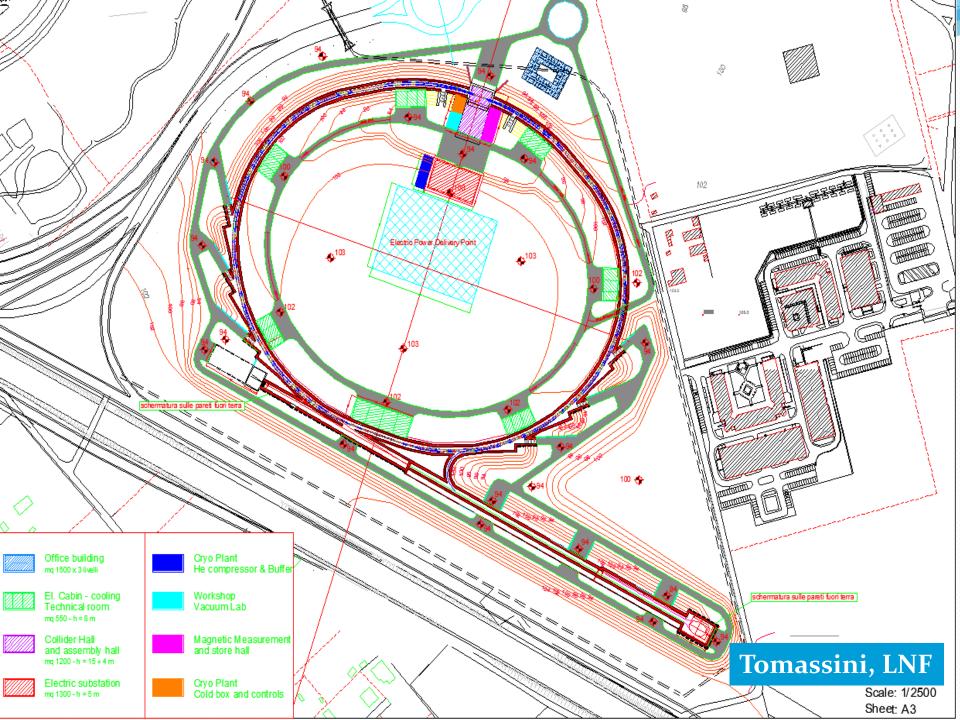
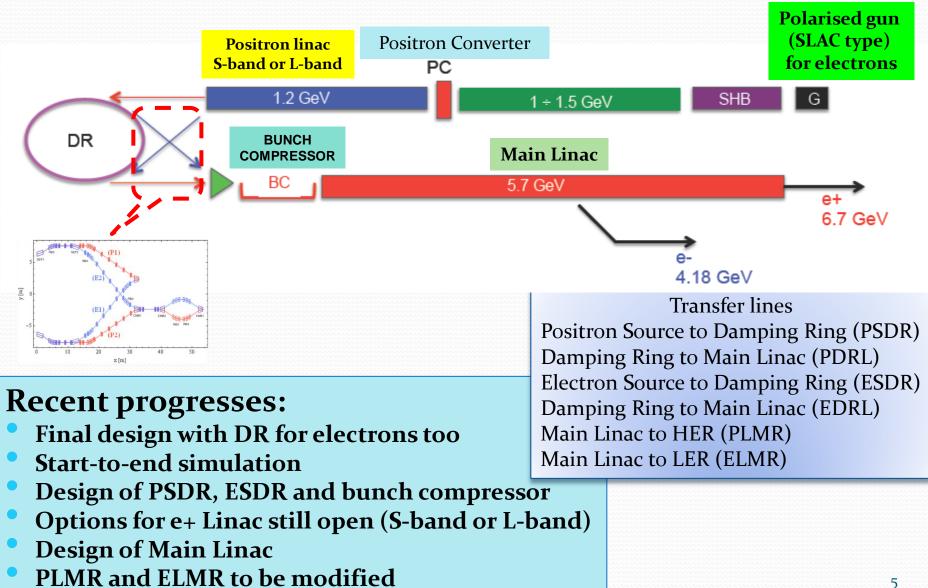


Accelerator status

M. Biagini, LNF IV SuperB Meeting, Elba, June 4th 2012



Since last meeting...


- Two «management» meetings (2-3 April, 16 May) for definition of Work Breakdown Structure (WBS), work organization, cost estimate, collaboration with JAI (Oxford)
- Studies on FEL option with SuperB Linac (see next talk)
- Cost estimate task force:
 - Produce a cost estimate for the baseline design by end of June
 - Leaders of some sub-systems have not yet been identified
 → educated guess
 - Very fast response and coordination, help from INFN-LNS

and...

