May 11th, 2012 SuperB-SVT meeting

update on Strasbourg activities on CMOS pixel developments & effect of high occupancy on SVT performances

Isabelle Ripp-Baudot IPHC Strasbourg CNRS/IN2P3 and Université de Strasbourg

Update on Strasbourg activities on CMOS pixel sensor developments for the SuperB SVT

I.

MIMOSA-32: 0.18 µm technology exploration

- Submitted in Oct. 2011, delivered in January 2012.
 - → lab. tests since April 2012.
- Technology:
 - · epitaxial layer: 18 μ m thick, High-Resistivity 1-5 k Ω .cm,
 - quadruple well: deep P-type skin embedding N-well hosting P-MOS transistors,
 - · 4 Metal Layers (6 ML at next submission in 2012).
- Prototype sub-divided in several blocks:
 - Explore pixel sizes: 20x20, 20x40 and 20x80 μm^2 .
 - Explore charge amplification / collection systems: diode sizes ~9-15 μm², N-MOS and P-MOS transistor based amplifiers.
 - Explore discrimination: I sub-array of I28 columns with I discriminator at each column end, and one sub-array with in-pixel discrimination (I6x80 µm² pixels).
 - → total surface ~ 43 mm².

preliminary 0.18 µm process tests results

- Charge collection efficiency with $20 \times 20 \ \mu m^2$ pixels: lab tests with ⁵⁵Fe source.
 - seed pixel: 40-50 % of total charge
 - \rightarrow corresponds to S/N \sim 30.
 - · 2x2 pixels cluster (1st crown): nearly 100 % of total charge.
 - confirms HR (limited thermal diffusion), and no parasitic charge collection with deep P-well.
 - · with 20x40 μ m² pixels: seed ~ 30 % and 1st crown ~ 75 %.
- Noise: ~15-20 e⁻ at room T^o.
- Irradiation: 3 MRad → no impact at room T° (tests on going after 6 and 8 MRad). Non ionising radiations: 6 chips have been irradiated at 3x10¹² - 10¹³ - 3x10¹³ n_{eq}/cm²
 → results next week.

next steps

"towards a read-out time ~ 1.5 μs "

- MIMOSA-32: validation of the 0.18 µm technology.
 - Beam tests in June-August 2012: analog output, digital output, non-ionising radiation tolerance.
 - Next submissions:
 - MIMOSA-32bis (Spring 2012): standard epitaxial layer lab. tests in Summer 2012.
 - MIMOSA-32ter (July 2012): alternative in-pixel amplification schemes.
- MIMOSA-22THR: validation of the optimised rolling shutter architecture.
 - Submission Autumn 2012.
 - 2 different chips:
 - translation of MIMOSA-22AHR (0.35 µm techno.) with end-of-column discrimination.
 - simultaneous 2-row encoding with 2 discriminators/column twice faster.
- AROM-I (Accelerated Read-Out Mimosa): validation of the in-pixel discrimination.
 - Submission Autumn 2012.
 - Simultaneous 4-row encoding with in-pixel discrimination \rightarrow 8 times faster.
- SUZE-02: validation of the sparsification.
 - Submission Autumn 2012.
 - Sparsification for 2 and 4 // rows → data flow and power reduction.

study of tracking performances with BaBar data

BaBar AD 707: Final Report of the SVT Long Term Task Force (2004): Study with BaBar dimuon data taken between Jan. and June 2003 (instantaneous luminosity increasing), of hit efficiency as a function of chip on-line occupancy.

how to translate this BaBar study to SuperB?

on-line occupancy (I)

On-line occupancy: number of hits during the on-line time window
 = on-line strip occupancy.

In SuperB: we know the off-line strip occupancy (see Giuliana's presentation "background inputs for performance studies and electronics design", SVT 13 April 2012):

→	on-line occupancy = off-line occupancy x	on-line time window	
		off-line time window	

see calculations on next slide.

on-line occupancy (2)

