Inclusive determination of lumel

Paolo Gambino
Università di Torino

Our world is full of tensions

A puzzling tension

- The results we have for V_{ub} are contradictory, inclusive result is the odd man out.
- There is a $2-3 \sigma$ discrepancy between the inclusive and exclusive determinations. This could signal New Physics in semileptonic B decays, mostly affecting the exclusive determination.
- There is a 3σ tension between the inclusive V_{ub} and its indirect determination of the UT fit. This could be explained by sizeable shift in $\sin 2 \beta$.

sin2 β predictions:

A puzzling tension

- The results we have for V_{ub} are contradictory, inclusive result is the odd man out.
- There is a $2-3 \sigma$ discrepancy between the inclusive and exclusive determinations. This could signal New Physics in semileptonic B decays, mostly affecting the exclusive determination.
- There is a 3σ tension between the inclusive V_{ub} and its indirect determination of the UT fit. This could be explained by sizeable shift in $\sin 2 \beta$.
- Are we confident in inclusive results? they point to high $\left|V_{u b}\right|$ but experimental and theoretical results are quite consistent.
- The inclusive destiny of $V_{u b}$ is intertwined with that of $V_{c b}$

Inclusive vs exclusive B decays

As we aim at high precision, both methods are challenging

Inclusive semileptonic B decays: basic features

- Simple idea: inclusive decay do not depend on final state, factorize long distance dynamics of the meson. OPE allows to express it in terms of matrix elements of local operators

$$
T J(x) J(0) \approx c_{1} \bar{b} b+c_{2} \bar{b} \vec{D}^{2} b+c_{3} \bar{b} \sigma \cdot G b+\ldots
$$

- The Wilson coefficients are perturbative, matrix elements of local ops parameterize non-pert physics: double series in $\alpha_{s}, N m_{b}$
- Lowest order: decay of a free b, linear Λ / m_{b} absent. Depends on $\mathrm{m}_{\mathrm{b}, \mathrm{c}}, 2$ parameters at $\mathrm{O}\left(\mathrm{I} / \mathrm{m}_{\mathrm{b}}{ }^{2}\right), 2$ more at $\mathrm{O}\left(\mathrm{I} / \mathrm{mb}^{3}\right)$... $\left.\mu_{\pi}^{2}(\mu)=\left.\frac{1}{2 M_{B}}\langle B| \bar{b}(i \vec{D})^{2} b\right|_{B}\right\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 M_{B}}\langle B| \bar{b} \frac{i}{2} \sigma_{\mu \nu} G^{\mu \nu} b|B\rangle_{\mu}$

The total s.l. width in the OPE

$$
\begin{aligned}
& \Gamma\left[B \rightarrow X_{c} l \bar{\nu}\right]= \Gamma_{0} g(r)\left[1+\frac{\alpha_{s}}{\pi} c_{1}(r)+\frac{\alpha_{s}^{2}}{\pi^{2}} c_{2}(r)-\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\right)+c_{G}(r) \frac{\mu_{G}^{2}}{m_{b}^{2}} \\
&\left.+c_{D}(r) \frac{\rho_{D}^{3}}{m_{b}^{3}}+c_{L S}(r) \frac{\rho_{L S}^{3}}{m_{b}^{3}}+O\left(\alpha_{s} \frac{\mu_{\pi, G}^{2}}{m_{b}^{2}}\right)+O\left(\frac{1}{m_{b}^{4}}\right)\right] \\
& r=\frac{m_{c}^{2}}{m_{b}^{2}} \quad \quad \Gamma_{0}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} m_{b}^{5}}{192 \pi^{3}}
\end{aligned}
$$

OPE valid for inclusive enough measurements, away from perturbative singularities noments

Present implementations include all terms through $O\left(\alpha_{s}{ }^{2}, 1 / m_{b}{ }^{3}\right): m_{b, c,} \mu^{2} \pi, G, \rho^{3}{ }_{D, L S} 6$ parameters

Fitting OPE parameters to the moments

El spectrum

m_{x} spectrum

Total rate gives $\left|V_{c b}\right|$, global shape parameters (first few moments of distributions) tell us about B structure, m_{b} and m_{c}

OPE parameters describe universal properties of the B meson and of the quarks \rightarrow useful in many applications

A strip in the $m_{b}-m_{c}$ plane

Semileptonic moments do not measure m_{b} well.They rather identify a strip in (m_{b}, m_{c}) plane along which the minimum is shallow.
Unknown non-pert $O\left(\alpha_{s} / m_{b}\right)$ effects in radiative moments. Possibly irrelevant here but must be studied. But role of radiative moments in the fits is equivalent to using a bound on m_{b}

Using mass determinations

Comparison and combination of $m_{b, c}$ penalized by changes of scheme.