- Layout of accelerator complex on Tor Vergata site
- Start-to-end simulation of beam from DR to end of Linac
- New tests on clearing electrodes
- Test of 14-bit bunch-by-bunch feedback at DAΦNE
- Mechanical layout of DR and MR elements
- MOU with John Adams Institute (Oxford) prepared for Final Focus work
- Published 18 job offers for CabibboLab \rightarrow deadline June 6th

New injection system layout

Damping Ring specifications

	Units	Value
Number of dipoles (rectangular)		16
Dipole length	m	0.75
Dipole field	Т	1.745
Number of quadrupoles		50
Quadrupole length	m	0.3
Maximum gradient	T/m	23.3
Number of independent power supplies		8
Number of sextupoles		24
Maximum integrated gradient $\partial^2 B/\partial x^2$	T/m	19.0
Number of independent power supplies		2

TABLE 1 - Magnet system parameters

TABLE 2 - Vacuum system parameters

	Units	Value
Maximum Energy	GeV	1.2
Maximum beam current	mA	10
Circumference	m	67
Dipole field	Т	1.745
Beam stay clear radius	cm	3
Operating pressure	nTorr	1

DR Transfer Lines specifications

Table 1 - Dipole Magnets for all lines E2, E1, P2, P1									
name	N	l (m)	angle (rad)	B (T)	bsc H (mm)	bsc V (mm)			
Septum magnet	4	2.00	0.3366	0.5610	25	10			
Rectangular bending RB3	8	1.35	0.3366	-0.8311	35	10			
Rectangular bending RB2	4	1.35	0.2244	0.5541	25	10			
Combiner magnet	4	1.35	0.3366	-0.8311	25	10			

Table 2 - Quadrupole Magne	ts for a	ll lines E2, E1, P2, P1
Number of quadrupoles	44	
Quadrupole length (m)	0.43	
Beam stay-clear radius (mm)	25	
Maximum gradient (T/m)	7.3	maximum value + 10%
Minimum gradient (T/m)	0.2	
Max integrated gradient (T)	3.1	maximum value + 10%
Min integrated gradient (T)	0.2	

Table 3 - Corrector dipoles for all lines E2, E1, P2, P1					
Number of orizontal correctors	0				
Number of vertical correctors	18				
Max angle of vertical correctors (mrad)	0.5				
Max vertical integrated field (Tm)	1.67E-03				
Beam stay-clear radius (mm)	25				

Linac specifications

L1 from electron gun to positron production target, E= 1.5 GeVL2 from positron target to damping ring, E= 1 GeVL3 from damping ring up to E= 6.7 GeV.

