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Applications tested

e SkimMini, BetaMini, Moose release 24.5.6
e FastSim, PacMC release 0.2.7 test
* Bruno, CVS from 29/11/2011



Testing environment

RAM: 63 GB

CPU: 4 Intel® Xeon® E7 4870 with
nyperthreads disabled (total 40 cores)

Hard disk: 120 GB

Data source: CNAF’s GPFS file system
Executable source: NFS mounted partitions
Output destination: Local hard disk

OS: Scientific Linux 6




SL6 Adaptation

* No changes to the executables

— Just install a bunch of -compat libraries and
downgrade the TCL ones.

e Why?

— Older kernels did not recognize the processor as
anything more than “i386” thus making collection
of processor usage data impossible.



Test scripts and instructions

* On CNAF’s public git repo (as soon as it gets
official “blessing”)

— Ask me for it in the meantime



Results

Highlights only

The report, under review, will have
the full information



Seconds

7668

6668

668

4860

Joee |

2600

16608

SkimMini

1600 —
2600 —
4088 —
6668 —
Bose

16688 ——

19Ap3—

14000 —
16808

18008 —— |
20608

Cores

32

48

e Does not scale at all

— Execution time skyrockets
with more parallel
executions

* Explanation:

— Executes ~1000000 calls to
stat() during startup and
first event processing

— On only 30 different paths

— Contention pretty much
disappears if the stat()
time is removed.
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e 20000 events, 8 runs

— CPU Usage has startup
and teardown
slowdowns

e Startup depends on cores
— See previous slide.

* Teardown depends on
number of events —
writing output.

— Seesaw pattern:
unexplained yet.
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Contention: exact same
issue as SkimMini

— More pronounced
because BetaMini in
general is faster than
SkimMini



BetaMini
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e 20000 events, 8 runs
e Same startup/teardown

as SkimMini

— Same interpretation

* No Seesaw pattern

— Less time, so /O time
more evident
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Events

e |PC (Instructions per
cycle)
— Always less than 1
— Often less than 0.8

— The processor is doing
nothing but waiting, for
large amounts of time!

 \Worse and worse as the
number of events increases

e This with only one instance
running

— The algorithms used are in
sore need of optimization.
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Suffers from same
issues as BetaMini and
FastSim

— But that is not all

* Greater irregularities at
high number of events.

 Data not sufficient for
explanation

— But see next slide
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1000 events, 40 runs

Four clear phases

— Initialization: Around 470
seconds regardless of number
of events

— Computing

— Partial teardown: calculation
still ongoing

— Final teardown

Interpretation:

— Race for resource access during
teardown

— Cannot get more details
because reporting tools like
strace alter the pattern and
make it disappear
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1000 events, 40 runs

Shows slowdown

corresponding to third

phase of CPU usage

graph

— Probably I/0 related
ISSues.
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Contention still there

— But related to number of
events rather than parallel
executions

— Not CPU-related (see next
slide)

— Probably caused by event
generation

External info:

— FastSim generation creates
some events much slower
than others by orders of
magnitude

* More events — More slow
events



FastSim

\1 * 20000 events, 40 runs
* 10000 events, 16 runs
* No evidence of

significant CPU
| problems
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 Memory usage keeps
increasing with time

— Hints at memory leaks in
event generation/handling
code.

— Greater offender:
PacTrkHitMeas::createHots
e Per-event leak of around
2800 bytes

* Not the only cause

— Freeing memory at end of
execution and not at end
of event is a memory leak
for practical purposes



PacMC

* Execution time and CPU usage are completely
analogous to FastSim

— Therefore not shown here
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20000 events
Same issues as FastSim
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14— — Maybe because of low

— Still, by far most scalable

 CPU analogous to
FastSim and PacMC,
therefore not shown
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Unsatisfactory number
of instructions per cycle

— Drops to less than 1 per
cycle
e CPU is waiting for
something

Code needs
rewrite/optimization
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e 20 events, 40 runs

e Data is written “in
batches”
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Very clear “stepping
stones”

Actual virtual memory
usage stabilizes quickly

But “in memory” virtual
memory increases
sharply at the middle.
This is not understood.



Summary cache info

* BaBar * SuperB
— Cache misses around 4% — Cache misses < 1%
— Ranging from 5% to 9% — Ranging from 0.2% to
of actual time spent 0.6% of actual time
waiting for memory spent waiting for

memory



Conclusions: Babar

Clean up the init-phase stat() shenanigans

— While runs with more events reduce the impact,
runs with more cores augment it

— Preliminary analysis points to ROOT being the
culprit

Generally clean up I/O
Optimize code

No significant statements on parallelism can
be made until these issues are cleared



Conclusions: SuperB

* Generally in much better shape
— But memory issues present
* Should be fixed.

— |/O issues are still present

* |/O seems to be generally problematic with exp.
Software

e Again, optimization and fixing should be done
before statements on parallelism can be
made.