New fit with Hoangetal $m_{c}(3 \mathrm{GeV})=0.998(29) \mathrm{GeV}$ leads to $m_{b}{ }^{k i n}=4.56(2) \mathrm{GeV}-$ $m_{b}\left(\bar{m}_{b}\right)=4.19(4) \mathrm{GeV}$

Recent sum rules determinations converted to kin scheme

4.50

Kuhn et al $2009 \quad m_{c}{ }^{\text {kin }}(\mathrm{GeV})$ Hoang et al 2011 Hoang (m_{b}) 2002

New Global HFAG fit 2012

Inputs	$\left\|\mathrm{V}_{\mathrm{cb}}\right\| 10^{3}$	$\mathrm{~m}_{\mathrm{b}}{ }^{\text {kin }}$	$\chi^{2 / \mathrm{ndf}}$
$\mathrm{b} \rightarrow \mathrm{c} \&$ $\mathrm{~b} \rightarrow \mathrm{~s} \gamma$	$4 \mathrm{II.94(43)(58)}$	$4.574(32)$	$29.7 / 59$
$\mathrm{b} \rightarrow \mathrm{c} \&$ $\mathrm{~m}_{\mathrm{c}}$	$4 \mathrm{I} .88(44)(58)$	$4.560(23)$	$24.2 / 48$

Based on PG, Uraltsev, Benson et al
These results refer to the kinetic scheme, where the contributions
of gluons with energy below $\mu \approx I \mathrm{GeV}$ are absorbed in the OPE parameters

A number of different assumptions are also important: which data are included, how theory errors are computed...

Similar NLO result for $\left|V_{c b}\right|$ in IS scheme Bauer Ligeti Luke Manohar Trott

Open problems

* Theoretical errors are dominant. Need to understand (not only compute) higher order contributions
* Perturbative $O\left(\alpha_{s}\right)$ corrections to power suppressed contributions: partially known, the rest is in the pipeline
* Non-perturbative $\mathrm{I} / \mathrm{m}^{4}, \mathrm{I} / \mathrm{m}^{5}$ (Mannel,,Turczyk, Uraltsev) seem to mostly shift the OPE parameters, need to be studied.
* Role of theoretical correlations
* Quark-hadron duality violation

Exclusive decay $\mathbf{B} \rightarrow \mathrm{D}^{*}$ Iv

At zero recoil, where rate vanishes, the ff is

$$
\mathcal{F}(1)=\eta_{A}\left[1+O\left(\frac{1}{m_{c}^{2}}\right)+\ldots\right]
$$

Recent progress in measurement of slopes and shape parameters, exp error only $\sim 2 \%$
The ff $F(I)$ cannot be experimentally determined or constrained
Unquenched Lattice QCD (only group): $F(I)=0.902(I 7)$ Laiho et al 2010

$$
\left|\mathrm{V}_{\mathrm{cb}}\right|=39.6(0.7)(0.6) \times 10^{-3}
$$

~I.9の from inclusive determination 2.1\% error

Heavy quark sum rules imply a lower $F(I) \sim 0.86$, in agreement with inclusive V_{cb}

PG, Mannel, Uraltsev
$B \rightarrow$ Dlv has larger errors $\left|V_{c b}\right|=39 . \mid(\mid .4)(\mid .3) \times 10^{-3}$