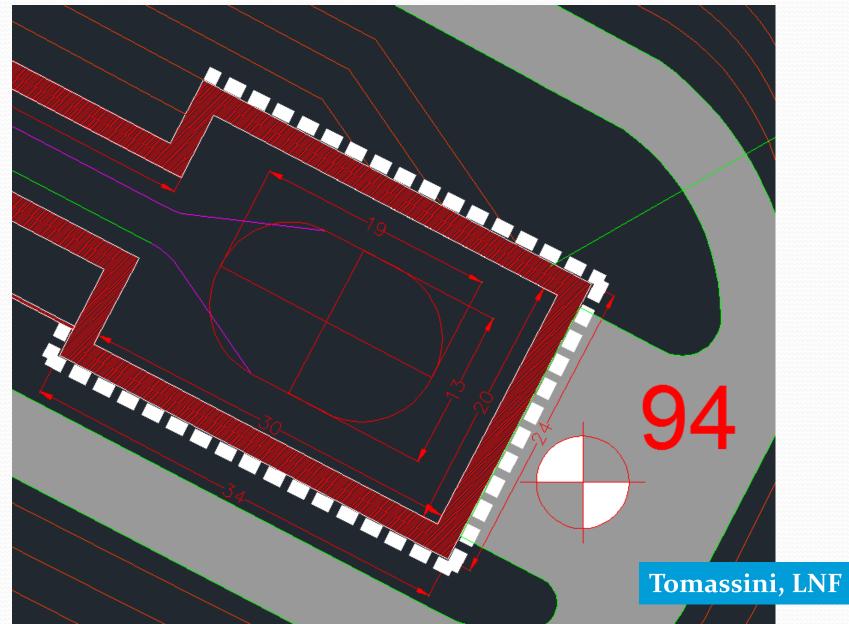
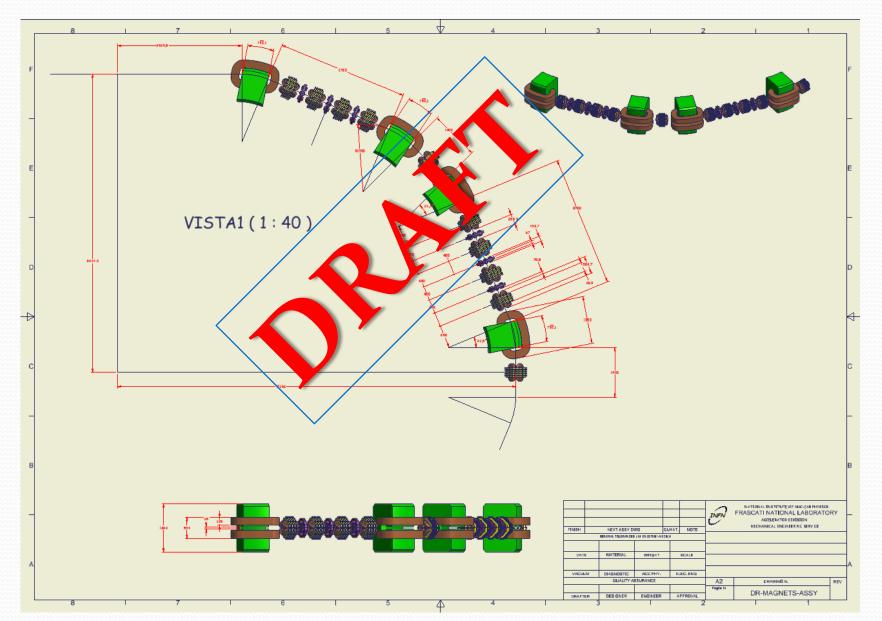

All the linac, L1+L2+L3, is made of 120 S-band accelerating sections

Table 4 – Linac magnets


Quadrupoles	
Number of quadrupoles	60
Magnetic length (m)	0.086
Physical length (m)	0.102
Maximum gradient (T/m)	9
Aperture radius (mm)	25.5
Correctors	
Total number of correctors	120
Correctors at E≤1 GeV	36
Correctors at E>1 GeV	84
Maximum corrector angle (mrad)	0.5
Maximum corrector field integral at E≤1 GeV (Tm)	1.1 10-2
Maximum corrector field integral at E>1 GeV (Tm)	1.7 10-3
Aperture radius (mm)	25

L2 has solenoids in the first ~4 sections and 2 quadrupoles/section in the following ~10 sections


DR hall

DR mechanical layout

MR injection

Cost estimate requirements

- Cost estimate is being done in a WBS, prepared by C.
 Sanelli
- Description of methodology required
- Definition of group structure and needed personnel, possibly with timeline, required
- Risk analisys required

Some examples below (not showing costs)...

Magnets cost estimate

- Two independent first estimates by C. Sanelli and P. Fabbricatore (in fair agreement) since «Magnet» group leader has still to be appointed
- The «magnets commission» has studied the PEP-II available magnets, but potential savings are overcome by the cost of: substitution of Al coils, shipping & handling, QA and test
- List of MR, DR and TL magnets given to Power Supplies leader for cost estimate

Power supplies cost estimate

Total Converter and Power

Small Gap

	LER	HER
Bending	34	55
Power	1.401.300	1.668.370
Quadrupoles	362	353
Power	1.394.336	2.030.292
Sextupoles	102	104
Power	60.000	62.400
Correctors	300	300
Power	180.000	180.000
Total Power	3.035.636	3.941.062

Damping Ring					
Bending	4				
Power	340.400				
Quadrupoles	8				
Power	164.000				
Sextupoles	2				
Power	11.500				
Correctors	20				
Power	21.600				
Total Power	537.100				

Large Gap

	LER	HER
Bending	34	65
Power	2.244.000	2.805.120
Quadrupoles	362	353
Power	3.764.805	5.585.090
Sextupoles	102	104
Power	242.760	355.680
Correctors	300	300
Power	180.000	180.000
Total Power	6.431.565	8.925.890

Total Converter	1644
Total Power (Small)	7.513.798
Total Power (Large)	15.894.557

Cost estimate for power needs (1 example)

