf{S}_{r}\left|\mathcal{M}_{m+2}^{(0)}\left(p_{r}, \ldots\right)\right|^{2}=-8 \pi \alpha_{\mathrm{s}} \mu^{2 \epsilon} \sum_{i, k} \frac{1}{2} \mathcal{S}_{i k}(r)\left|\mathcal{M}_{m+1,(i, k)}^{(0)}(\nless, \ldots)\right|^{2}
$$

NOTICE

null momenta in factorized ME's on the r.h.s. conserve momentum and/or mass shell conditions only in the strict limit
Nu* arguments of AP splitting functions, e.g. momentum fractions z_{i}, z_{r} and transverse momentum k_{\perp} are only defined in the strict limit

HENCE

In' must specify precisely momenta entering factorized ME's away from limit
In' must define z_{i}, z_{r} and k_{\perp} away from limit

Defining a subtraction scheme

Specific issues at NNLO

1. Matching is cumbersome if done in a brute force way. However, an efficient solution that works at any order in PT is known.
2. Extension is delicate. E.g. counterterms for singly-unresolved real emission (unintegrated and integrated) must have universal IR limits. This is not guaranteed by QCD factorization.
3. Choosing the counterterms such that integration is (relatively) straightforward generally conflicts with the delicate cancellation of IR singularities.

NNLO subtraction terms - an example

MESSAGE

nin Subtraction terms are defined completely explicitly for any number of jets.

NNLO subtraction terms - an example

Double collinear counterterm: among others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ we find

$$
\begin{aligned}
& \mathcal{C}_{i r ; j s}^{(0,0)}(\{p\})=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{2} \frac{1}{s_{i} s_{j s}}\left(1-\alpha_{i r}-\alpha_{j s}\right)^{-d(m ; \epsilon)} \Theta\left(\alpha_{0}-\alpha_{i r}-\alpha_{j s}\right) \\
& \quad \times\left\langle\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r, j s)}\right)\right| \hat{P}_{f_{i}, f_{r}}\left(z_{r, i}, z_{i, r}, k_{\perp, i, r ;} ; \epsilon \hat{P}_{f_{j} f_{s}}\left(z_{s, j}, z_{j, s}, k_{\perp, j, s ;} ;\right)\left|\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r ; j s)}\right)\right\rangle\right.
\end{aligned}
$$

NNLO subtraction terms - an example

Double collinear counterterm: among others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ we find

$$
\begin{aligned}
& \mathcal{C}_{i r ; j s}^{(0,0)}(\{p\})=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{2} \frac{1}{\frac{s}{i r} s_{j s s}}\left(1-\alpha_{i r}-\alpha_{j s}\right)^{-d(m ; \epsilon)} \Theta\left(\alpha_{0}-\alpha_{i r}-\alpha_{j s}\right) \\
& \quad \times\left\langle\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r, j s)}\right)\right| \hat{P}_{f_{i}, f_{r}}\left(z_{r, i}, z_{i, r}, k_{\perp, i, r ;} ; \epsilon \hat{P}_{f_{j} f_{s}}\left(z_{s, j}, z_{j, s}, k_{\perp, j, s ;} ;\right)\left|\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r \cdot j s)}\right)\right\rangle\right.
\end{aligned}
$$

${ }^{\text {l" }}$ " collinear poles: $\boldsymbol{S}_{\text {ir }} \boldsymbol{S}_{j s}$

$$
s_{k l}=2 p_{k} \cdot p_{l}, \quad k, l=i, r \quad \text { or } j, s
$$

NNLO subtraction terms - an example

Double collinear counterterm: among others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ we find

$$
\begin{aligned}
& \mathcal{C}_{i r ; j s}^{(0,0)}(\{p\})=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{2} \frac{1}{s_{i r} s_{j s}}\left(1-\alpha_{i r}-\alpha_{j s}\right)^{-d(m ; \epsilon)} \Theta\left(\alpha_{0}-\alpha_{i r}-\alpha_{j s}\right) \\
& \quad \times\left\langle\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r ; j s)}\right)\right| \hat{P}_{f_{i} f_{r}}\left(z_{r, i}, z_{i, r}, k_{\perp, i, r} ; \epsilon\right) \hat{P}_{f_{j} f_{s}}\left(z_{s, j}, z_{j, s}, k_{\perp, j, s} ; \epsilon\right)\left|\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r ; j s)}\right)\right\rangle
\end{aligned}
$$

|ultarelli-Parisi splitting functions: $\hat{P}_{f_{i} f_{r}} \hat{P}_{f_{j} f_{s}}$

$$
z_{k, l}=\frac{y_{k Q}}{y_{(k l) Q}}, \quad k_{\perp, k, l}^{\mu}=\zeta_{k, I} p_{l}^{\mu}-\zeta_{l, k} p_{k}^{\mu}+\zeta_{k l} \tilde{p}_{k l}^{\mu}, \quad k, I=i, r \quad \text { or } j, s
$$ with

$$
\zeta_{k, l}=z_{k, l}-\frac{y_{k l}}{\alpha_{k l} y_{(k l) Q}}, \quad \zeta_{k l}=\frac{y_{k l}}{\alpha_{k l} y_{\widetilde{k l} Q}}\left(z_{l, k}-z_{k, l}\right)
$$

NNLO subtraction terms - an example

Double collinear counterterm: among others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ we find

$$
\begin{aligned}
& \mathcal{C}_{i r ; j s}^{(0,0)}(\{p\})=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{2} \frac{1}{s_{i r} s_{j s}}\left(1-\alpha_{i r}-\alpha_{j s}\right)^{-d(m ; \epsilon)} \Theta\left(\alpha_{0}-\alpha_{i r}-\alpha_{j s}\right) \\
& \quad \times\left\langle\mathcal{M}_{m}^{(0)}\left(\underline{\left.\{\tilde{p}\}^{(i r, j s)}\right)}\left|\hat{P}_{f_{i} f_{r}}\left(z_{r, i}, z_{i, r}, k_{\perp, i, r} ; \epsilon\right) \hat{P}_{f_{j} f_{s}}\left(z_{s, j}, z_{j, s}, k_{\perp, j, s} ; \epsilon\right)\right| \mathcal{M}_{m}^{(0)}\left(\underline{\left.\{\tilde{p}\}^{(i r ; j s)}\right)}\right\rangle\right\rangle\right.
\end{aligned}
$$

