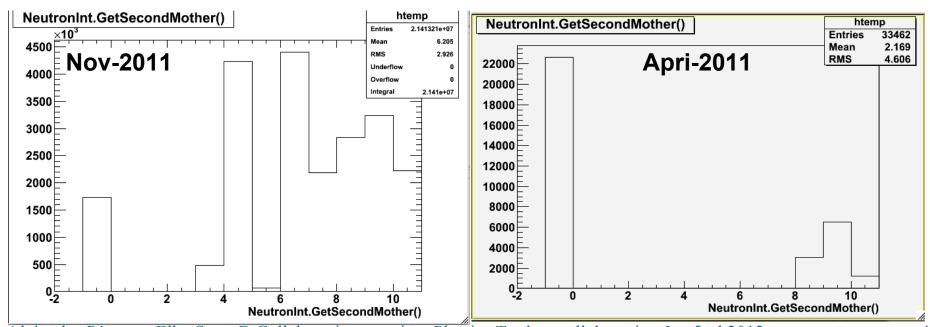
Elba SuperB Collaboration Meeting Physics Tools Parallel session Jun. 2nd 2012

Background frames for fastsim

Alejandro Pérez INFN – Sezione di Pisa

Outline

- April 2012 production: the fastsim bg-frames
 - The samples
 - Some issues
- The Touschek and BeamGas implementation in fastsim: unbiasing method
- Summary and Outlook


April 2012 production: Fast-sim background frames

- Produced the fast-sim bg-frame samples for all the background sources considered up to now: Geometry with the W-shield increased up to 4.5cm thick
 - Rad-bhabha: 1M bunch crossings
 - Pairs (2-photon): 100k bunch crossings
 - Touschek HER/LER: ~250k primary losses
 - BeamGas HER/LER: ~280k primary losses
- It is the first time Paris, Touschek and BeamGas bg-frame samples are produced with BRN:
 - Pairs bg-frame sample need to be compared with the samples produced with fast-sim
 - Touschek/BeamGas samples are biased (see later slides)

April 2012 production: some issues with the bg-frames

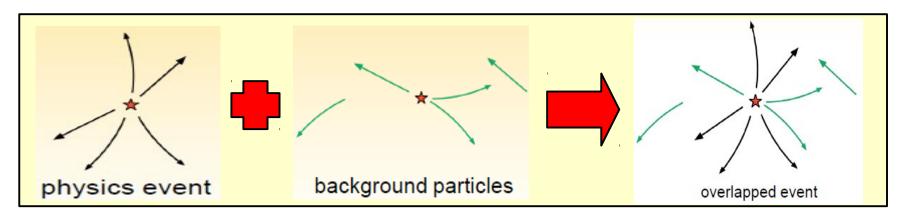
Geometry hierarchy change in BRN since Nov-2011 production

- Changed was propagated to boundaries and instrumented volumes definitions
- Missed to propagate the change to bg-frames ⇒ GetSecondMother variable of Neutron-interactions screwed-up
- GetSecondMother variable is used to select the neutron interactions inside the EMC
- For more information see Chih-hsiang talk

Fastsim bkg-mixing-frame code: how does it works?

Code inputs:

- Background frame files for every source: Bhabha/Rad-bhabha, Pairs, Touschek and beam-gas.
 - Format: particles corresponding to one bunch-crossing (Rad-bhabha/Pais) or lost-primaries (e.g. Touschek/Beam-Gas) that exit the final focus boundary
 - Special treatment for neutrons (FullSim): neutrons are tracked up to thermalization and capture (~120 μs) all around the detector. Each neutron interaction is recorded (deposited energy)


Parameters:

- Bunch-crossing frequency (f_bc = 226.7MHz → 4.4ns)
- Some selection: Zmin/Zmax and Emin/Emax
- Background start-sensitive-time-window (t₀) and sensitive-window (Δt)
 - This parameters depends on the background time-structure (long temporal tails) as well as detection sensitive windows
 - → Different background sources can have different (t_0 , Δt) depending which detector is more sensitive to a particular Bkg-source: e.g Rad-Bhabha (EMC) and Pairs (SVT) ⇒ time optimization!

Fastsim bkg-mixing-frame code: how does it works?

