
1

Database works update

Cristian De Santis
on behalf of

SuperB Distributed Computing Group

 4th SuperB Collaboration Meeting
La Biodola, Isola d'Elba

May 31st - June 5th

2

Presentation Outline

● Introduction

● Database porting to PostgreSQL

● Quality study

● High availability study

● Future works

● Conclusions

3

PostgreSQL Porting

● Porting from MySQL (5.1) to PostgreSQL (9.1) decided after the
2nd SuperB Collaboration Meeting

● PostgreSQL is more SQL compliant and, exploiting its hstore data-
type, allows to solve some major architectural issues concerning
the dataset management of physical parameters

● Extensive tests to check PostgrSQL and HTTP REST interface
system robustness have been carried

● During the stress, test up to 100 users*s-1 have been created.
Each user has carried out a connection and 8 insert/update
operations

● Stress test results were good, being the system capable to sustain
10000 DB transactions (being a transaction 1 connection+8
insert/update) in ~100s (~900 operations*sec-1)

4

Quality Study - Introduction

● Normalization analysis of the book-keeping database (sbk5) carried out

● sbk5 relies on PostgreSQL 9.1 and exploits hstore datatype (n-tuple key-
>value)

● Normalization study concerning database compliance to first three normal
forms (NF1, NF2 and NF3)

● NF1 - Table faithfully represents a relation and has no repeating groups

● NF2 - No non-prime attribute in the table is functionally dependent on a
proper subset of any candidate key

● NF3 - Every non-prime attribute is non-transitively dependent on every
candidate key in the table. The attribute that don't contribute to the
description of primary key are removed from the table

● User defined data-types (e.g. hstore) not considered in standard normalization
theory. Ad hoc analysis needed

● sbk5 has a very complex structure (see ERD)

5

Quality Study – Entity Relationship Diagram

6

Quality Study - Analysis

● Four logical hierarchical levels have been identified for fastsim/fullsim
book-keeping tables:

● Production

● Request

● Submission

● job+log+output+stat

● Few minor corrections have been recommended in order to make
sbk5 NF1, NF2 and NF3 compliant:

● few column deletion

● renaming some columns (e.g. uid)

● Specific considerations about hstore (thanks to Stefano Dal Prà @
CNAF)

7

Quality Study - Results

● According to this normalization study, the overall quality of sbk5 is
reported to be very good

● hstore fields are accessed by queries on single couple key->value so
they are not NF1 compliant (waste of resources). But hstores are
“rows with many attributes that are rarely examined” (~100 updates
every 6 months for sbk5)

● Trade-off: hstore are kept (de-normalized wasting resources)
because of its ease of access at very low frequency (only human
interaction)

● After some check, suggested modifications will be carried out very
soon

8

High-Availability Study

● High avalaibilty study have been planned for database systems

● Two possibilities:

● master-slave or master to multiple slaves (Slony-I)

● clustering

● PostgreSQL has is own built-in Write Ahead Logging-based
replication which imposes some constraints:

● every node must run the same PostgreSQL version

● everything must be duplicated (specific parts of the changes that
are going on cannot be replicated)

● nothing extra that changes data can run on a WAL-based replica

9

Slony-I - Introduction

● Slony-I is a master to multiple slaves replication system for PostgreSQL supporting
cascading (e.g. a node can feed another node which feeds another node) and failover

● Slony (or another trigger based replication system) is a better choice than the WAL
based replication in PostgreSQL in a lot of practical use-cases:

● master and slave are on different hardware platforms

● some additional tables for reporting needed on slave

● multiple databases on master but only some of them needed to be replicated to
the slave

● For security reasons different table permissions are needed on slave

● Possibility to take master down for hardware maintenance but after that the
master has to take over from the slave without having to re-copy the entire
database?

● replication from A==>B and then have B replicate to C and D?

● Automatic (Data Definition Language) DDL replication not needed

10

Slony-I - Limitations

● Slony-I does not automatically replicate:

● Changes to large objects (BLOBS)

● Changes made by DDL commands

● Changes to users and roles

● The main reason for these limitations is that Slony-I collects updates
using triggers, and neither schema changes nor large object
operations are captured by triggers

● There is a capability for Slony-I to propagate notably DDL changes if
you submit them as scripts via a specific script

11

Slony-I - Tests

● Slony-I has been installed on sb-serv02 (master) and sb-serv03
(slave)

● Master already configured but some minor issues on sb-serv03

● Some mistakes found in Slony-I documentation

● Listen paths between master and slave have still to be defined
according to CNAF network

● Failover policies will be carefully planned

● Tests will be carried out on a benchmark database (pgbench)

● Tests are expected to last 2 or 3 months

12

Future Work

● Documentation writing

● Complete the ongoing work on Slony-I master/slave
system

● Study of clustering systems (looking for real-world
success stories)

● DB refactoring (at mid-term as in HEP) considering
new possible approaches:

● split in: data placement, analysis, production
● modelization with no-SQL databases

● Interest in some R&D solutions (XLDB conference in
September could be an opportunity for new ideas)

13

Conclusions

● Database performance and quality analysis completed
obtaining excellent results

● High avalaibility studies still ongoing

● Future refactoring and R&D planned

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