The total $B \rightarrow X_{u} I V$ width in the OPE

$$
\left.\begin{array}{l}
\qquad\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]=\frac{G_{I}^{2}}{192 \pi^{3}} \cdot \frac{\left.m_{u b}^{5}\right|^{2}}{}\left[1+\frac{\alpha_{s}}{\pi} p_{u}^{(1)}(\mu)+\frac{\alpha_{s}^{2}}{\pi^{2}} p_{u}^{(2)}(r, \mu)-\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}-\frac{3 \mu_{G}^{2}}{2 m_{b}^{2}}\right. \\
\left.+\left(\frac{77}{6}+8 \ln \frac{\mu_{\mathrm{wA}}^{2}}{m_{b}^{2}}\right) \frac{\rho_{D}^{3}}{m_{b}^{3}}+\frac{3 \rho_{L S}^{3}}{2 m_{b}^{3}}+\frac{32 \pi^{2}}{m_{b}^{3}} B_{\mathrm{wA}}\left(\mu_{\mathrm{wA}}\right)\right] \\
\\
+O\left(\alpha_{s} \frac{\mu_{\pi, G}^{2}}{m_{b}^{2}}\right)+O\left(\frac{1}{m_{b}^{4}}\right)
\end{array}\right\}
$$

Weak Annihilation, severely constrained from D decays, see Kamenik, PG, arXiv:1004.0114

The problems with cuts

Experiments often use kinematic cuts to avoid the $\sim 100 x$ larger $b \rightarrow c l v$ background:

$$
m_{X}<M_{D} \quad E_{I}>\left(M_{B}^{2}-M_{D}^{2}\right) / 2 M_{B} \quad q^{2}>\left(M_{B}-M_{D}\right)^{2} \ldots
$$

The cuts destroy convergence of the OPE that works so well in $b \rightarrow c$. OPE expected to work only away from pert singularities

Rate becomes sensitive to local b-quark wave function properties like Fermi motion. Dominant nonpert contributions can be resummed into a SHAPE FUNCTION f(k+).
Equivalently the SF is seen to emerge from soft gluon resummation

How to access the SF?

$$
\frac{d^{3} \Gamma}{d p_{+} d p_{-} d E_{\ell}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{192 \pi^{3}} \int d k C\left(E_{\ell}, p_{+}, p_{-}, k\right) F(k)+O\left(\frac{\Lambda}{m_{b}}\right)
$$

Subleading SFs

Prediction based on resummed pQCD DGE,ADFR	OPE constraints + parameterization without/with resummation GGOU, BLNP
Fit radiative data (and b \rightarrow ulv)	
SIMBA	

SF from perturbation theory

Resummed perturbation theory is qualitatively different: Support properties; stability! (E. Gardi)

b quark SF emerges from resummed pQCD but needs an IR prescription and power corrections for $\mathbf{b} \rightarrow \mathbf{B}$

Dressed Gluon Exponentiation (DGE) by Gardi et al employs renormalon resummation to define Fermi motion.
Power corrections can be partly accomodated.

Aglietti et al (ADFR) use Analytic Coupling in the IR, a model

The SF in the OPE

Local OPE has also threshold singularities and SF can be equivalently introduced resumming dominant singularities Bigi et al, Neubert

Fermi motion can be parameterized within the OPE like PDFs in DIS. At leading order in m_{b} only a single universal function of one parameter enters (SF).

Unlike resummed $p Q C D$, the OPE does not predict the SF, only its first few moments. One then needs an ansatz for its functional form.

$$
\int d k_{+} k_{+}^{n} F_{i}\left(k_{+}, q^{2}\right)=\text { local OPE prediction } \Leftarrow \text { moments fits }
$$

> Two very different implementations: PG,Giordano,Ossola,Uraltsev (GGOU) Bosch,Lampe,Neubert,Paz (BLNP)

Several new subleading SFs appear at $O\left(\Lambda / m_{b}\right)$

Functional forms

About 100 forms considered in GGOU, large variety, double max discarded. Small uncertainty
(I-2\%) on V_{ub}

A more systematic method by Ligeti et al. arXiv:0807.1926 Plot shows 9 SFs that satisfy all the first three moments

A global comparison

only theory errors
(without common parametric)

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ in the kinetic scheme - GGOU
 PG,Giordano,Ossola,Uraltsev

Good consistency \& small th error. 4.7\% total error
very strong dependence on m_{b} recent multivariate results are theoretically cleanest but signal simulation relies on theoretical models