|nut mapped momenta: $\{\tilde{p}\}^{(i r ; j s)}=\left\{\tilde{p}_{1}, \ldots, \tilde{p}_{i r}, \ldots, \tilde{p}_{j s}, \ldots, \tilde{p}_{m+2}\right\}_{m}$

$$
\begin{aligned}
& \tilde{p}_{k l}^{\mu}=\frac{1}{1-\alpha_{i r}-\alpha_{j s}}\left(p_{k}^{\mu}+p_{l}^{\mu}-\alpha_{k l} Q^{\mu}\right), \quad k, I=i, r \text { or } j, s \\
& \tilde{p}_{n}^{\mu}=\frac{1}{1-\alpha_{i r}-\alpha_{j s}} p_{n}^{\mu}, \quad n \neq i, r, j, s
\end{aligned}
$$

with

$$
\alpha_{k l}=\frac{1}{2}\left[y_{(k l) Q}-\sqrt{y_{(k l) Q}^{2}-4 y_{k l}}\right], \quad k, l=i, r \quad \text { or } j, s
$$

NNLO subtraction terms - an example

Double collinear counterterm: among others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ we find

$$
\begin{aligned}
& \mathcal{C}_{i r ; j s}^{(0,0)}(\{p\})=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{2} \frac{1}{s_{i r} s_{j s}}\left(1-\alpha_{i r}-\alpha_{j s}\right)^{-d(m ; \epsilon)} \Theta\left(\alpha_{0}-\alpha_{i r}-\alpha_{j s}\right) \\
& \quad \times\left\langle\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r, j s)}\right)\right| \hat{P}_{f_{i} f_{r}}\left(z_{r, i}, z_{i, r}, k_{\perp, i, r} ; \epsilon\right) \hat{P}_{f_{j} f_{s}}\left(z_{s, j}, z_{j, s}, k_{\perp, j, s} ; \epsilon\right)\left|\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r ; j s)}\right)\right\rangle
\end{aligned}
$$

IIIt constrain subtraction to near singular region: $\Theta\left(\alpha_{0}-\alpha_{i r}-\alpha_{j s}\right)$

$$
0<\alpha_{0} \leq 1, \quad \alpha_{0}=1: \text { subtract over full phase space }
$$

NNLO subtraction terms - an example

Double collinear counterterm: among others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ we find

$$
\begin{aligned}
& \mathcal{C}_{i r ; j s}^{(0,0)}(\{p\})=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{2} \frac{1}{s_{i r} s_{j s}}\left(1-\alpha_{i r}-\alpha_{j s}\right)^{-d(m ; \epsilon)} \Theta\left(\alpha_{0}-\alpha_{i r}-\alpha_{j s}\right) \\
& \quad \times\left\langle\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r ; j s)}\right)\right| \hat{P}_{f_{i} f_{r}}\left(z_{r, i}, z_{i, r}, k_{\perp, i, r} ; \epsilon\right) \hat{P}_{f_{j} f_{s}}\left(z_{s, j}, z_{j, s}, k_{\perp, j, s} ; \epsilon\right)\left|\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r ; j s)}\right)\right\rangle
\end{aligned}
$$

|n| make integrated counterterm m-independent: $\left(\underline{\left.1-\alpha_{i r}-\alpha_{j s}\right)^{-d(m ; \epsilon)}}\right.$

$$
d(m ; \epsilon)=2 m(1-\epsilon)-2 d_{0}, \quad d_{0}=D_{0}+d_{1} \epsilon, \quad D_{0} \geq 2
$$

NNLO subtraction terms - an example

Double collinear counterterm: among others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ we find

$$
\begin{aligned}
& \mathcal{C}_{i r ; j s}^{(0,0)}(\{p\})=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{2} \frac{1}{s_{i r} s_{j s}}\left(1-\alpha_{i r}-\alpha_{j s}\right)^{-d(m ; \epsilon)} \Theta\left(\alpha_{0}-\alpha_{i r}-\alpha_{j s}\right) \\
& \quad \times\left\langle\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r ; j s)}\right)\right| \hat{P}_{f_{i} f_{r}}\left(z_{r, i}, z_{i, r}, k_{\perp, i, r} ; \epsilon\right) \hat{P}_{f_{j} f_{s}}\left(z_{s, j}, z_{j, s}, k_{\perp, j, s} ; \epsilon\right)\left|\mathcal{M}_{m}^{(0)}\left(\{\tilde{p}\}^{(i r ; j s)}\right)\right\rangle
\end{aligned}
$$

The complete approximate cross section is a sum of such terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}=\mathrm{d} \phi_{m}\left[\mathrm{~d} p_{2}\right] \mathcal{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
$$

where

$$
\begin{aligned}
\mathcal{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} & =\sum_{r} \sum_{s \neq r}\left\{\sum_{i \neq r, s}\left[\frac{1}{6} \mathcal{C}_{i r s}^{(0,0)}+\sum_{j \neq i, r, s} \frac{1}{8} \mathcal{C}_{i r ; j s}^{(0,0)}+\frac{1}{2} \mathcal{C}_{i r ; s}^{(0,0)}\right]+\frac{1}{2} \mathcal{S}_{r s}^{(0,0)}\right. \\
& -\sum_{i \neq r, s}\left[\frac{1}{2} \mathcal{C}_{i r s} \mathcal{S}_{i r ; s}^{(0,0)}+\sum_{j \neq i, r, s} \frac{1}{2} \mathcal{C}_{i r ; j s} \mathcal{S}_{i r ; s}^{(0,0)}+\frac{1}{2} \mathcal{C}_{i r s} \mathcal{S}_{r s}^{(0,0)}+\mathcal{C} \mathcal{S}_{i r ; s} \mathcal{S}_{r s}^{(0,0)}\right. \\
& \left.\left.-\sum_{j \neq i, r, s} \frac{1}{2} \mathcal{C}_{i r ; j s} \mathcal{S}_{r s}^{(0,0)}-\mathcal{C}_{i r s} \mathcal{S}_{i r ; s} \mathcal{S}_{r s}^{(0,0)}\right]\right\}
\end{aligned}
$$