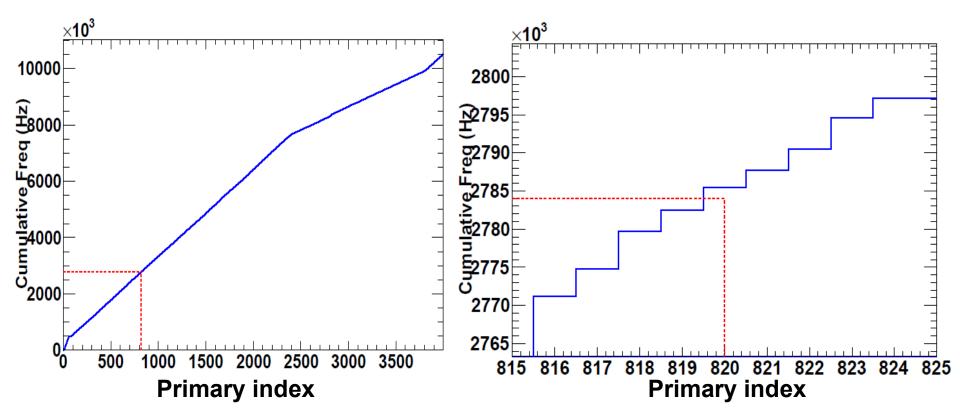
What the code does?

- For every background source:
 - Calculate # BC fitting in the background sensitive-window: N_bc = f_bc * Δt
 - For each physics event randomly read N_bc entries of the background-frame input file (list of background particles)
 - > Randomly populate the $(t_0, t_0 + \Delta t)$ time window with a flat distribution
- Add the background particles (4-momentum, vertex, time) to the list of "physics" particles
- Special treatment for neutrons interactions: Fast-sim cannot simulate neutrons. Bkg-neutrons interactions replaced by photons with $E(\gamma) = E_{kin}(neutron)$
- From this moment on fast-sim treats equally all the particles in the event

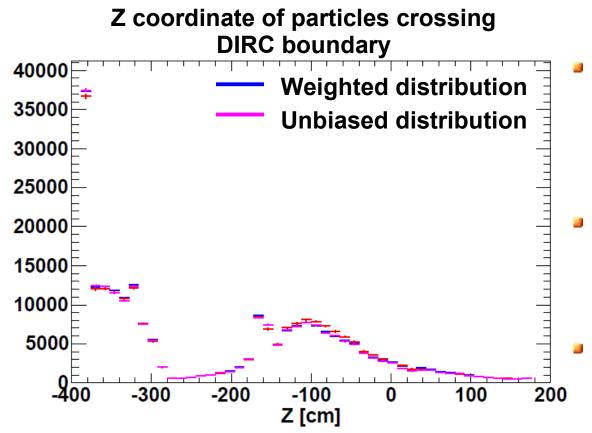
Treatment of biased samples

The biased samples

- Touschek and Beam-Gas samples are biased,
 - Sample consist of a list of primaries which are particles lost at the beam pipe near by the IP
 - Each primary has a weight (frequency) such that the total sum of weights (Wtot) is the total particle rate near by the IP
 - Each weight divided by Wtot (relative frequency) is the conditional probability that this primary loss actually occurs


Unbiasing method

- The time between two consecutive BC is 1/f_bc ⇒ The expected number of particles losses during this time interval due to a background source (Touschek/BeamGas) is N_bkg = Wtot/f_bc
- In order to unbias the sample,
 - Generate a random number N_sample following a Poisson distribution with mean N_bkg
 - Sample N_sample primaries from the background sample using the relative frequencies


Treatment of biased samples: en example

Touschek-LER sample

- Total sum of weights = 10.5MHz
- N_bkg during two consecutive BC = 0.047 primaries
- For a time interval of 1ms = 227273 BC ⇒ 10682 Tous-LER primaries
- Sample 10682 primaries out of the Tous-LER sample

Treatment of biased samples: en example

- Distribution for weighted and and unbiased tend to be the same as number of BC increases (as expected)
- Developed a module to unbias the samples that is being used for FullSim analyses
- Unbiased method already used for performances studies on the EMC
- FDIRC background effects will use the same method

Summary and Outlook

- Produced bg-frames for all background sources: Rad-bhabha, Pairs, Touschek and Beam-Gas
- Developed a code for the treatment of biased samples (Touschek and Beam-Gas)
- Code has been validated and used for detector performances studies: EMC and FDIRC in the future
- Still need to implement the code inside FastSim Bkg-mixing framework

Outlook

- bkg-frame QA code development with the help of the subsystem experts to understand the effect of background on the detectors
- Documentation in the Wiki