DGE

BLNP

CLEO (E_{e})
$3.82 \pm 0.45+0.23-0.26$
BELLE sim. ann. ($\mathrm{m}_{\mathrm{x}}, \mathrm{q}^{2}$)
$4.40 \pm 0.46+0.19-0.20$ BELLE (E ${ }_{\mathrm{e}}$)
$4.79 \pm 0.44+0.21-0.24$
BABAR (E_{e})
$4.28 \pm 0.24+0.22-0.24$
BABAR ($\mathrm{E}, \mathrm{s}_{\mathrm{h}}^{\max }$)
$4.32 \pm 0.29+0.24-0.29$
BELLE multivariate (p^{*})
$4.60 \pm 0.27 \pm 0.13$
BABAR $\left(\mathrm{m}_{\mathrm{x}}<1.55\right)$
$4.40 \pm 0.20+0.24-0.19$
BABAR ($\mathrm{m}_{\mathrm{x}}<1.7$)
$4.16 \pm 0.23+0.26-0.22$
BABAR ($\mathrm{m}_{\mathrm{x}}<1.7, \mathrm{q}^{2}>8$)
$4.19 \pm 0.22+0.18-0.19$
BABAR ($\mathrm{P}^{+}<0.66$)
$4.10 \pm 0.25+0.37-0.28$
$\operatorname{BABAR}\left(\mathrm{m}_{\mathrm{x}}, \mathrm{q}^{2}\right.$ fit, $\left.\mathrm{p}^{*}>1 \mathrm{GeV}\right)$
$4.40 \pm 0.24+0.12-0.13$
BABAR ($\mathrm{p} *>1.3 \mathrm{GeV}$)
$4.39 \pm 0.27+0.15-0.14$
Average +/- exp + theory - theory
$4245 \pm 0.15+0.15-0.16$
$\chi^{2} / \mathrm{dof}=11.0 / 11(\mathrm{CL}=44.00 \%)$
Andersen and Gardi (DGE)
JHEP 0601:097,2006
E. Gardi arXiv:0806.4524

2

CLEO (E_{e})
$4.19 \pm 0.49+0.26-0.34$
BELLE sim. ann. ($\mathrm{m}_{\mathrm{x}}, \mathrm{q}^{2}$)
$4.46 \pm 0.47+0.25-0.27$
BELLE (E ${ }_{\mathrm{e}}$)
$4.88 \pm 0.45+0.24-0.27$
BABAR (E_{e})
$4.48 \pm 0.25+0.27-0.28$
BABAR ($\mathrm{E}, \mathrm{s}_{\mathrm{h}}^{\max }$)
$4.66 \pm 0.31+0.31-0.36$
BELLE multivariate (p^{*})
$4.47 \pm 0.27+0.19-0.21$
BABAR $\left(\mathrm{m}_{\mathrm{x}}<1.55\right)$
$4.17 \pm 0.19 \pm 0.24$
BABAR ($\mathrm{m}_{\mathrm{x}}<1.7$)
$3.97 \pm 0.22 \pm 0.20$
BABAR ($\mathrm{m}_{\mathrm{x}}<1.7, \mathrm{q}^{2}>8$)
$4.25 \pm 0.23+0.23-0.25$
BABAR ($\mathrm{P}^{+}<0.66$)
$4.02 \pm 0.25+0.24-0.23$
$\operatorname{BABAR}\left(\mathrm{m}_{\mathrm{x}}, \mathrm{q}^{2}\right.$ fit, $\left.\mathrm{p}^{*}>1 \mathrm{GeV}\right)$
$4.28 \pm 0.24+0.18-0.20$
BABAR ($\mathrm{p} *>1.3 \mathrm{GeV}$)
$4.29 \pm 0.27+0.19-0.20$
Average $+/$-exp + theory - theory $4.40 \pm 0.15+0.19-0.21$
$\chi^{2} / \mathrm{dof}=11.0 / 11(\mathrm{CL}=44.00 \%)$
Bosch, Lange, Neubert and Paz (BLNP)
Phys. Rev.D72:073006, 2005 Phys.Rev.D72:073006,2005

ϵ

2

Paolo Gambino SuperB, Elba $31 / 5 / 2012$

Perturbative calculations

$O\left(\alpha_{s}\right)$ implemented by all groups
De Fazio,Neubert
Running coupling $\mathrm{O}\left(\alpha_{s}^{2} \beta_{0}\right)$ PG,Gardi,Ridolfi in GGOU, DGE lead to $-5 \% \&+2 \%$, resp. in $\left|V_{\mathrm{ub}}\right|$

- $P_{+}<0.66 \mathrm{GeV}$:
- $P_{+}<0.66 \mathrm{GeV}$:

	$\Gamma_{u}^{(0)}$	μ_{h}	μ_{i}
NLO	60.37	${ }_{-3.37}^{+3.52}$	${ }_{-6.37}^{+3.87}$
NNLO	52.92	${ }_{-1.72}^{1.46}$	${ }_{-2.79}^{+0.09}$

Greub,Neubert,Pecjak arXiv:0909.1609
Not yet included in HFAG averages
complete $O\left(\alpha_{s}{ }^{2}\right)$ in the SF region (2008)

Asatrian,Greub,Pecjak-Bonciani,FerrogliaBeneke,Huber, Li - G. Bell

$O\left(\alpha_{s}{ }^{2}\right)$ in SF region leads to up to 8% increase of $V_{u b}$ in BLNP: most likely an artefact of that approach. $O\left(\alpha_{s}{ }^{2}\right)$ in the full phase space necessary

Fixed-Order	$\Gamma_{u}^{(0)}$	μ
NLO	49.11	${ }_{-9.41}^{+5.43}$
NNLO	49.53	${ }_{-4.01}^{+0.13}$

Offset appears related to resummation

In summary

HFAG 2012	Average $\left\|\mathrm{V}_{\mathrm{ub}}\right\| \times 10^{3}$
DGE	$4.45(15)_{\mathrm{ex}}+15-16$
BLNP	$4.40(15)_{\mathrm{ex}}+19-21$
GGOU	$4.39(15)_{\mathrm{ex}}{ }^{+12}-14$

2.7-3 σ from $B \rightarrow$ TIV (MILC-FNAL) 2σ from $B \rightarrow$ TIV (LCSR, Siegen) 2.5-3 σ from UTFit 201I
 -5-6\% total error

Vub exclusive ($B \rightarrow \pi \mathrm{II}$)

Experimental situation not completely clear at low q^{2}

	$\mathcal{B}_{\text {tot }}$	$\Delta \mathcal{B}\left(\mathrm{q}^{2}<12 \mathrm{GeV}^{2}\right)$	$\Delta \boldsymbol{B}\left(\mathrm{q}^{2}>16 \mathrm{GeV}{ }^{2}\right)$
Average untagged	$1.44 \pm 0.03 \pm 0.04$	$0.84 \pm 0.02 \pm 0.03$	$0.36 \pm 0.03 \pm 0.02$
Average tagged	$1.32 \pm 0.08 \pm 0.03$	$0.69 \pm 0.05 \pm 0.02$	$0.37 \pm 0.04 \pm 0.01$

Theory	Experiment	q^{2} range $\left(\mathrm{GeV}^{2}\right)$	$\boldsymbol{\Delta \mathcal { B } ^ { \mathrm { a } } (1 0 ^ { - 4 })}$	$\boldsymbol{\Delta} \boldsymbol{\zeta}^{\mathrm{b}}\left(\mathrm{ps}^{-1}\right)$	$\left\|\mathrm{V}_{\mathrm{ub}}\right\|^{\mathrm{c}}\left(10^{-3}\right)$
LCSR	untagged average	$0-12$	0.84 ± 0.04	$4.00_{-0.95}^{+1.01}$	$3.69 \pm 0.08_{-0.37}^{+0.57}$
	tagged average	$0-12$	0.69 ± 0.05	$4.00_{-0.95}^{+1.01}$	$3.37 \pm 0.13_{-0.36}^{+0.53}$
HPQCD	untagged average	$16-26.4$	0.36 ± 0.04	2.02 ± 0.55	$3.41 \pm 0.10_{-0.39}^{+0.59}$
	tagged average	$16-26.4$	0.37 ± 0.04	2.02 ± 0.55	$3.47 \pm 0.19_{-0.39}^{+0.60}$

These determinations use the decay rates, but not the information from the q^{2} spectrum shape.The situation can be improved by fitting lattice/LCSR together with data

Vub exclusive

Recent method employed in PRD 79054507 (2009) (MILC)

- $z=z\left(q^{2}\right)$
- Lattice points:

$$
f_{+}\left(q^{2}\right) \quad q^{2}>16 \mathrm{GeV}^{2}
$$

- Experiment:

$$
\left|V_{u b}\right| \times f_{+}\left(q^{2}\right)
$$

- Simultaneous fit $\Rightarrow\left|V_{u b}\right|$

Belle Result:

$$
\left|V_{u b}\right|=(3.43 \pm 0.33) \times 10^{-3} \quad(\text { Error stat. and syst. combined })
$$