NNLO subtraction terms - general features

Based on universal IR limit formulae
Int Altarelli-Parisi splitting functions, soft currents (tree and one-loop, triple AP functions)
n|w simple and general procedure for matching of limits using physical gauge
num extension based on momentum mappings that can be generalized to any number of unresolved partons

Fully local in color \otimes spin space
|n| no need to consider the color decomposition of real emission ME's
InI
n|w can check explicitly that the ratio of the sum of counterterms to the real emission cross section tends to unity in any IR limit

Straightforward to constrain subtractions to near singular regions
Int gain in efficiency
NIU independence of physical results on phase space cut is strong check
Given completely explicitly for any process with non colored initial state

The tedious part: integrating the counterterms

Basic setup

Momentum mappings used to define the counterterms

$$
\{p\}_{n+p} \xrightarrow{R}\{\tilde{p}\}_{n}
$$

num implement exact momentum conservation
recoil distributed democratically (can be generalized to any p)
Nim different collinear and soft mappings (R labels precise limit)
NIIN exact factorization of phase space

$$
\mathrm{d} \phi_{n+p}(\{p\} ; Q)=\mathrm{d} \phi_{n}\left(\{\tilde{p}\}_{n}^{(R)} ; Q\right)\left[\mathrm{d} p_{p, n}^{(R)}\right]
$$

Counterterms are products (in color and spin space) of
${ }^{\text {InIIt }}$ factorized ME's independent of variables in $\left[\mathrm{d} p_{p, n}^{(R)}\right]$
|"IIt singular factors (AP functions, soft currents), to be integrated over [$\left.\mathrm{d} p_{p, n}^{(R)}\right]$
Strategy for computing the integrals
NIL explicit parametrization of factorized phase space leads to parametric integral representations
n 1 In evaluate the parametric integrals

Types of integrated counterterms

NNLO correction is the sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

Types of integrated counterterms

NNLO correction is the sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \frac{\left.\left.\left.\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} .{ }^{\mathrm{R}}\right\}}{}\right.\right. \\
& \left.\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}\right]+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

|nit tree-level and one-loop singly-unresolved integrals

Types of integrated counterterms

NNLO correction is the sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
\sigma_{m+2}^{\mathrm{NNLO}} & =\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}} & =\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}} & =\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

|net tree-level and one-loop singly-unresolved integrals
InIm tree-level iterated singly-unresolved integrals

Types of integrated counterterms

NNLO correction is the sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\frac{\left.\left.\left.\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}\right]-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}}{}\right.\right.
\end{aligned}
$$

| 1 IN tree-level and one-loop singly-unresolved integrals
num tree-level iterated singly-unresolved integrals
n 1 In tree-level doubly-unresolved integrals

Types of integrated counterterms

NNLO correction is the sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

each integrable in four dimensions

$$
\begin{aligned}
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

|"IIt tree-level and one-loop singly-unresolved integrals
nInt tree-level iterated singly-unresolved integrals
num tree-level doubly-unresolved integrals

Phase space integrals - an example

MESSAGE

N" The integral is (very) difficult, but the result is numerically (very) simple.

Phase space integrals - an example

Abelian soft-double soft counterterm: among many others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}$ we find

$$
\begin{aligned}
\left(\mathcal{S}_{t} \mathcal{S}_{r t}^{(0)}\right)^{\mathrm{ab}} & =\left(8 \pi \alpha_{\mathrm{s}} \mu^{2 \epsilon}\right)^{2} \sum_{i, j, k, l} \frac{1}{8} \mathcal{S}_{\hat{i} \hat{k}}(\hat{r}) \mathcal{S}_{j l}(t)\left|\mathcal{M}_{m,(i, k)(j, l)}^{(0)}(\{\tilde{p}\})\right|^{2} \\
& \times\left(1-y_{t Q}\right)^{d_{0}^{\prime}-m(1-\epsilon)}\left(1-y_{\hat{r} Q}\right)^{d_{0}^{\prime}-m(1-\epsilon)} \Theta\left(y_{0}-y_{t Q}\right) \Theta\left(y_{0}-y_{\hat{r} Q}\right)
\end{aligned}
$$

The set of m momenta, $\{\tilde{p}\}$, is obtained by an iterated mapping which leads to an exact factorization of phase space

$$
\{p\}_{m+2} \xrightarrow{S_{t}}\{\hat{p}\}_{m+1} \xrightarrow{S_{p}}\{\tilde{p}\}: \mathrm{d} \phi_{m+2}(\{p\} ; Q)=\mathrm{d} \phi_{m}(\{\tilde{p}\} ; Q)\left[\mathrm{d} \hat{p}_{1, m}\right]\left[\mathrm{d} p_{1, m+1}\right]
$$

Phase space integrals - an example

Abelian soft-double soft counterterm: among many others, in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}$ we find

$$
\begin{aligned}
\left(\mathcal{S}_{t} \mathcal{S}_{r t}^{(0)}\right)^{\mathrm{ab}} & =\left(8 \pi \alpha_{\mathrm{S}} \mu^{2 \epsilon}\right)^{2} \sum_{i, j, k, l} \frac{1}{8} \mathcal{S}_{\hat{i} \hat{k}}(\hat{r}) \mathcal{S}_{j l}(t)\left|\mathcal{M}_{m,(i, k)(j, l)}^{(0)}(\{\tilde{p}\})\right|^{2} \\
& \times\left(1-y_{t Q}\right)^{d_{0}^{\prime}-m(1-\epsilon)}\left(1-y_{\hat{r} Q}\right)^{d_{0}^{\prime}-m(1-\epsilon)} \Theta\left(y_{0}-y_{t Q}\right) \Theta\left(y_{0}-y_{\hat{r} Q}\right)
\end{aligned}
$$

The set of m momenta, $\{\tilde{p}\}$, is obtained by an iterated mapping which leads to an exact factorization of phase space

$$
\{p\}_{m+2} \xrightarrow{S_{t}}\{\hat{p}\}_{m+1} \xrightarrow{S_{p}}\{\tilde{p}\}: \mathrm{d} \phi_{m+2}(\{p\} ; Q)=\mathrm{d} \phi_{m}(\{\tilde{p}\} ; Q)\left[\mathrm{d} \widehat{p}_{1, m}\right]\left[\mathrm{d} p_{1, m+1}\right]
$$

