Porting EvtGen to the Intel MIC Architecture

Status Report

Francesco Giacomini — INFN-CNAF

4th SuperB Collaboration Meeting
La Biodola, 31 May — 5 June 2012




Next steps

* MIC-specific modifications to the code

o Not clear yet how intrusive the modifications will be

//Calculating the Branching Fractions
#pragma offload target(mic)
#pragma omp parallel for
for (1=0 ; 1 < int(_nIntervalmH + 1.0); i++) {
/] ..
}

* Access to a MIC and to the Intel compiler to test
the changes and make measurements

* Further code restructuring to replace ruptime-
polymorphism (i.e. inheritence) Mc—

phism (i.€. temptates)_.
2012-03-20 3rd SuperB Collaboration Mw 2




Outline

* Introduction to the Many-Integrated Core
Architecture

e Goal of the exercise
* Findings
o MIC-related, performance-unrelated

e Other findings
o MIC-unrelated, performance-related

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Intel® MIC Architecture — Knights Family

Multi-Threaded Multi-Threaded \

Wide SIMD R Wide SIMD
IS DS 15 DS
—

~

L2 Cache

System & I/0
Interface

Memory Controller

I
Special Function

-

—

Memory Controller

Multi-Threaded Multi-Threaded
Wide SIMD . 5o Wide SIMD

\ IS DS I DS /

Multiple IA cores 16-wide vector units (512b) 1024-bit ring bus
- In-order, short pipeline - Extended instruction set GDDR5 memory
- Multi-thread support Fully coherent caches - Supports virtual memory

Standard IA Shared Memory Programming

Far illustration only.
Future options subject to change without notice.

Copyright & 2010 Intal Carporation. All ights rasanvad. b
“Othar brands and names are tha property af thair respactive ownars

|deal for parallel/vectorized code,
but works for sequential code

4th SuperB Collaboration Meeting, La Biodola




Goal of the exercise

Play with the MIC

o |n terms of software development

o Contribution to the INFN COKA project (COmputation on Knigths
Architecture)

Non-goal: measure performance

Target is (part of) EvtGen

o Limited to the function
EvtBtoXsgammakKagan::computeHadronicMass()

First step to understand if and under which conditions MIC is
suitable for HEP software

Longer-term goal is to smoothly integrate the possibility to
offload computation to an accelerator (such as a MIC or a GPU)
directly in the software framework of an experiment

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Two approaches

1. Native compilation

+ The whole application is compiled only for the MIC
Instruction Set

 The application needs to be moved explicitly onto the MIC
processor before execution

2. Heterogeneous compilation

+ Some parts of the code are marked appropriately and
compiled both for the host IS and the MIC IS

 The application starts on the host and the runtime moves

code and data to the MIC processor, if available, when
needed

- Used in this exercise

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Target code (simplified)

* A loop with independent iterations

Parameters p = ..;
std: :vector<double> out(size);
for (int 1 = 0; 1 < size; ++1) {

TwoCoeffFcn<..> s77f(s77FermiFunction, p, ..);
SimpsonlIntegrator<..> s771(s77f, p, ..);
out[1] = s771.evaluate(p, ..);

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Target code (simplified)

* A loop with independent iterations
o They can run in parallel, e.g. with openmp

Parameters p = ..;

std: :vector<double> out(size);
#pragma omp parallel for

for (int 1 = 0; 1 < size; ++1) {

TwoCoeffFcn<..> s77f(s77FermiFunction, p, ..);
SimpsonIntegrator<..> s771(s77f, p, ..);
out[i1] = s771.evaluate(p, ..);

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Target code (simplified)

* A loop with independent iterations
o They can run in parallel, e.g. with openmp

Parameters p = ..;

std: :vector<double> out(size);

#pragma omp parallel for \
for (int 1 = 0; 1 < size; ++1) {

TwoCoeffFcn<..> s77f(s77FermiFunction, p, ..); }Ofﬂoad the execution
SimpsonIntegrator<..> s771(s77f, p, ..); onto the MIC
out[i1] = s77i.evaluate(p, ..);

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 9



Heterogeneous Compiler — Conceptual

Transformation

Source Code

#pragma offload
a =Db + g();

__attribute
((target (mic))) g()

[

1
1

}

Linux* Host Program
/“main () )
{

copy code_to_mic();
£();
unload_mic();

\J /

if (mic_available()){
send data to_mic();
start f_part_mic();

recieve _data from_mic();
J else

f_part_host();

)

Intel *°MIC Program

This all
happens
- automatically
~ when you
issue a single
compile
command

4

N
f_part_host ()
{fa =b + g();!}

f part_mic()
{a = b + g_mic();}

2012-06-01

4th SuperB Collaboration Meeting, La Biodola

10



Code changes (main block)

Parameters p = ..;

std: :vector<double> out(size);
#pragma omp parallel for

for (int 1 = 0; 1 < size; ++1) {

TwoCoeffFcn<..> s77f(s77FermiFunction, p, ..);
SimpsonlIntegrator<..> s77i1(s77f, p, ..);
out[i] = s77i.evaluate(p, ..);