Layer	on-line time window (ns)	off-line time window (5xσt₀)(ns)	strip rate (kHz) (x5 included)	off-line strip occupancy (x5 included)	on-line occupancy (x5 included)
0φ	300	100	932.0	0.093	0.280
0 z	300	100	932.0	0.093	0.280
Ιφ	300	150	847.9	0.127	0.254
Ιz	300	150	670.0	0.101	0.201
2φ	300	150	664.9	0.100	0.199
2 z	300	150	665.2	0.100	0.200
3φ	300	250	577.0	0.144	0.173
3 z	300	250	394.2	0.099	0.118
4φ	1000	460	124.1	0.057	0.124
4 z	1000	460	66.43	0.031	0.066
5φ	1000	800	80.34	0.064	0.080
5 z	1000	800	43.61	0.035	0.044
A $\ \ B$ new numbers w.r.t. my previous presentation (11 May 2012) $\ \ G$ $\ C$ $\ D = B \times C$ $E = D \times A / B$ from Giuliana's presentation					

on-line occupancy (3)

> on-line occupancy in SuperB is 2 to 10x higher than in BaBar.

11

X

hit-to-track matching

efficiency

~ integration

time

intrinsic resolution

 \oplus track extrapolation

hit efficiency (2)

estimation of BaBar hit detection efficiency (I)

Evaluation of the shadowing in BaBar:

• How many hits are lost during dead time due to analog shaping time?

$R_{lost} = on-line occupancy x$	analog shaping time	R _{lost} is the rate	
Nost on me occupancy x	on-line time window	of shadowed hits	

with:

- on-line time window = 1 μ s
- analog shaping time = $2.4 \times \tau_{shaping}$ = 2.4×200 ns = $0.48 \mu s$ (for BaBar Layer-I).
- \rightarrow hit detection efficiency = I R_{lost}

 $\simeq \frac{I}{I + R_{lost}} = \frac{I}{I + 0.48 \times on-line occupancy} \quad \text{if } R_{lost} << I$ formula used
by Giuliana $\Rightarrow \text{ see plot on next slide.}$

estimation of BaBar hit detection efficiency (2)

hit-to-track matching efficiency as a function of off-line cluster occupancy (I)

Finally, the track is matched to a cluster, what really matters is the off-line cluster occupancy.

With: off-line strip occupancy = off-line cluster occupancy x nbr of strips/cluster

and: BaBar: ~2.5 strips/cluster.

Then translate the curve "BaBar hit-to-track matching efficiency =f(on-line strip occupancy)" to: "BaBar hit-to-track matching efficiency =f(off-line cluster occupancy)"

using:

hit-to-track matching efficiency as a function of off-line cluster occupancy (2)

And then see where SuperB Layers are on this curve:

		Strip rate		
		with	time	offline
		renormali	window	cluster
		zed area	DOMOEIII	occupanc
		KH7	used by	y (x5
Layer	View	esumates	neri) ns	included)
0	1	9.32E+02	100	0.023
0	2	9.32E+02	100	
1	phi	8.479E+02	150	0.022
1	z	6.700E+02	150	
2	phi	6.649E+02	150	0.019
2	z	6.652E+02	150	
3	phi	5.770E+02	250	0.050
3	z	3.942E+02	250	
4	phi	1.241E+02	460	0.025
4	z	6.643E+01	460	
5	phi	8.034E+01	800	0.034
5	z	4.361E+01	800	

estimation of SuperB hit efficiency

Layer	on-line strip occupancy (x5 included)	off-line cluster occupancy (x5 included)	hit detection efficiency (simulation) (x5 included)	hit-to-track matching efficiency (estimation from off-line cluster occ.)	total hit efficiency
0φ	0.28	0.023	0.96	0.96	0.92
0 z	0.28		0.96		0.92
Iφ	0.25	0.022	0.88	0.96	0.84
Ιz	0.20		0.89		0.85
2φ	0.20	0.019	0.89	0.97	0.86
2 z	0.20		0.89		0.86
3φ	0.20	0.050	0.77	0.88	0.68
3 z	0.17		0.86		0.76
4 φ	0.12	0.025	0.89	0.96	0.85
4 z	0.07		0.93		0.89
5 φ	0.08	0.034	0.86	0.93	0.80
5 z	0.04		0.91		0.85

next steps

- List all assumptions I have made to obtain this BaBar to SuperB translation, to decide whether the result is a best- or a worst-case.
- Examples of comparisons with FastSim results:

 - rate of tracks to which the measured hit in Layer-0 has not been associated.
- What about the SVT stand-alone tracking? Important for low momentum particles and detector alignment.
- Decide what conclusion can be done and write the corresponding part in the TDR.