Including Babar data with the same lattice points leads to $\mathbf{3 . 2 5 (3 I) \times 1 0 ^ { - 3 }}$
A light-cone sum rule calculation is also possible. Most recent result

$$
\left|V_{u b}\right|=\left(\left.3.50_{-0.33}^{+0.38}\right|_{t h .} \pm\left. 0.11\right|_{\text {exp. }}\right) \times 10^{-3} \quad \begin{gathered}
\text { Khodjamirian, Mannel, Offen,Wang 20II } \\
\text { see also Ball \& Bharucha }
\end{gathered}
$$

conclusions

- Semileptonic B decays provide us with a lot of information: $V_{c b}, V_{u b}$, constraints on $m_{b, c}$ (consistent with sum rules)
- New HFAG fit improves m_{b} determination for $V_{u b}$
- Some tension persists between exclusive and inclusive $\left|V_{c b}\right|$
- Inclusive $V_{u b} \sim 2-3 \sigma$ from exclusive one and UT fit
- cleanest exp results don't need SF (at least directly)
- no sign of inconsistency in the theoretical picture
- my favourite M_{x} cut analyses give $V_{u b} \sim 4.0 \times 10^{-3}$

Back-up slides

New physics?

LR models can explain a difference between inclusive and exclusive $V_{u b} \quad-0.1$ determinations Chen,Nam

Also in MSSM Crivellin
BUT the RH currents affect predominantly the exclusive $V_{u b}$, making the conflict between $V_{u b}$ and $\sin 2 \beta\left(\psi K_{s}\right)$ stronger...

Buras, Gemmler, Isidori 1007.1993

Higher power corrections

Proliferation of non-pert parameters: for ex at $\mathrm{I} / \mathrm{m}_{\mathrm{b}}{ }^{4}$

$$
\begin{array}{ll}
2 M_{B} m_{1}=\left\langle\left((\vec{p})^{2}\right)^{2}\right\rangle & 2 M_{B} m_{5}=g^{2}\langle\vec{S} \cdot(\vec{E} \times \vec{E})\rangle \\
2 M_{B} m_{2}=g^{2}\left\langle\vec{E}^{2}\right\rangle & 2 M_{B} m_{6}=g^{2}\langle\vec{S} \cdot(\vec{B} \times \vec{B})\rangle \\
2 M_{B} m_{3}=g^{2}\left\langle\vec{B}^{2}\right\rangle & 2 M_{B} m_{7}=g\langle(\vec{S} \cdot \vec{p})(\vec{p} \cdot \vec{B})\rangle \\
2 M_{B} m_{4}=g\langle\vec{p} \cdot \operatorname{rot} \vec{B}\rangle & 2 M_{B} m_{8}=g\left\langle(\vec{S} \cdot \vec{B})(\vec{p})^{2}\right\rangle \\
& 2 M_{B} m_{9}=g\langle\Delta(\vec{\sigma} \cdot \vec{B})\rangle
\end{array}
$$

can be estimated by Ground State Saturation

$$
\begin{aligned}
& \left\langle\Omega_{0}\right| \bar{Q} i D_{j} i D_{k} i D_{l} i D_{m} Q\left|\Omega_{0}\right\rangle=\left\langle\Omega_{0}\right| \bar{Q} i D_{j} i D_{k} Q\left|\Omega_{0}\right\rangle\left\langle\Omega_{0}\right| \bar{Q} i D_{l} i D_{m} Q\left|\Omega_{0}\right\rangle \\
& \frac{\delta \Gamma_{1 / m^{4}}+\delta \Gamma_{1 / m^{5}}}{\Gamma} \approx 0.013 \quad \frac{\delta V_{c b}}{V_{c b}} \approx+0.4 \%
\end{aligned}
$$

after inclusion of the corrections in the moments. While this might set the scale of effect, not yet clear how much
it depends on assumptions on expectation values.

How reliable are mass determinations?

