
Results of performance testing of
SuperB/BaBar applications

Vincenzo Ciaschini

4th SuperB Collaboration Meeting
La Biodola, 31 May – 4 June 2012

Applications tested

• SkimMini, BetaMini, Moose release 24.5.6

• FastSim, PacMC release 0.2.7_test

• Bruno, CVS from 29/11/2011

Testing environment

• RAM: 63 GB

• CPU: 4 Intel® Xeon® E7 4870 with
hyperthreads disabled (total 40 cores)

• Hard disk: 120 GB

• Data source: CNAF’s GPFS file system

• Executable source: NFS mounted partitions

• Output destination: Local hard disk

• OS: Scientific Linux 6

SL6 Adaptation

• No changes to the executables

– Just install a bunch of -compat libraries and
downgrade the TCL ones.

• Why?

– Older kernels did not recognize the processor as
anything more than “i386” thus making collection
of processor usage data impossible.

Test scripts and instructions

• On CNAF’s public git repo (as soon as it gets
official “blessing”)

– Ask me for it in the meantime

Results

Highlights only

The report, under review, will have
the full information

SkimMini

• Does not scale at all
– Execution time skyrockets

with more parallel
executions

• Explanation:
– Executes ~1000000 calls to

stat() during startup and
first event processing

– On only 30 different paths

– Contention pretty much
disappears if the stat()
time is removed.

SkimMini

• 20000 events, 8 runs

– CPU Usage has startup
and teardown
slowdowns
• Startup depends on cores
 See previous slide.

• Teardown depends on
number of events 
writing output.

– Seesaw pattern:
unexplained yet.

BetaMini

• Contention: exact same
issue as SkimMini

– More pronounced
because BetaMini in
general is faster than
SkimMini

BetaMini

• 20000 events, 8 runs

• Same startup/teardown
as SkimMini

– Same interpretation

• No Seesaw pattern

– Less time, so I/O time
more evident

BetaMini

• IPC (Instructions per
cycle)
– Always less than 1

– Often less than 0.8

– The processor is doing
nothing but waiting, for
large amounts of time!
• Worse and worse as the

number of events increases

• This with only one instance
running

– The algorithms used are in
sore need of optimization.

Moose

• Suffers from same
issues as BetaMini and
FastSim

– But that is not all
• Greater irregularities at

high number of events.

• Data not sufficient for
explanation

– But see next slide

Moose

• 1000 events, 40 runs
• Four clear phases

– Initialization: Around 470
seconds regardless of number
of events

– Computing
– Partial teardown: calculation

still ongoing
– Final teardown

• Interpretation:
– Race for resource access during

teardown
– Cannot get more details

because reporting tools like
strace alter the pattern and
make it disappear

• 1000 events, 40 runs

• Shows slowdown
corresponding to third
phase of CPU usage
graph

– Probably I/O related
issues.

FastSim

• Contention still there
– But related to number of

events rather than parallel
executions

– Not CPU-related (see next
slide)

– Probably caused by event
generation

• External info:
– FastSim generation creates

some events much slower
than others by orders of
magnitude
• More events  More slow

events

FastSim

• 20000 events, 40 runs

• 10000 events, 16 runs

• No evidence of
significant CPU
problems

FastSim

• 20000 events, 40 runs

• Very particular I/O
usage:
– Writing data suffers from

periodic “stalls”

– With less events, stalls
are not reached  stalls
are the cause of scaling
problems

– Must be investigated by
source code experts

FastSim

• Memory usage keeps
increasing with time
– Hints at memory leaks in

event generation/handling
code.

– Greater offender:
PacTrkHitMeas::createHots
• Per-event leak of around

2800 bytes
• Not the only cause

– Freeing memory at end of
execution and not at end
of event is a memory leak
for practical purposes

PacMC

• Execution time and CPU usage are completely
analogous to FastSim

– Therefore not shown here

PacMC

• 20000 events

• Same issues as FastSim

Bruno

• Almost no evidence of
contention

– Maybe because of low
number of events

– Still, by far most scalable
program

• CPU analogous to
FastSim and PacMC,
therefore not shown

Bruno

• Unsatisfactory number
of instructions per cycle

– Drops to less than 1 per
cycle
• CPU is waiting for

something

• Code needs
rewrite/optimization

Bruno

• 20 events, 40 runs

• Data is written “in
batches”

Bruno

• 20 events

• Very clear “stepping
stones”

• Actual virtual memory
usage stabilizes quickly

• But “in memory” virtual
memory increases
sharply at the middle.
This is not understood.

Summary cache info

• BaBar

– Cache misses around 4%

– Ranging from 5% to 9%
of actual time spent
waiting for memory

• SuperB

– Cache misses < 1%

– Ranging from 0.2% to
0.6% of actual time
spent waiting for
memory

Conclusions: Babar

• Clean up the init-phase stat() shenanigans
– While runs with more events reduce the impact,

runs with more cores augment it

– Preliminary analysis points to ROOT being the
culprit

• Generally clean up I/O

• Optimize code

• No significant statements on parallelism can
be made until these issues are cleared

Conclusions: SuperB

• Generally in much better shape
– But memory issues present

• Should be fixed.

– I/O issues are still present
• I/O seems to be generally problematic with exp.

Software

• Again, optimization and fixing should be done
before statements on parallelism can be
made.

