
Porting EvtGen to the Intel MIC Architecture

Status Report

Francesco Giacomini – INFN-CNAF

4th SuperB Collaboration Meeting
 La Biodola, 31 May – 5 June 2012

2012-03-20 3rd SuperB Collaboration Meeting - LNF 2

Next steps

● MIC-specific modifications to the code
○ Not clear yet how intrusive the modifications will be

● Access to a MIC and to the Intel compiler to test
the changes and make measurements

● Further code restructuring to replace runtime-
polymorphism (i.e. inheritence) with static-
polymorphism (i.e. templates)

 //Calculating the Branching Fractions
#pragma offload target(mic)
#pragma omp parallel for
 for (i=0 ; i < int(_nIntervalmH + 1.0); i++) {
 // …
 }

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 3

Outline

● Introduction to the Many-Integrated Core
Architecture

● Goal of the exercise
● Findings

○ MIC-related, performance-unrelated
● Other findings

○ MIC-unrelated, performance-related

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 4

Ideal for parallel/vectorized code,
but works for sequential code

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 5

Goal of the exercise

● Play with the MIC
○ In terms of software development
○ Contribution to the INFN COKA project (COmputation on Knigths
Architecture)

● Non-goal: measure performance
● Target is (part of) EvtGen

○ Limited to the function
EvtBtoXsgammaKagan::computeHadronicMass()

● First step to understand if and under which conditions MIC is
suitable for HEP software

● Longer-term goal is to smoothly integrate the possibility to
offload computation to an accelerator (such as a MIC or a GPU)
directly in the software framework of an experiment

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 6

Two approaches

1. Native compilation
• The whole application is compiled only for the MIC

Instruction Set
• The application needs to be moved explicitly onto the MIC

processor before execution

2. Heterogeneous compilation
• Some parts of the code are marked appropriately and

compiled both for the host IS and the MIC IS
• The application starts on the host and the runtime moves

code and data to the MIC processor, if available, when
needed

• Used in this exercise

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 7

Target code (simplified)

● A loop with independent iterations

Parameters p = …;
std::vector<double> out(size);
for (int i = 0; i < size; ++i) {
 …
 TwoCoeffFcn<…> s77f(s77FermiFunction, p, …);
 SimpsonIntegrator<…> s77i(s77f, p, …);
 out[i] = s77i.evaluate(p, …);
 …
}

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 8

Target code (simplified)

● A loop with independent iterations
○ They can run in parallel, e.g. with openmp

Parameters p = …;
std::vector<double> out(size);
#pragma omp parallel for
for (int i = 0; i < size; ++i) {
 …
 TwoCoeffFcn<…> s77f(s77FermiFunction, p, …);
 SimpsonIntegrator<…> s77i(s77f, p, …);
 out[i] = s77i.evaluate(p, …);
 …
}

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 9

Target code (simplified)

● A loop with independent iterations
○ They can run in parallel, e.g. with openmp

Parameters p = …;
std::vector<double> out(size);
#pragma omp parallel for
for (int i = 0; i < size; ++i) {
 …
 TwoCoeffFcn<…> s77f(s77FermiFunction, p, …);
 SimpsonIntegrator<…> s77i(s77f, p, …);
 out[i] = s77i.evaluate(p, …);
 …
}

Offload the execution
onto the MIC

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 10

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 11

Code changes (main block)

Parameters p = …;
std::vector<double> out(size);
#pragma omp parallel for
for (int i = 0; i < size; ++i) {
 …
 TwoCoeffFcn<…> s77f(s77FermiFunction, p, …);
 SimpsonIntegrator<…> s77i(s77f, p, …);
 out[i] = s77i.evaluate(p, …);
 …
}