Then we must compute

$$
\int\left[\mathrm{d} \widehat{p}_{1, m}\right]\left[\mathrm{d} p_{1, m+1}\right] \mathcal{S}_{t} \mathcal{S}_{r t}^{(0)} \equiv\left[\frac{\alpha_{s}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \sum_{i, k, j, l}\left[S_{t} S_{r t}^{(0)}\right]_{i k j}\left|\mathcal{M}_{m,(i, k)(j, l)}^{(0)}(\{\tilde{p}\})\right|^{2}
$$

where $\left[\mathrm{S}_{t} \mathrm{~S}_{r t}^{(0)}\right]_{i k j} \equiv\left[\mathrm{~S}_{t} \mathrm{~S}_{r t}^{(0)}\right]_{i k j l}\left(p_{i}, p_{k}, p_{j}, p_{l}, \epsilon, y_{0}, d_{0}^{\prime}\right)$ is a kinematics dependent function.

Abelian soft-double soft integral

For simplicity, consider the terms in the sum where $j=i$ and $I=k:\left[\mathrm{S}_{t} \mathrm{~S}_{r t}^{(0)}\right]_{i k i k}$. Kinematical dependence is through $\cos \chi_{i k}=\measuredangle\left(p_{i}, p_{k}\right)$, we set $\cos \chi_{i k}=1-2 Y_{i k, Q}$.

Using angles and energies in some specific Lorentz frame to parametrize the factorized phase space measures, $\left[\mathrm{d} \widehat{p}_{1, m}\right]$ and $\left[\mathrm{d} p_{1, m+1}\right]$, we find that $\left[\mathrm{S}_{t} \mathrm{~S}_{r t}^{(0)}\right]_{i k i k}$ is proportional to

$$
\begin{aligned}
& \mathcal{I}_{\mathcal{S}}^{(11)}\left(Y_{i k, Q} ; \epsilon, y_{0}, d_{0}^{\prime}\right)=-\frac{4 \Gamma^{4}(1-\epsilon)}{\pi \Gamma^{2}(1-\epsilon)} \frac{B_{y_{0}}\left(-2 \epsilon, d_{0}^{\prime}+1\right)}{\epsilon} Y_{i k, Q} \int_{0}^{y_{0}} \mathrm{~d} y y^{-1-2 \epsilon}(1-y)^{d_{0}^{\prime}-1+\epsilon} \\
& \quad \times \int_{-1}^{1} \mathrm{~d}(\cos \vartheta)(\sin \vartheta)^{-2 \epsilon} \int_{-1}^{1} \mathrm{~d}(\cos \varphi)(\sin \varphi)^{-1-2 \epsilon}[f(\vartheta, \varphi ; 0)]^{-1}\left[f\left(\vartheta, \varphi ; Y_{i k, Q}\right)\right]^{-1} \\
& \quad \times\left[Y\left(y, \vartheta, \varphi ; Y_{i k, Q)}\right]^{-\epsilon}{ }_{2} F_{1}\left(-\epsilon,-\epsilon, 1-\epsilon, 1-Y\left(y, \vartheta, \varphi ; Y_{i k, Q}\right)\right)\right.
\end{aligned}
$$

where

$$
\begin{aligned}
f\left(\vartheta, \varphi ; Y_{i k, Q}\right) & =1-2 \sqrt{Y_{i k, Q}\left(1-Y_{i k, Q}\right)} \sin \vartheta \cos \varphi-\left(1-2 Y_{i k, Q}\right) \chi \cos \vartheta \\
Y(y, \vartheta, \varphi ; \chi) & =\frac{4(1-y) Y_{i k, Q}}{[2(1-y)+y f(\vartheta, \varphi ; 0)]\left[2(1-y)+y f\left(\vartheta, \varphi ; Y_{i k, Q}\right)\right]}
\end{aligned}
$$

Abelian soft-double soft integral

This integral is equal to
$\mathcal{I}_{\mathcal{S}}^{(11)}\left(Y_{i k, Q} ; \epsilon, y_{0}, d_{0}^{\prime}\right)=\frac{1}{\epsilon^{4}}-2\left[\ln \left(Y_{i k, Q}\right)+\Sigma\left(y_{0}, D_{0}^{\prime}\right)+\Sigma\left(y_{0}, D_{0}^{\prime}-1\right)\right] \frac{1}{\epsilon^{3}}+\mathrm{O}\left(\epsilon^{-2}\right)$
where $D_{0}^{\prime}=\left.d_{0}^{\prime}\right|_{\epsilon=0}$ and the dependence on the PS cut parameter, y_{0}, enters in

$$
\Sigma(z, N)=\ln z-\sum_{k=1}^{N} \frac{1-(1-z)^{k}}{k}
$$

Higher order expansion coefficients computed numerically ($y_{0}=1, D_{0}^{\prime}=3$)

Analytical vs. numerical

As a matter of principle

Nut Rigorous proof of cancellation of IR poles requires poles of integrated counterterms in analytical form.
Nu| Analytical forms are fast and accurate compared to numerical ones.

However

num Analytical results show (in all cases where they are available) that integrated counterterms are smooth functions of kinematic variables.

Hence

|n| Numerical forms of integrated counterterms are sufficient for practical purposes. Final results can be conveniently given by interpolating tables or approximating functions computed once and for all. Thus, efficient implementation is possible even if the full analytical calculation is not feasible or practical (e.g. finite parts of integrated counterterms).
Int In particular, suitable approximating functions may be obtained by fitting.

