4th SuperB Collaboration Meeting La Biodola, 6-7 February 2012

Experimental Status of |V_{ub}| Measurements

Marcello Rotondo (INFN Padova)

Semileptonic B decays: |V_{ub}|

• Only one hadronic current:

$$\Gamma(B \to \pi/X_u \ell \nu) = |V_{ub}|^2 \mathcal{F}^2(q^2, M_x, p_\ell)$$

<u>Exclusive decays</u> $B \rightarrow \pi/\rho \ell v$:

- QCD predictions of Form Factor required to parameterize hadronic effects
- Lattice QCD, LCSR...

<u>Inclusive decays</u> $\mathbf{B} \rightarrow \mathbf{X}_{u} \ell v$:

- QCD corrections to parton level decay rate
- Need perturbative and non-perturbative corrections
 - 4 approaches **BLNP**, **DGE**, **GGOU**, **ADFR**
 - Non-pert. parameters (m_c, m_b, μ_{π}^2) from $B \rightarrow X_c \ell v$ (and $B \rightarrow X_s \gamma$?)

 $M_X = p_X^2$

Neubert et al PRD72, 073006 (2005) Gardi et al JHEP0601, 097 (2006) Gambino et al JHEP0710, 058 (2007) Aglietti et al EPJC 59, 831 (2009)

B

 $\frac{Exclusive \ decays}{B \rightarrow \pi \ell \nu}$

B-Factory approach to B Excl-Semileptonics

Exclusive $|V_{ub}|$ with $B \rightarrow \pi \ell \nu$

- Reconstruct π + e/ μ
- Neutrino from the rest of the event

$$p_{\nu} = (|\vec{p}_{\text{miss}}|, \vec{p}_{\text{miss}})$$
 $q^2 = (p_{\ell} + p_{\nu})^2 = (p_B - p_{\pi})^2$

- Measure the partial rate ∆BF in bins of q² to reduce model dependence
- Integrate the partial BF in limited q^2 regions to extract $|V_{ub}|$:

- $q^2 < 12$ (16) GeV² LCSR, $q^2 > 16$ GeV² for L-QCD

q² is calculated

along the cone:

Y-average q^2

as weighted average

Exclusive $|V_{\mu\nu}|$ with $B \rightarrow \pi \ell \nu$

- Background reduced with q²-dependent cuts or NN optimized in bins of q^2
- m_{ES} - ΔE fit to $\pi^+ \ell v$
- BaBar: two analysis, 6 or 12 bins of q^2 Belle: very similar to the BaBar 12 bins analysis

BaBar 6 bin: 7181 (π ⁺)+ 3446 (π ⁰)	349 fb ⁻¹
BaBar 12 bin: 11788 (π ⁺)	422 fb ⁻¹
BaBar 13 bin: 21486 (π+)	605 fb ⁻¹

BaBar 12: fit background components in q^2 bins

Untagged $B \rightarrow \pi^{+/0} \ell \nu$

- $|V_{ub}|$ extracted from a combined fit to data and LQCD predictions
 - Based on BCL expansion Phys. Rev. D79, 013008 (2009)
- Experimental and theoretical errors reduced:
 - Measured spectrum constrain the FF shape
 - LQCD provides normalization (used 6 out of the 12 available points !)
- Combined fit to Belle and BaBar data:

$$-|V_{ub}| = (3.23 \pm 0.18_{exp} \pm 0.24_{th}) \cdot 10^{-3}$$

- <u>9% uncertainty!</u>
- Error budget:
 - ~4% from q² shape and ~7.5% from FF normalization
- Compatible with |V_{ub}| extracted from integrated q² regions with FF from LCSR and L-QCD

M.Rotondo

Belle: with $B \rightarrow h\ell v$ with Hadronic Tags

Belle preliminary (Lake Luise'12) Full Y(4S) data set 710/fb New hadronic tag procedure with gain $\rightarrow \pi^0 \ell \nu$ B^+ Z¹⁸⁰ 2x with P=26% 160 229±20 468±28 140 Based on NeuroBayes[©] 60 120 100 20,000 Signal: ~ 135 000. using NeuroBayes 20 Purity: ~ 26% $\rightarrow \rho^+ \ell \nu$ $M_{bc} = \sqrt{E_{\text{beam}}^{*2} - p_B^{*2}}$ 250 10,000 634±34 342±29 200 Previous algorithm 120 150 Signal: ~ 66 000. 100 Purity: ~ 26% 100 0 50 5.74 5.20 5.28 525 5.2/ Signal extracted from EML fit M_{FS} (GeV) M_{miss}^2 , GeV²/c⁴ M²_{mise}, GeV²/c⁴ Signal of the M2miss distribution $\Box \text{ Cross-feed } B^0 \to \rho^+(\pi^+)\ell\nu$ $\Box \text{ Other } B \to X_u \ell \nu$ Also $B \rightarrow (\omega, \eta, \eta') \ell v$ $\blacksquare e^+e^- \to q\overline{q}$ $\square B \to X_c \ell \nu$ SuperB Physics Meeting 31 May 2012 M.Rotondo

