

Geant4 simulation: geometrical studies and building of photon dictionaries + getting ready for the FDIRC CRT test

Martino Borsato

Laboratoire de l'Accélérateur Linéaire

June 1st 2012

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

One slide to introduce myself

- master thesis at LAL with Nicolas Arnaud
- participation to the FDIRC CRT test at SLAC
- probably starting my PhD next October with the SuperB LAL group

Focusing **DIRC**

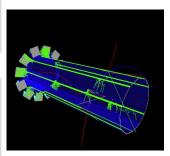
test geometry, FEE, PMTs, simulation, reconstruction, monitoring, bkg

Forward TOF

detector design, test of components, simulation

Preparation of SuperB data analysis

- use and improve simulation tools (fast and full)
- analyse datasets from simulation and cross-checks with BaBar data



Doug's Geant4 simulation: compiled and working well

- see SuperB wiki for setup instructions
- now running at *CC-IN2P3* and *ir2-superb queue at SLAC*

Options:

- Single photon gun:
 - geometrical studies
 - photon dictionaries
- CRT test: response to muons with typical distribution
- employ the dictionaries to compute single-photon resolution

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Understanding and documenting

I went through Doug's code with help from him and Nicolas

⇒ SuperB Wiki - Simulation of the SuperB Focusing DIRC

SinglePhoton root file branches

[edit]

Here is a complete list of the branches contained in the root files root_files/{YourDirectoryName}/SinglePhoton_{BarNumber}.root. Some of them do not make sense when, like here, the primary particle is a photon (for example the Cherenkov angle).

Two different reference frames are being used:

- = Global: origin in the C.L. (836.5 cm) below upper barbox, z opposite to FBLOCK, y upwards and x towards bar #1 (of the upper barbox).
- Bar: same as Global but z is shifted to the end of the entrance of the exit of the bar.
- . PMs: origin in the centre of the PMs plane, x flipped w.r.t Global, y lying perpendicularly in the PMs plane, z pointing out of fblock.

Branches:

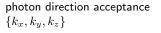
- Event:
 - Event = event #
 - . CPUTime = User time for this event [s]
- Primary particle:
 - primType = type of primary particle (PDG code)
 - = primMom = energy of primary particle [MeV]
 - primPos{X,Y,Z}, primDir{X,Y,Z} = x, p/p in Global r.f.
- · Particle while hitting the first bar surface
 - primPosQuartz{X,Y,Z}, primDirQuartz{X,Y,Z} = x, p/p in Global r.f.
 - primTimeQuartz = time elapsed from generation [ns]
 - artisEnteredOuers true if primary particle entered quarter

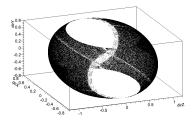
Testing a Photon Dictionary

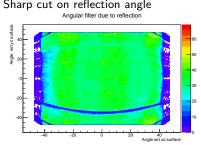
[edit]

The class "LookAtDictionary" can be used for basic tests (to check whether the dictionnary is empty, to access its information, etc.). In addition, it shows some examples of data accessing and processing. For instance:

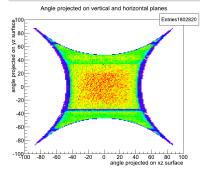
.x LoadSinglePhoton.C // Just load other libraries

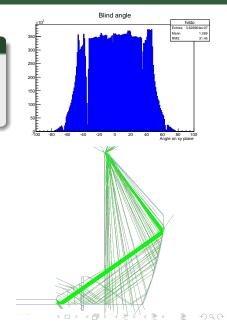

- .L LookAtDictionary.C+
- LookAtDictionary blat(<dir>) // <dir> is where the dictionary is located, relative to ../root_files/ blat.Time()->Draw()
- blat.fime()->Draw()
 blat.Graph kX kY(int iBar, int iPixel, int nGamMin = 0, double timeMax = 9999.)
- biac.oraph_KA_KT(Inc Ibar, Inc IFIXeI, Inc Hoammin = 0, double (Imemax = 9999.)


where ibar=[1:12], and iPixel=(nTube-1)*32+nPixel. The numbering of tubes and pixels are reported in the following pictures:


-									(ww	00	01	02	03
150 x 100	01	02	03	04	05	06	07	08	S 150	04	05	06	07
[*] 100	09	10	11	12	13	14	15	16	140	08	09	10	11
50	17	18	19	20	21	22	23	24		12	13	14	15
•		10		10					130	16	17	18	19
-50	25	26	27	28	29	30	31	32	120	20	21	22	23
	33	34	35	36	37	38	39	40		24	25	26	27
-100									110	28	29	30	31

- Snell's law: $\theta > 47 \deg$ for $\lambda = 410 \text{ nm}$
- $\sim 70\%$ absorbed in the bar

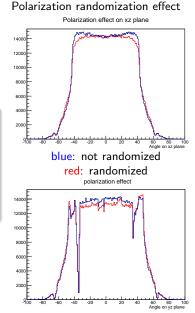

Sharp cut on reflection angle



Single photon gun - Geometrical studies

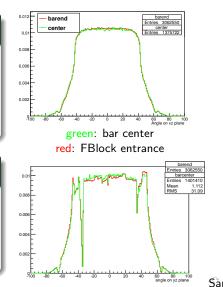
Found little blind angle

- $35 \deg \Rightarrow$ missing focal plane
- solution could be a longer wedge (Jerry)
- actually missing just 2%



Single photon gun - Geometrical studies

- Polarization can affect reflection probability
- Actually Brewster angle cut by Snell's law ⇒ very small effect
- anyway I randomized polarization direction (but still linear)


Effect of fake Snell's cut at FBlock entrance

Nearest neighbours clustering (Doug's)

- $(k_x, k_y, t) \rightarrow \text{scales as } N^3$
- Biplab and me got to Doug's point
- 9.5 hours for 5M events
- running at CCin2p3, but still slow

generate photons at FBlock entrance $(k_z < 0)$

- Snell's law by hand
- $n(\lambda)$ could be an issue \rightarrow take smallest wavelength
- no need to disentangle k_z with time at this level

Getting ready for the CRT test

- simulation of cosmic muons with CRT acceptance by Doug (bar 3)
- PMT positioning implemented by Biplab (to be committed soon)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

- use Doug's code to compute single photon resolution
- need to account for resolution of CRT
- need to cope with CRT data format