Example of approximation by fitting
Doubly-unresolved double-collinear master integral $\mathcal{I}_{2 C}\left(x_{\widetilde{i r}}, x_{\widetilde{j s}} ; \epsilon, 3-3 \epsilon, k, I\right)$

$$
\begin{aligned}
& \mathcal{I}_{2 C}\left(x_{\widetilde{i r}}, x_{\widetilde{j s}} ; \epsilon, \alpha_{0}, d_{0} ; k, l\right)=x_{\widetilde{i r}} x_{\widetilde{j s}} \int_{0}^{1} \mathrm{~d} \alpha \mathrm{~d} \beta \int_{0}^{1} \mathrm{~d} v \mathrm{~d} u \alpha^{-1-\epsilon} \beta^{-1-\epsilon}(1-\alpha-\beta)^{2 d_{0}-2(1-\epsilon)} \\
& \quad \times\left[\alpha+(1-\alpha-\beta) x_{\widetilde{i r}}\right]^{-1-\epsilon}\left[\beta+(1-\alpha-\beta) x_{\widetilde{j s}}\right]^{-1-\epsilon} v^{-\epsilon}(1-v)^{-\epsilon} u^{-\epsilon}(1-u)^{-\epsilon} \\
& \quad \times\left(\frac{\alpha+(1-\alpha-\beta) x_{\widetilde{i r}} v}{2 \alpha+(1-\alpha-\beta) x_{\widetilde{i r}}}\right)^{k}\left(\frac{\beta+(1-\alpha-\beta) x_{\widetilde{j s}} u}{2 \beta+(1-\alpha-\beta) x_{\widetilde{j s}}}\right)^{\prime} \Theta\left(\alpha_{0}-\alpha-\beta\right)
\end{aligned}
$$

Example of approximation by fitting

Doubly-unresolved double-collinear master integral $\mathcal{I}_{2 C}\left(x_{\overparen{i r}}, x_{\overparen{j s}} ; \epsilon, 3-3 \epsilon, k, I\right)$
l"4 poles (up to $\mathrm{O}\left(\epsilon^{-4}\right)$) extracted via sector decomposition
me* numerical values of pole coefficients computed for a 17×17 grid with precision of $\sim 10^{-7}$
N" define three regions (note: result is symmetric in $x_{\overparen{i r}}, x_{\overparen{j s}}$)

- asymptotic: $x_{\overparen{i r}}, x_{\widetilde{j s}}<10^{-4}$
- non-asymptotic: $x_{\widetilde{i r}}, x_{\widetilde{j s}}>10^{-2}$
border: $x_{\overparen{i r}}<10^{-2}$ or $x_{\overparen{j s}}<10^{-2}$
Int in each region, fit with ansatz

$$
\mathcal{F}\left(x_{1}, x_{2}\right)=\sum_{p_{i}, l_{i}} C_{m ; p_{1}, p_{2} ; l_{1}, l_{2}}\left(x_{1}^{p_{1}} x_{2}^{p_{2}}\right)\left(\log ^{l_{1}}\left(x_{1}\right) \log ^{l_{2}}\left(x_{2}\right)\right)
$$

where $p_{1}+p_{2} \leq m$ with m a free parameter, while $I_{1}+l_{2} \leq n$ and n is predicted

Example of approximation by fitting

Doubly-unresolved double-collinear master integral $\mathcal{I}_{2 C}\left(x_{\overparen{i r}}, x_{\overparen{j s}} ; \epsilon, 3-3 \epsilon, k, I\right)$

Phase space integrals - methods

Several different methods to compute the integrals have been explored
m" use of IBPs to reduce to master integrals + solution of MIs by differential equations
n" + use of MB representations to extract pole structure + summation of nested series
"

Phase space integrals - methods

Method	Analytical	Numerical
IBP	singly-unresolved integrals x bottleneck is the proliferation of denominators	by evaluating the analytic expressions x no numbers without full analytical results
MB	iterated singlyunresolved integrals x bottleneck is the evaluation of sums	direct numerical evaluation of MB integrals possible fast and accurate
SD	\checkmark easy to automate x only in principle, except for lowest order poles	x numerical behavior is generally worse than MB method (speed, accuracy)

Spinoff - angular integrals in d dimensions
Consider the d dimensional angular integral with n denominators (GS, J. Math. Phys. 52 (2011) 083501.)

$$
\Omega_{j_{1}, \ldots, j_{n}}=\int \mathrm{d} \Omega_{d-1}(q) \frac{1}{\left(p_{1} \cdot q\right)^{j_{1} \cdots\left(p_{n} \cdot q\right)^{j_{n}}}}
$$

We find (with $j=j_{1}+\ldots+j_{n}$)

$$
\Omega_{j_{1}, \ldots, j_{n}}=2^{2-j-2 \epsilon} \pi^{1-\epsilon} H\left[\mathbf{v} ;(\boldsymbol{\alpha}, \mathbf{A}) ;(\boldsymbol{\beta}, \mathbf{B}) ; \mathbf{L}_{\mathbf{s}}\right]
$$

where H is the so-called H-function of $N=\frac{n(n+1)}{2}$ variables.

Spinoff - angular integrals in d dimensions

Consider the d dimensional angular integral with n denominators (GS, J. Math. Phys. 52 (2011) 083501.)

$$
\Omega_{j_{1}, \ldots, j_{n}}=\int \mathrm{d} \Omega_{d-1}(q) \frac{1}{\left(p_{1} \cdot q\right)^{j_{1} \cdots\left(p_{n} \cdot q\right)^{j_{n}}}}
$$

We find (with $j=j_{1}+\ldots+j_{n}$)

$$
\Omega_{j_{1}, \ldots, j_{n}}=2^{2-j-2 \epsilon} \pi^{1-\epsilon} H[\mathbf{v} ;(\boldsymbol{\alpha}, \mathbf{A}) ;(\boldsymbol{\beta}, \mathbf{B}) ; \mathbf{L} \mathbf{s}]
$$

where H is the so-called H-function of $N=\frac{n(n+1)}{2}$ variables. We have

$$
\begin{gathered}
\mathbf{v}=\left(v_{11}, v_{12}, \ldots, v_{1 n}, v_{22}, v_{23}, \ldots, v_{n-1 n}, v_{n n}\right), \quad v_{k l} \equiv \begin{cases}\frac{p_{k} \cdot p_{l}}{2} ; & k \neq l \\
\frac{p_{k}^{2}}{4} ; & k=l\end{cases} \\
\boldsymbol{\alpha}=\left(0_{N}, j_{1}, \ldots, j_{n}, 1-j-\epsilon\right), \quad \boldsymbol{\beta}=\left(j_{1}, \ldots, j_{n}, 2-j-2 \epsilon\right)
\end{gathered}
$$

and $L_{s}=L_{s_{1}} \times \ldots L_{s_{N}}$, where $L_{s_{k}}$ is an infinite contour in the complex s_{k}-plane running from $-\mathrm{i} \infty$ to $+\mathrm{i} \infty$.