Offload the execution
onto the MIC

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 12

Code changes

Parameters p = …;
std::vector<double> out(size);
double* out_p = &out[0];
#pragma offload target(mic) \
 in(p), out(out_p: length(size))
#pragma omp parallel for
for (int i = 0; i < size; ++i) {
 …
 TwoCoeffFcn<…> s77f(s77FermiFunction, p, …);
 SimpsonIntegrator<…> s77i(s77f, p, …);
 out_p[i] = s77i.evaluate(p, …);
 …
}

size-20 size-1321

out
out_p

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 13

Code changes (simple functions)

double FermiFunc(…) {
 return …;
}

double s77(…) {
 return …;
}

double s77FermiFunction(…) {
 return FermiFunc(…) * s77(…);
}

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 14

Code changes (simple functions)
#ifdef __INTEL_OFFLOAD
#define EVT_TARGET_MIC __attribute__((target(mic)))
#else
#define EVT_TARGET_MIC
#endif

EVT_TARGET_MIC double FermiFunc(…) {
 return …;
}

EVT_TARGET_MIC double s77(…) {
 return …;
}

EVT_TARGET_MIC double s77FermiFunction(…) {
 return FermiFunc(…) * s77(…);
}

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 15

Code changes (entire classes)

template<class F>
class TwoCoeffFcn
{
 …
};

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 16

Code changes (entire classes)

#pragma offload_attribute(push, target(mic))

template<class F>
class TwoCoeffFcn
{
 …
};

#pragma offload_attribute(pop)

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 17

Findings

● It works!
● Not very intrusive at source code level

○ But the Intel compiler suite is needed to produce
an executable that can be offloaded

● Next steps:
○ Identify a piece of code better suited to be

parallelized
○ Measure performance

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 18

Other findings

● The code has been heavily restructured to
make it more parallel-friendly
○ Value-based, possibly const

– Use only stack-based objects/variables, i.e. no pointers
○ A lot less sharing between loop iterations

● Significant performance improvements as a
side-effect

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 19

Changes affecting performance

● Reuse results of log, exp and pow
computations

double l = … * log(xt) * log(xt);

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 20

Changes affecting performance

● Reuse results of log, exp and pow
computations

double const log_xt = log(xt);
double l = … * log_xt * log_xt;

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 21

Changes affecting performance

● Reuse results of log, exp and pow
computations

double const log_xt = log(xt);
double l = … * log_xt * log_xt;

Baseline Math reuse
0

20

40

60

80

100

120

CPU Time

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 22

Changes affecting performance

● Replace runtime-polymorphism (i.e.
inheritance) with static-polymorphism (i.e.
templates)

class SimpsonIntegrator: public EvtItgAbsIntegrator
{
public:
 SimpsonIntegrator(EvtItgAbsFunction const& integrand, …);
 virtual ~SimpsonIntegrator();
 …
};

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 23

Changes affecting performance

● Replace runtime-polymorphism (i.e.
inheritance) with static-polymorphism (i.e.
templates)

template<typename F>
class SimpsonIntegrator
{
public:
 SimpsonIntegrator(F const& integrand, …);
 …
};

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 24

Changes affecting performance

● Replace runtime-polymorphism (i.e.
inheritance) with static-polymorphism (i.e.
templates)

template<typename F>
class SimpsonIntegrator
{
public:
 SimpsonIntegrator(F const& integrand, …);
 …
};

Baseline Templated integrator
0

20

40

60

80

100

120

CPU Time

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 25

Changes affecting performance

● Parallelism (two threads)

for (int i = 0; i < size; ++i) {
 …
}

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 26

Changes affecting performance

● Parallelism (two threads)

#pragma omp parallel for
for (int i = 0; i < size; ++i) {
 …
}

Baseline OMP
0

20

40

60

80

100

120

CPU Time

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 27

Changes affecting performance

● Combining effects

Baseline Templated integrator
+ Math reuse

0

20

40

60

80

100

120

CPU Time

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 28

Changes affecting performance

● Combining effects

A factor 5 faster!

Baseline Templated integrator
+ Math reuse

0

20

40

60

80

100

120

CPU Time

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 29

Changes affecting performance

● Combining effects

Baseline Templated integrator
+ Math reuse

0

20

40

60

80

100

120

CPU Time

Baseline Templated integrator
+ Math reuse + OMP

0

20

40

60

80

100

120

CPU Time

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 30

Conclusions

● The work on porting software to a parallel
environment and to MIC in particular looks
promising so far

● There is evidence that even improving existing
code would bring large benefits

