Results of performance testing of
SuperB/BaBar applications

Vincenzo Ciaschini

At SuperB Collaboration Meeting
La Biodola, 31 May —4 June 2012

Applications tested

e SkimMini, BetaMini, Moose release 24.5.6
e FastSim, PacMC release 0.2.7 test
* Bruno, CVS from 29/11/2011

Testing environment

RAM: 63 GB

CPU: 4 Intel® Xeon® E7 4870 with
nyperthreads disabled (total 40 cores)

Hard disk: 120 GB

Data source: CNAF’s GPFS file system
Executable source: NFS mounted partitions
Output destination: Local hard disk

OS: Scientific Linux 6

SL6 Adaptation

* No changes to the executables

— Just install a bunch of -compat libraries and
downgrade the TCL ones.

e Why?

— Older kernels did not recognize the processor as
anything more than “i386” thus making collection
of processor usage data impossible.

Test scripts and instructions

* On CNAF’s public git repo (as soon as it gets
official “blessing”)

— Ask me for it in the meantime

Results

Highlights only

The report, under review, will have
the full information

Seconds

7668

6668

668

4860

Joee |

2600

16608

SkimMini

1600 —
2600 —
4088 —
6668 —
Bose

16688 ——

19Ap3—

14000 —
16808

18008 —— |
20608

Cores

32

48

e Does not scale at all

— Execution time skyrockets
with more parallel
executions

* Explanation:

— Executes ~1000000 calls to
stat() during startup and
first event processing

— On only 30 different paths

— Contention pretty much
disappears if the stat()
time is removed.

Cores

SkimMini

38

ar

28t

18 r

el —

|
a22

| | | | 1 1 | 1
1843 1564 2085 2666 3127 3648 4169 4698 5211

Seconds

e 20000 events, 8 runs

— CPU Usage has startup
and teardown
slowdowns

e Startup depends on cores
— See previous slide.

* Teardown depends on
number of events —
writing output.

— Seesaw pattern:
unexplained yet.

Seconds

BetaMini

1668 T
1600 —

2600 ——
4908 —
1400 | 6008-—— |
4000 ——_
10800 —
19608
I =" 14008 —— |
1200 16800
13@&3...--'_
200
1660]
500
§00 F
Ay
400 +
o0
B |
1 4 8 16 3 48

Cores

Contention: exact same
issue as SkimMini

— More pronounced
because BetaMini in
general is faster than
SkimMini

BetaMini

AWW

SSSSSSS

e 20000 events, 8 runs
e Same startup/teardown

as SkimMini

— Same interpretation

* No Seesaw pattern

— Less time, so /O time
more evident

L

1.6

Seconds
-
In

1.2

B.8

BetaMini

"L —

| |
16002000 4068 G060

I | TS I ot
6eA0 18eA8 12000 14060 16666 16G6@ 20600

Events

e |PC (Instructions per
cycle)
— Always less than 1
— Often less than 0.8

— The processor is doing
nothing but waiting, for
large amounts of time!

 \Worse and worse as the
number of events increases

e This with only one instance
running

— The algorithms used are in
sore need of optimization.

Seconds

Moose

3500
w—
268 —
e
40—
3000 |
700
__..-.....__ gaa |
2509 / —L 1%.;
2000 + 7
1500 | /
1000 | -
500 b —
]
1 4 8 16 | 43

Cores

Suffers from same
issues as BetaMini and
FastSim

— But that is not all

* Greater irregularities at
high number of events.

 Data not sufficient for
explanation

— But see next slide

Cores

48

Bl

38

AT

28

15

18

Moose

i

I ST T T—

-

| | | | | |
637 955 1273 1991 1989 2227 2545 2863 3181
Seconds

1000 events, 40 runs

Four clear phases

— Initialization: Around 470
seconds regardless of number
of events

— Computing

— Partial teardown: calculation
still ongoing

— Final teardown

Interpretation:

— Race for resource access during
teardown

— Cannot get more details
because reporting tools like
strace alter the pattern and
make it disappear

B =

1e+89

9e+08
Betdd -
Tetdl -
Ge+0d
Se+08 |
de+dd -
3e+08 |

2etds

_;f—{iiJ“

1e+08

disk-read
Disk=write —

NFS-read|— |

HFS=write] —
GPF5=rea

GPFS-write ——

D/R=Tokal
D/H=Fatal —
H/R<Total

H=Total — -

G6/R-Total
G/H=Total —

ns 637

i ddubidguduisailaanday L
855 1273 1581 19e8

Seconds

2027 2545 2863 3181

1000 events, 40 runs

Shows slowdown

corresponding to third

phase of CPU usage

graph

— Probably I/0 related
ISSues.