Belle: with $B \rightarrow \pi \ell \nu$ with Hadronic Tags

- Improved hadronic tags open new opportunities
 - Very clean sizable samples
 - First look at q² dependence in many bins
 - Small background at high q²
 - Loose cuts on signal: small model signal and background model dependence
 - Results agree very well with untagged measurements

Xu	Theory	q ² [GeV ²]	$ V_{ub} \times 10^{-3}$
	KMOW[1]	<12	$3.38 \pm 0.14 \pm 0.09^{+0.37}_{-0.31}$
π^+	Ball/Zwicky[2]	<16	$3.57 \pm 0.13 \pm 0.09^{+0.47}_{-0.47}$
	FNAL[3]	>16	$3.69 \pm 0.22 \pm 0.09^{+0.39}_{-0.35}$
	HPQCD[4]	>16	$3.86 \pm 0.23 \pm 0.10^{+0.53}_{-0.53}$

- Improved hadronic tags open new opportunities
- Ongoing work to fit spectrum
 - Larger systematics (5-7%) due to the normalization

208 GeV²/c

 $\frac{\text{Inclusive decays}}{B \rightarrow X_u^l v}$

$|V_{ub}|$ From Inclusive $B \rightarrow X_u \ell v$

- Large background from $B \rightarrow X_c \ell v$:
- Kinematics to extract the signal (lepton endpoint, $M_X < M_D,...$)

Use hadronic tag $\mathbf{B}_{tag} \rightarrow \mathbf{D}^{(*)}\mathbf{Y}$ to reduce combinatorial and reconstruct M_X , q^2 and $P_+ = E_X - p_X$ with good resolution

$|V_{ub}|$ From Inclusive $B \rightarrow X_u \ell v$

Veto $B \rightarrow D(*) \ell v$ with Kaons, soft pions, and missing mass

*D*** fraction constrained from control samples

$|V_{ub}|$ From 2-dim q²-M_x (P_l>1 GeV) 88% of PS

Most important experimental syst is the signal model/composition

SuperB Physics Meeting 31 May 2012

M.Rotondo

b-quark mass

- Global Fit to 64 moments, determines precisely combination of m_b and m_c
 - Use also the precise m_c in MS scheme: m_c(3GeV)=0.998(29)GeV arXiv:1102.2264

hep-ex:1102.0210

Chertyrkin

KS

Hoang

4.65

4.60

4.55

m_b^{kin}(GeV)

Systematics

BLNP

Total Error: +5.6% -5.9%

Experimental error on the partial BF Analysis with p_{lep} > 1 GeV (2-dim fit)

	BaBar%	Belle%
Detector	3.4	3.7
B->Xu	6.5	6.2 🔶
B->Xc & D	2.7	1.8
Fit	2.2	3.1
Stat	7.1	8.8

Theoretical uncertainty on the WA BLNP

	+σ%	-σ%
HQE model	+2.3	-2.4
SF function	+0.3	-0.3
Sub SF	+0.5	-0.7
WA	+0.0	-1.7
Matching	+3.7	-3.7

Inclusive: uncertainties

- Uncertainties dominated by theoretical error
- Recent calculation at NNLO (plugged in BLNP)
 - Test frameworks studying spectra!
 - Ongoing work on SIMBA ($|V_{\mu\nu}|$ global fit)

- Detector effects not relevant
- Dominant experimental systematic is due to the signal model
 - Resonant and not-resonant contribution
 - Important systematics for both inclusive and exclusive determination of $|V_{ub}|$

Inclusive-Exclusive Discrepancy

Conclusions

• Despite progresses from BFactories, the inclusive-exclusive discrepancy still present: $2.0-3.0\sigma$ differencies

Will stay with us for a long time!? Do we understand the QCD at (few)% level? *New Physics in the b->u* transitions? **SuperB** - tagged sample: cleaner - full understanding of the background composition / **dynamics** - precise measurements of spectra

BUT:

Exclusive: Progress in QCD calculations, LQCD and LCSR Inclusive: Require advanced QCD calculation and precise m_b

SuperB Physics Meeting 31 May 2012

Comments

- B-Factory era: <u>untagged</u> measurements give best measurements
 - Very high efficiency
 - But large background due combinatorics from other B and from $B \rightarrow X_u \ell v$ bakground, <u>very similar to the signal</u>
- SuperB: will use mainly <u>tagging</u> (B_{reco} and SL)
 - Small efficiency
 - Possible to apply loose cuts (es: low momentum cut)
 - Reduce model dependence and overall systematics
 - To improve the high q² region for untagged measurements is crucial to:
 - Understand the dynamics and composition of the $B \rightarrow X_u \ell v$
 - Improvements expected from Lattice (<5% error ?)