Spinoff - angular integrals in d dimensions

Consider the d dimensional angular integral with n denominators

$$
\Omega_{j_{1}, \ldots, j_{n}}=\int \mathrm{d} \Omega_{d-1}(q) \frac{1}{\left(p_{1} \cdot q\right)^{j_{1}} \cdots\left(p_{n} \cdot q\right)^{j_{n}}}
$$

We find (with $j=j_{1}+\ldots+j_{n}$)

$$
\Omega_{j_{1}, \ldots, j_{n}}=2^{2-j-2 \epsilon} \pi^{1-\epsilon} H[\mathbf{v} ;(\boldsymbol{\alpha}, \mathbf{A}) ;(\boldsymbol{\beta}, \mathbf{B}) ; \mathbf{L} \mathbf{s}]
$$

where H is the so-called H-function of $N=\frac{n(n+1)}{2}$ variables. We have

$$
\mathbf{A}=\left[\frac{-\mathbf{1}_{N \times N}}{\frac{\mathbf{M}_{n \times N}}{-1 \cdots-1}}\right], \quad \mathbf{B}=\left[(0)_{(n+1) \times N}\right]
$$

i.e. B is zero, while the $n \times N$ dimensional matrix M has the block form:
$\mathbf{M}_{n \times N}=\left[\mathbf{m}_{n \times n}\left|\mathbf{m}_{n \times(n-1)}\right| \cdots \mid \mathbf{m}_{n \times 1}\right] \quad$ with $\quad \mathbf{m}_{n \times p}=\left[\begin{array}{c|c}0 & (0)_{(n-p) \times(p-1)} \\ \hline 2 & 1 \cdots 1 \\ \hline 0 & \\ \vdots & \mathbf{1}_{(p-1) \times(p-1)} \\ 0 & \end{array}\right]$

Spinoff - angular integrals in d dimensions

Consider the d dimensional angular integral with n denominators

$$
\Omega_{j_{1}, \ldots, j_{n}}=\int \mathrm{d} \Omega_{d-1}(q) \frac{1}{\left(p_{1} \cdot q\right)^{j_{1} \cdots\left(p_{n} \cdot q\right)^{j_{n}}}}
$$

We find (with $j=j_{1}+\ldots+j_{n}$)

$$
\Omega_{j_{1}, \ldots, j_{n}}=2^{2-j-2 \epsilon} \pi^{1-\epsilon} H[\mathbf{v} ;(\boldsymbol{\alpha}, \mathbf{A}) ;(\boldsymbol{\beta}, \mathbf{B}) ; \mathbf{L} \mathbf{s}]
$$

where H is the so-called H-function of $N=\frac{n(n+1)}{2}$ variables. We have

$$
\begin{aligned}
& \Omega_{j_{1}, \ldots, j_{n}}\left(\left\{v_{k l}\right\} ; \epsilon\right)=2^{2-j-2 \epsilon} \pi^{1-\epsilon} \frac{1}{\prod_{k=1}^{n} \Gamma\left(j_{k}\right) \Gamma(2-j-2 \epsilon)} \\
& \quad \times \int_{-\mathrm{i} \infty}^{+\mathrm{i} \infty}\left[\prod_{k=1}^{n} \prod_{l=k}^{n} \frac{\mathrm{~d} z_{k l}}{2 \pi \mathrm{i}} \Gamma\left(-z_{k l}\right)\left(v_{k l}\right)^{z_{k l}}\right]\left[\prod_{k=1}^{n} \Gamma\left(j_{k}+z_{k}\right)\right] \Gamma(1-j-\epsilon-z) .
\end{aligned}
$$

where

$$
z=\sum_{k=1}^{n} \sum_{l=k}^{n} z_{k l}, \quad \text { and } \quad z_{k}=\sum_{l=1}^{k} z_{l k}+\sum_{l=k}^{n} z_{k l}
$$

Integrated approximate cross sections

Structure of the results

Integrated approximate cross sections
(nlt After summing over unobserved flavors, all integrated approximate cross sections can be written as products (in color space) of various insertion operators with lower point cross sections.

Insertion operators
(1n+ color and flavor structure of all insertion operators known
INI first two leading poles of kinematical functions entering insertion operators known analytically in all cases (except $\mathbf{I}_{2}^{(0)}$)
|"IW higher order expansion coefficients computed numerically

Integrated approximate cross sections - an example

MESSAGE

mel Done once and for all (though admittedly lots of tedious work).

Integrated approximate cross sections - an example

NNLO correction is the sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

Each integrable in four dimensions

$$
\begin{aligned}
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

| 1 IN tree-level and one-loop singly-unresolved integrals
"net tree-level iterated singly-unresolved integrals
num tree-level doubly-unresolved integrals

Integrated approximate cross sections - an example

Iterated singly-unresolved

$$
\int_{2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}=\mathrm{d} \sigma_{m}^{\mathrm{B}} \otimes \mathrm{I}_{12}^{(0)}\left(\{p\}_{m} ; \epsilon\right)
$$

INI structure of insertion operator in color \otimes flavor space

$$
\begin{aligned}
\mathbf{I}_{12}^{(0)}\left(\{p\}_{m} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} & \left\{\sum_{i}\left[\mathrm{C}_{12, f_{i}}^{(0)} \mathbf{T}_{i}^{2}+\sum_{k} \mathrm{C}_{12, f_{i} f_{k}}^{(0)} \mathbf{T}_{k}^{2}\right] \mathbf{T}_{i}^{2}\right. \\
& +\sum_{j, l}\left[\mathrm{~S}_{12}^{(0),(j, l)} \mathrm{C}_{\mathrm{A}}+\sum_{i} \mathrm{CS}_{12, f_{i}}^{(0),(j, l)} \mathbf{T}_{i}^{2}\right] \mathbf{T}_{j} \mathbf{T}_{l} \\
& \left.+\sum_{i, k, j, l} \mathrm{~S}_{12}^{(0),(i, k)(j, l)}\left\{\mathbf{T}_{i} \mathbf{T}_{k}, \mathbf{T}_{j} \mathbf{T}_{l}\right\}\right\}
\end{aligned}
$$