Seconds

2500

2608

1508

1668

500

FastSim

1600 —
2600 —
4600 —
66ee ——

_BA6H. ————

16688 ——
12800
1488 —
16808
18600 —

20008 ——

16

32

Cores

48

Contention still there

— But related to number of
events rather than parallel
executions

— Not CPU-related (see next
slide)

— Probably caused by event
generation

External info:

— FastSim generation creates
some events much slower
than others by orders of
magnitude

* More events — More slow
events

FastSim

\1 * 20000 events, 40 runs
* 10000 events, 16 runs
* No evidence of

significant CPU
| problems

111111111111111111111111111

1111111
nnnnnnn

B =

FastSim

| wie— | ¢ 20000 events, 40 runs
e[| e \ery particular I/O
26409 D/R-Total — 1 .
EEE{E usage:
Gl — Writing data suffers from
L5 |) 1 periodic “stalls”
f — With less events, stalls
| /J _ are not reached — stalls
p are the cause of scaling
rd problems
ot | ﬁ; ' — Must be investigated by
f_;r source code experts

] 242 483 74 965 1286 1447 1668 1929 2170 2dl1

Seconds

HEB=

780

600 |
500
am |
300 |
200

’_,,_l_‘___

168

FastSim

" Yz — |
RSS ——

|
] 196

|
392

|
88

|
84

|
980

Tine

| 1 1 | |l
1176 1372 1368 1764 1968

 Memory usage keeps
increasing with time

— Hints at memory leaks in
event generation/handling
code.

— Greater offender:
PacTrkHitMeas::createHots
e Per-event leak of around
2800 bytes

* Not the only cause

— Freeing memory at end of
execution and not at end
of event is a memory leak
for practical purposes

PacMC

* Execution time and CPU usage are completely
analogous to FastSim

— Therefore not shown here

HEB=s

550

68

450

400 1

350

308

250 r

208

15

168

3

PacMC

—

W

" ysize —

|
143

|
286

|
429

|
a2

|
ik

Tine

| | | | |
858 1861 1144 1287 1438

20000 events
Same issues as FastSim

3668

2508

oee —

Seconds

1668 -

a6e

Bruno

=1 ¢ Almost no evidence of

1500

— contention

18 —— |

ri— number of events

program

16

Cores

32

48

14— — Maybe because of low

— Still, by far most scalable

 CPU analogous to
FastSim and PacMC,
therefore not shown

L

1.6

Seconds
-
In

1.2

B.8

Bruno

"L —

18

Events

Unsatisfactory number
of instructions per cycle

— Drops to less than 1 per
cycle
e CPU is waiting for
something

Code needs
rewrite/optimization

2e+dd

1,8e+09

1,6e+89 1

1,4e+09 1

1,2e409 1

le+Bd -

Be+dd -

Ge+dd -

de+Bf -

2etds

Bruno

|

|

T T
Disk=read —
Disk=write —

HF5=read —
HFS=write
GPFS=read |
GPFS=write
D/R-Total | 7

H/H=Total —
G/R=Total
G/H=Total —

ul | T |

298

3N

868

1157

1446

Seconds

1735

2024

2313 2602 2891

e 20 events, 40 runs

e Data is written “in
batches”

HB=

966

gee

768

6@

68

480 +

360

260 +

168

Bruno

" ysize —

RSG ——

|
262

|
564

| | | | | | 1
646 1128 1418 1692 1974 2256 2538 2420

Tine

20 events

Very clear “stepping
stones”

Actual virtual memory
usage stabilizes quickly

But “in memory” virtual
memory increases
sharply at the middle.
This is not understood.

Summary cache info

* BaBar * SuperB
— Cache misses around 4% — Cache misses < 1%
— Ranging from 5% to 9% — Ranging from 0.2% to
of actual time spent 0.6% of actual time
waiting for memory spent waiting for

memory

Conclusions: Babar

Clean up the init-phase stat() shenanigans

— While runs with more events reduce the impact,
runs with more cores augment it

— Preliminary analysis points to ROOT being the
culprit

Generally clean up I/O
Optimize code

No significant statements on parallelism can
be made until these issues are cleared

Conclusions: SuperB

* Generally in much better shape
— But memory issues present
* Should be fixed.

— |/O issues are still present

* |/O seems to be generally problematic with exp.
Software

e Again, optimization and fixing should be done
before statements on parallelism can be
made.