Issues with |V_{cb}|

- Inclusive-Exclusive discrepancy
 - B→Dℓv is a useful cross checks: but compatible with both, improvements expected in the near future
 - Error on Inclusive is reliable and it's expected to decrease
 - Exclusive F(1) ?
 - Calculation based on HQ sum rules result in an increase of |V_{cb}| (5%)
- Inclusive-Exclusive saturation problem:

$Br(B^{0} \rightarrow X_{c} \ell v) = 10.14 \pm 0.14 \%$ $A=1.6 \pm 0.5 \%$ $B^{0} \rightarrow D^{*} \ell v$ 2.1% $D^{**} \ell v$ 2.1% $P^{**} \ell v$ 2.1% $P^{**} \ell v$ $P^{**} \ell$

SuperB Physics Meeting 31 May 2012

M.Rotondo

Summary

- Great improvements in the last decade
 - Many puzzles in SL decays still present and are now more important!
 - Will stay with us for a long time !?
 - Do we understand the QCD corrections at few % level?
- Improve the SL knowledge, for both $|V_{cb}|$ and $|V_{ub}|$
 - Reduce systematics due to background signal and background composition
 - Fix the gap of the missing exclusive decays
- Use the large B_{reco} sample available:
 - Expect 5000/fb⁻¹ of tagged B meson!

Puzzle solution: New Physics ?

• The <u>Right-Handed currents</u> could explain the differencies:

Chen, Nam Buras, Gemmler Lunghi, Soni

$$V_{ub}u_L \ W \ b_L \implies V_{ub}(u_L \ W \ b_L + \xi_{ub}^R \cdot u_R \ W \ b_R)$$

• Impact SL and Leptonic decays

$$\begin{split} |V_{ub}|_{\text{incl}} & \Longrightarrow \sqrt{1 + |\xi_{ub}^{R}|^{2}} |V_{ub}|_{\text{incl}} \\ |V_{ub}|_{\text{excl}} & \Longrightarrow |1 + \xi_{ub}^{R}| |V_{ub}|_{\text{excl}} \\ \text{BR}(B \to \tau\nu) & \Longrightarrow |1 - \xi_{ub}^{R}|^{2} \text{BR}(B \to \tau\nu) \end{split}$$

- Large RH contribution is required (~20%)
- An RH current does not significantly contradict existing observables
- Need to study specific observables

$$- B \rightarrow \rho \ell \nu ...$$

$\blacksquare B \rightarrow \rho \ell \nu$

- $B \rightarrow \rho \ell \nu$: non trivial test of V-A, V+A contribution
- ρ helicity distribution: affected by phase space
 - Require high statistics and good precision!

Untagged is affected by large bkg: - need tight cuts: **pl>2.0 GeV** - BaBar 350fb-1: 3300 ± 290 events with S/N~0.1

Approach |V_{ub}| differently ?

• Use MORE rare decays, very clean:

$$\frac{\mathrm{d}\Gamma(\bar{B}_d \to \rho \ell \nu)/\mathrm{d}q^2}{\mathrm{d}\Gamma(\bar{B}_d \to K^* \ell^+ \ell^-)/\mathrm{d}q^2} = \frac{|V_{ub}|^2}{|V_{ts}V_{tb}|^2} \cdot \frac{8\pi^2}{\alpha^2} \cdot \frac{1}{N(q^2)} \cdot R_B$$

– R_B from 'Grinstein double ratio':

$$\frac{f^{(B\to\rho\ell\bar{\nu})}}{f^{(B\to K^*\ell^+\ell^-)}} \times \frac{f^{(D\to K^*\ell\bar{\nu})}}{f^{(D\to\rho\ell\bar{\nu})}}$$

• Use EVEN more Rare Decays, even more clean:

$$\frac{\frac{\Gamma(B_u \to \tau \nu)}{\Gamma(B_s \to \ell + \ell^-)}}{\frac{\Gamma(D_d \to \ell \nu)}{\Gamma(D_s \to \ell \nu)}} \sim \frac{|V_{ub}|^2}{|V_{ts}V_{tb}|^2} \cdot \frac{\pi^2}{\alpha^2} \cdot \left(\frac{f_B/f_{B_s}}{f_D/f_{D_s}}\right)^2$$