In't $\mathrm{C}_{12, f_{i}}^{(0)}, \mathrm{C}_{12, f_{i} f_{k}}^{(0)}, \mathrm{S}_{12}^{(0),(j, l)}, \mathrm{CS}_{12, f_{i}}^{(0),(j, l)}$ and $\mathrm{S}_{12}^{(0),(i, k)(j, l)}$ are kinematical functions with poles up to $\mathrm{O}\left(\epsilon^{-4}\right)$ (also depend on PS cut parameters)
n

$$
x_{i}=y_{i Q} \equiv \frac{2 p_{i} \cdot Q}{Q^{2}} \quad \text { and } \quad Y_{i k, Q}=\frac{y_{i k}}{y_{i Q} y_{k Q}}
$$

Integrated approximate cross sections - an example

Iterated singly-unresolved
(1ut example: $e^{+} e^{-} \rightarrow 3$ jets (momentum assignment is $1_{q}, 2_{\bar{q}}, 3_{g}$)

$$
\begin{aligned}
& \mathbf{I}_{12}^{(0)}\left(p_{1}, p_{2}, p_{3} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2}\left\{\frac{6 C_{\mathrm{F}}^{2}+2 C_{\mathrm{A}} C_{\mathrm{F}}+C_{\mathrm{A}}^{2}}{\epsilon^{4}}+\left[12 C_{\mathrm{F}}^{2}+\frac{101 C_{\mathrm{A}} C_{\mathrm{F}}}{6}\right.\right. \\
& \quad+\frac{67 C_{\mathrm{A}}^{2}}{12}-\frac{13 C_{\mathrm{F}} T_{\mathrm{R}} n_{\mathrm{f}}}{3}-\frac{3 C_{\mathrm{A}} T_{\mathrm{R}} n_{\mathrm{f}}}{2}-\left(8 C_{\mathrm{F}}^{2}+C_{\mathrm{A}} C_{\mathrm{F}}-\frac{5 C_{\mathrm{A}}^{2}}{2}\right) \ln y_{12} \\
& \quad-\left(4 C_{\mathrm{A}} C_{\mathrm{F}}+\frac{5 C_{\mathrm{A}}^{2}}{2}\right)\left(\ln y_{13}+\ln y_{23}\right)-\left(4 C_{\mathrm{F}}^{2}-6 C_{\mathrm{A}} C_{\mathrm{F}}-C_{\mathrm{A}}^{2}\right) \Sigma\left(y_{0}, D_{0}^{\prime}\right) \\
& \left.\left.\quad-\left(4 C_{\mathrm{F}}^{2}-4 C_{\mathrm{A}} C_{\mathrm{F}}\right) \Sigma\left(y_{0}, D_{0}^{\prime}-1\right)\right] \frac{1}{\epsilon^{3}}+\mathrm{O}\left(\epsilon^{-2}\right)\right\}
\end{aligned}
$$

notice x and Y dependence combine to produce just $y_{i k}$ dependence, as expected
|"w dependence on PS cut parameters through

$$
\Sigma(z, N)=\ln z-\sum_{k=1}^{N} \frac{1-(1-z)^{k}}{k}
$$

should vanish once all integrated approximate cross sections are combined

Integrated approximate cross sections - an example

Iterated singly-unresolved
(1ut example: $e^{+} e^{-} \rightarrow 3$ jets (momentum assignment is $1_{q}, 2_{\bar{q}}, 3_{g}$)

$$
\begin{aligned}
& \mathbf{I}_{12}^{(0)}\left(p_{1}, p_{2}, p_{3} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2}\left\{\frac{6 C_{\mathrm{F}}^{2}+2 C_{\mathrm{A}} C_{\mathrm{F}}+C_{\mathrm{A}}^{2}}{\epsilon^{4}}+\left[12 C_{\mathrm{F}}^{2}+\frac{101 C_{\mathrm{A}} C_{\mathrm{F}}}{6}\right.\right. \\
& \quad+\frac{67 C_{\mathrm{A}}^{2}}{12}-\frac{13 C_{\mathrm{F}} T_{\mathrm{R}} n_{\mathrm{f}}}{3}-\frac{3 C_{\mathrm{A}} T_{\mathrm{R}} n_{\mathrm{f}}}{2}-\left(8 C_{\mathrm{F}}^{2}+C_{\mathrm{A}} C_{\mathrm{F}}-\frac{5 C_{\mathrm{A}}^{2}}{2}\right) \ln y_{12} \\
& \quad-\left(4 C_{\mathrm{A}} C_{\mathrm{F}}+\frac{5 C_{\mathrm{A}}^{2}}{2}\right)\left(\underline{\ln y_{13}}+\underline{\ln y_{23}}\right)-\left(4 C_{\mathrm{F}}^{2}-6 C_{\mathrm{A}} C_{\mathrm{F}}-C_{\mathrm{A}}^{2}\right) \Sigma\left(y_{0}, D_{0}^{\prime}\right) \\
& \left.\left.\quad-\left(4 C_{\mathrm{F}}^{2}-4 C_{\mathrm{A}} C_{\mathrm{F}}\right) \Sigma\left(y_{0}, D_{0}^{\prime}-1\right)\right] \frac{1}{\epsilon^{3}}+\mathrm{O}\left(\epsilon^{-2}\right)\right\}
\end{aligned}
$$

notice x and Y dependence combine to produce just $y_{i k}$ dependence, as expected
|"w dependence on PS cut parameters through

$$
\Sigma(z, N)=\ln z-\sum_{k=1}^{N} \frac{1-(1-z)^{k}}{k}
$$

should vanish once all integrated approximate cross sections are combined

Integrated approximate cross sections - an example

Iterated singly-unresolved
|unt example: $e^{+} e^{-} \rightarrow 3$ jets (momentum assignment is $1_{q}, 2_{\bar{q}}, 3_{g}$)
num higher order expansion coefficients can be computed numerically

$$
\mathbf{I}_{12}^{(0)}\left(p_{1}, p_{2}, p_{3} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \sum_{i=-4}^{0} \sum_{\text {color }} \frac{\mathrm{Col}}{\epsilon^{i}} \mathcal{I}_{12,3 j}^{(\mathrm{Col}, i)}\left(p_{1}, p_{2}, p_{3}\right)+\mathrm{O}\left(\epsilon^{1}\right)
$$