Collaboration with C. Schwanda, in progress

Theoretical correlations

Correlations between theory errors of moments with different cuts difficult to estimate ${ }^{4.55}$

Examples:
I. 100\% correlations
2. corr. computed from low-order expressions
3. experimental correlations (very similar to no correlation)
 always assume different central moments uncorrelated

The high $q^{\mathbf{2}}$ tail

At high q^{2} higher dimensional operators are not suppressed leading to pathological features. Origin in the non-analytic square root

$$
\frac{d \Gamma}{d q_{0} d q^{2}} \propto \sqrt{q_{0}^{2}-q^{2}} \quad \Longleftrightarrow \frac{d \Gamma}{d q^{2}} \sim-\sum_{n=1}^{\infty} \frac{(-1)^{n} b_{n}\left(\hat{q}^{2}\right)}{\left(1-\hat{q}^{2}\right)^{n-2}}\left(\frac{\bar{\Lambda}}{m_{b}}\right)^{n}
$$

In the integrated rate the $\mathrm{I} / \mathrm{m}_{\mathrm{b}}{ }^{3}$ singularity is removed by the WA operator: needs modelling for q^{2} spectrum

$$
\delta \Gamma \sim\left[C_{\mathrm{WA}} B_{\mathrm{WA}}\left(\mu_{\mathrm{WA}}\right)-\left(8 \ln \frac{m_{b}^{2}}{\mu_{\mathrm{wA}}^{2}}-\frac{77}{6}\right) \frac{\rho_{D}^{3}}{m_{b}^{3}}+\mathcal{O}\left(\alpha_{s}\right)\right]
$$

WA matrix element $\mathrm{B}_{\text {WA }}$ parameterizes global properties of the tail, affects V_{ub} depending on cuts, tends to decrease V_{ub}, may pollute all present determinations

Heavy Quark Sum Rule for $B \rightarrow D^{*} \mid v$

The local OPE for inclusive B decays provides a (unitarity) bound on $\mathrm{F}(\mathrm{I})$:

A strict bound follows for zero inelastic contributions.

$$
\begin{array}{rc}
\sqrt{\xi_{A}^{\text {pert }}}=0.98 \pm .01 & \Delta_{\text {power }}=0.09+0.03-0.02 \approx 0.10 \\
\mathrm{~F}(\mathrm{I})<0.93 & \text { Uraltsev, Mannel, } \mathrm{PG} \text { arXiv:1004.2859 }
\end{array}
$$

Also the inelastic piece can be estimated, although with large uncertainty. It typically leads to $\mathbf{F}(\mathbf{I}) \approx \mathbf{0 . 8 6}$, in agreement with V_{cb} inclusive.

The SF in GGOU

Leading SF resums leading twist effects, $\mathrm{m}_{\mathrm{b}} \rightarrow \infty$ universal, q^{2} inde p

Finite m_{b} distribution functions include all $\mathrm{I} / \mathrm{m}_{\mathrm{b}}$ effects, non-universal no need for subleading SFs

$$
\begin{aligned}
& \left.F\left(k_{+}\right) \xrightarrow[\text { Structure function }]{ } F_{i}\left(k_{+},\left(q^{2}\right), \mu\right)\right) \\
& (i=1,2,3) \quad q^{2} \text { dependence } \\
& \text { cutoff dependence } \\
& \text { (gluons with } \mathrm{E}_{\mathrm{g}}<\mu \text {) } \\
& \frac{d^{3} \Gamma}{d q^{2} d q_{0} d E_{\ell}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{8 \pi^{3}}\left\{q^{2} W_{1}-\left[2 E_{\ell}^{2}-2 q_{0} E_{\ell}+\frac{q^{2}}{2}\right] W_{2}+q^{2}\left(2 E_{\ell}-q_{0}\right) W_{3}\right\} \\
& W_{i}\left(q_{0}, q^{2}\right)=m_{b}^{n_{i}}(\mu) \int d k_{+} F_{i}\left(k_{+}, q^{2}, \mu\right) W_{i}^{\text {pert }}\left[q_{0}-\frac{k_{+}}{2}\left(1-\frac{q^{2}}{m_{b} M_{B}}\right), q^{2}, \mu\right]
\end{aligned}
$$

This factorization formula perturbatively defines the distribution functions
see also Benson, Bigi, Uraltsev for bs γ

$$
\int d k_{+} k_{+}^{n} F_{i}\left(k_{+}, q^{2}\right)=\text { local OPE Importance of subleading effects }
$$