>

Offload the execution
onto the MIC

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

11



Code changes

Parameters p = ..;

std: :vector<double> out(size);

double* out_p = &out[0];

#pragma offload target(mic) \
in(p), out(out_p: length(size))

#pragma omp parallel for

for (int 1{ = 0; 1 < size; ++1) {

TwoCoeffFcn<..> s77f(s77FermiFunction, p, ..);
SimpsonIntegrator<..> s77i(s77f, p, ..);
out_p[i] = s771.evaluate(p, ..);

A ¥
a¥

out_p
out

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

12



Code changes (simple functions)

double FermiFunc(..) {

return ..;

}

double s77(..) {
return ..;

}

double s77FermiFunction(..) {
return FermiFunc(..) * s77(..);

}

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

13



Code changes (simple functions)

#ifdef _ INTEL_OFFLOAD

#define EVT_TARGET MIC _ attribute__ ((target(mic)))
#else

#define EVT_TARGET_MIC

#endif

EVT _TARGET_MIC double FermiFunc(..) {
return ..;

}

EVT _TARGET MIC double s77(..) {
return ..;

}

EVT _TARGET_MIC double s77FermiFunction(..) {
return FermiFunc(..) * s77(..);

}

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

14



Code changes (entire classes)

template<class F>
class TwoCoeffFcn

{
.

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Code changes (entire classes)

#pragma offload attribute(push, target(mic))

template<class F>
class TwoCoeffFcn

{
.

#pragma offload attribute(pop)

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

16



Findings

e |t works!

* Not very intrusive at source code level

o But the Intel compiler suite is needed to produce
an executable that can be offloaded

* Next steps:

o |dentify a piece of code better suited to be
parallelized

o Measure performance

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

17



Other findings

* The code has been heavily restructured to
make it more parallel-friendly

o Value-based, possibly const
- Use only stack-based objects/variables, i.e. no pointers
o A lot less sharing between loop iterations

 Significant performance improvements as a
side-effect

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 18



Changes affecting performance

* Reuse results of log, exp and pow
computations

double 1 = .. * log(xt) * log(xt);

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

19



Changes affecting performance

* Reuse results of log, exp and pow
computations

double const log xt = log(xt);
double 1 = .. * log xt * log xt;

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

20



Changes affecting performance

* Reuse results of log, exp and pow
computations

CPU Time
120
100

80

double const log_xt = log(xt);
double 1 = .. * log_xt * log_xt; 60

40

20

Baseline Math reuse

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Changes affecting performance

* Replace runtime-polymorphism (i.e.
inheritance) with static-polymorphism (i.e.
templates)

class SimpsonIntegrator: public EvtItgAbsIntegrator

{
public:

SimpsonIntegrator(EvtItgAbsFunction const& integrand, ..);
virtual ~SimpsonIntegrator();

};...

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

22



Changes affecting performance

* Replace runtime-polymorphism (i.e.
inheritance) with static-polymorphism (i.e.
templates)

template<typename F>
class SimpsonIntegrator

{
public:

SimpsonIntegrator(F const& integrand, ..);

};...

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

23



Changes affecting performance

* Replace runtime-polymorphism (i.e.

inheritance) with static-polymorphism (i.e.

templates)

template<typename F>

class SimpsonIntegrator

120

100

CPU Time

public: 80
SimpsonIntegrator(F const& integrand, ..); 60
40
};
0
Baseline Templated integrator
2012-06-01 4th SuperB Collaboration Meeting, La Biodola 24




Changes affecting performance

* Parallelism (kwo threads)

for (int 1 = 0; 1 < size; ++1) {

-

2012-06-01 4th SuperB Collaboration Meeting, La Biodola

25



Changes affecting performance

* Parallelism (two threads)

CPU Time
120
100

80

#pragma omp parallel for

60
for (int 1 = 0; 1 < size; ++1) {

40

, )

Baseline OMP

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Changes affecting performance

 Combining effects

120

100

80

60

40

20

0

Bas

CPU Time

eline Templated integrator

+ Math reuse

2012-06-01

4th SuperB Collaboration Meeting, La Biodola

27



Changes affecting performance

 Combining effects

120

100

80

60

40

20

0

Bas

CPU Time

eline Templated integrator.

+ Math reuse \

A factor 5 faster!

2012-06-01

4th SuperB Collaboration Meeting, La Biodola

28



Changes affecting performance

 Combining effects

CPU Time CPU Time
120 120
100 100
80 80
60 60
40 40
20 20
0 - 0 -
Baseline Templated integrator Baseline Templated integrator
+ Math reuse + Math reuse + OMP

2012-06-01 4th SuperB Collaboration Meeting, La Biodola



Conclusions

* The work on porting software to a parallel
environment and to MIC in particular looks
promising so far

* There is evidence that even improving existing
code would bring large benefits

2012-06-01 4th SuperB Collaboration Meeting, La Biodola 30