InIt kinematical point parametrized by $y_{i j}$

$$
y_{12}=0.333333, \quad y_{13}=0.333333, \quad y_{23}=0.333333
$$

Col	$\mathrm{O}\left(\epsilon^{-4}\right)$	$\mathrm{O}\left(\epsilon^{-3}\right)$	$\mathrm{O}\left(\epsilon^{-2}\right)$	$\mathrm{O}\left(\epsilon^{-1}\right)$	$\mathrm{O}\left(\epsilon^{0}\right)$
C_{F}^{2}	6	34.12	82.98	34.59	-543.8
$C_{\mathrm{A}} C_{\mathrm{F}}$	2	9.721	1.209	-142.2	-696.6
C_{A}^{2}	1	6.497	12.80	15.87	-47.92
$C_{\mathrm{F}} T_{\mathrm{R}} n_{\mathrm{f}}$	0	$-\frac{13}{3}$	-32.40	-127.9	-355.2
$C_{\mathrm{A}} T_{\mathrm{R}} n_{\mathrm{f}}$	0	$-\frac{3}{2}$	-12.01	-46.90	-104.1

Integrated approximate cross sections - an example

Iterated singly-unresolved
(unt example: $e^{+} e^{-} \rightarrow 3$ jets (momentum assignment is $1_{q}, 2_{\bar{q}}, 3_{g}$)
nw higher order expansion coefficients can be computed numerically

$$
\mathbf{I}_{12}^{(0)}\left(p_{1}, p_{2}, p_{3} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \sum_{i=-4}^{0} \sum_{\text {color }} \frac{\mathrm{Col}}{\epsilon^{i}} \mathcal{I}_{12,3 j}^{(\mathrm{Col}, i)}\left(p_{1}, p_{2}, p_{3}\right)+\mathrm{O}\left(\epsilon^{1}\right)
$$

n|l| kinematical point parametrized by $y_{i j}$

$y_{12}=0.238667$	$y_{13}=0.758153$		$y_{23}=0.003180$		
Col	$\mathrm{O}\left(\epsilon^{-4}\right)$	$\mathrm{O}\left(\epsilon^{-3}\right)$	$\mathrm{O}\left(\epsilon^{-2}\right)$	$\mathrm{O}\left(\epsilon^{-1}\right)$	$\mathrm{O}\left(\epsilon^{0}\right)$
C_{F}^{2}	6	36.79	106.0	120.6	-431.0
$C_{\mathrm{A}} C_{\mathrm{F}}$	2	25.38	143.6	537.3	1505
C_{A}^{2}	1	15.24	119.5	660.5	2902
$C_{\mathrm{F}} T_{\mathrm{R}} n_{\mathrm{f}}$	0	$-\frac{13}{3}$	-31.30	-121.7	-346.0
$C_{\mathrm{A}} T_{\mathrm{R}} n_{\mathrm{f}}$	0	$-\frac{3}{2}$	-17.72	-109.1	-470.9

Integrated approximate cross sections - an example

Iterated singly-unresolved
(unt example: $e^{+} e^{-} \rightarrow 3$ jets (momentum assignment is $1_{q}, 2_{\bar{q}}, 3_{g}$)
num higher order expansion coefficients can be computed numerically

$$
\mathbf{I}_{12}^{(0)}\left(p_{1}, p_{2}, p_{3} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \sum_{i=-4}^{0} \sum_{\text {color }} \frac{\mathrm{Col}}{\epsilon^{i}} \mathcal{I}_{12,3 j}^{(\mathrm{Col}, i)}\left(p_{1}, p_{2}, p_{3}\right)+\mathrm{O}\left(\epsilon^{1}\right)
$$

n|l| kinematical point parametrized by $y_{i j}$

$y_{12}=0.937044$	$y_{13}=0.024207$		$y_{23}=0.038749$		
Col	$\mathrm{O}\left(\epsilon^{-4}\right)$	$\mathrm{O}\left(\epsilon^{-3}\right)$	$\mathrm{O}\left(\epsilon^{-2}\right)$	$\mathrm{O}\left(\epsilon^{-1}\right)$	$\mathrm{O}\left(\epsilon^{0}\right)$
C_{F}^{2}	6	25.85	34.59	-84.25	-566.8
$C_{\mathrm{A}} C_{\mathrm{F}}$	2	27.79	136.8	330.6	46.20
C_{A}^{2}	1	21.02	195.4	1174	5355
$C_{\mathrm{F}} T_{\mathrm{R}} n_{\mathrm{f}}$	0	$-\frac{13}{3}$	-57.59	-405.2	-2120
$C_{\mathrm{A}} T_{\mathrm{R}} n_{\mathrm{f}}$	0	$-\frac{3}{2}$	-24.07	-194.7	-1083

Counterterm
Types of integrals
Done
$\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}} \quad$ tree level singly-unresolved
$\int_{1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}} \quad$ one-loop singly-unresolved

$$
\int_{1}\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}} \quad \text { tree level iterated singly-unresolved }
$$

$\int_{2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}} \quad$ tree level iterated singly-unresolved (2)
$\int_{2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}} \quad$ tree level doubly-unresolved $\quad v / x$

Outlook

Present status

NNLO correction is the sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

Each integrable in four dimensions

$$
\begin{aligned}
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left[\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \left.\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\} J_{m}
\end{aligned}
$$

\checkmark unintegrated RR counterterms
\checkmark unintegrated RV counterterms
\checkmark tree-level and one-loop singly-unresolved integrals
\checkmark tree-level iterated singly-unresolved integrals
num tree-level doubly-unresolved integrals

Present status

NNLO correction is the sum of three terms

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

Numerical Monte Carlo integration (single CPU, ~ 50 hours)

Conclusions

Hope to have convinced you
num differential NNLO is interesting and relevant
${ }^{\text {nIIIt }}$ subtraction is the method of choice for general, efficient calculations

Local subtraction at NNLO

num general, explicit, local subtraction scheme for computing NNLO jet cross sections, for processes with no colored particles in the initial state
n|l| investigated various methods to compute the integrated counterterms: IBP's, MB, SD
men integration of all singly-unresolved and iterated singly-unresolved counterterms finished
n 1 " integration of doubly-unresolved counterterms underway

Next steps

num finish doubly-unresolved integrals: < 10 double soft counterterms left
n|l|t physical applications
N" extend scheme to hadron-initiated and massive processes