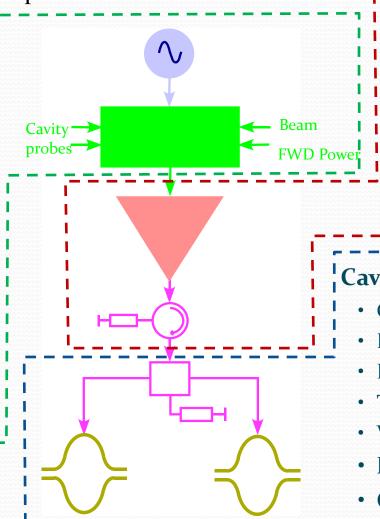
1

	Riepilogo apparecchiature c	cabine						
		Arrivi MT (IMS)	Partenze MT (Int)	Cong MT	Montanti TR 1,6 MVA	Partenze BT 400/630		Rifasament o 6oo kVA
1	RF-PS	4	. 20	2	2 4	. 25	10	2
2	ARC 1	2	3) 3	16	10	1
3	ARC 2	2	3) 3	16	10	1
4	ARC 3	2	3) 3	16	10	1
5	ARC 4	2	3) 3	16	10	1
6	ARC 5	2	3) 3	16	10	1
7	ARC 6	2	3) 3	16	10	1
8	LIN 1	2	4	. (9 4	. 20	15	4
9	LIN 2 (DR)	2	4	. (9 4	. 20	15	4
10	LIN (TL)	2	4	. (9 4	. 20	15	4
11	IR	2	2) 2	10	10	1
12	Stazione e Crio (diretto da QMTG)	C	0) 2	. 10	10	0
13	Building	2	2) 2	15	10	2
	Tot apparecchiature per 13 cabine:	26	54	. 2	2 40	216	145	23

Ricci, LNF

'n۰

•1


RF cost estimate (PEP-II RF)

Basic breakdown structure of the RF system to be used for:

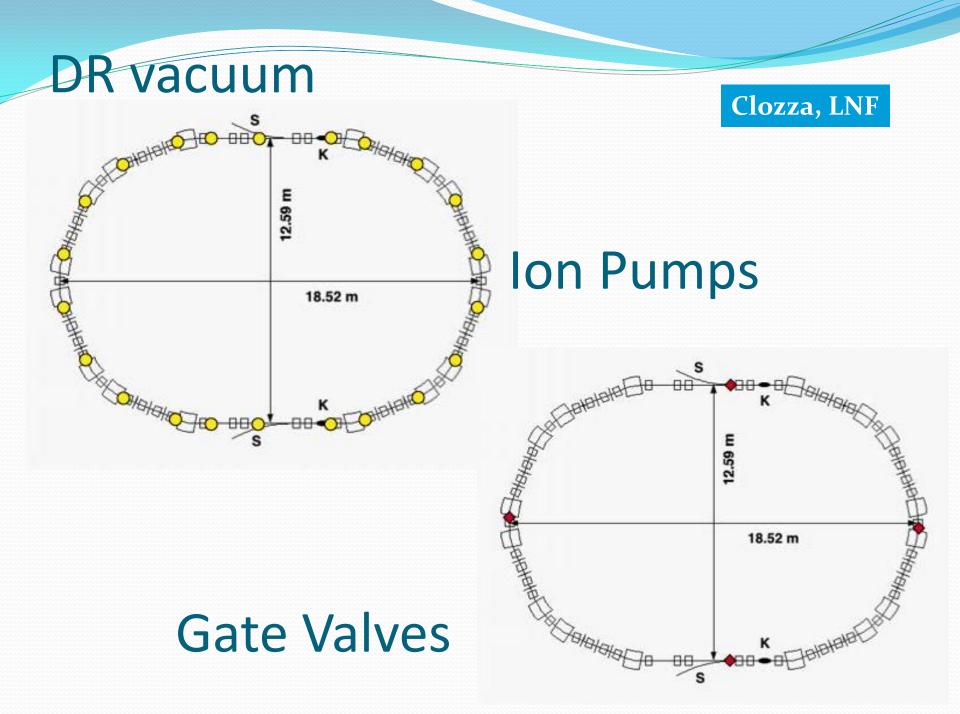
- Cost review (based on PEP-II RF system)
- Team organization and manpower effort estimate

LLRF + Interlock and PLC

- Amplitude and phase set of the accelerating fields
- Tuning control of the accelerating structures
- Beam loading compensation
- RF and beam feedback systems
- System Interlock and safety

RF Power Station

- Klystron
- Power supply
- RF driver
- Circulator
- Dummy load

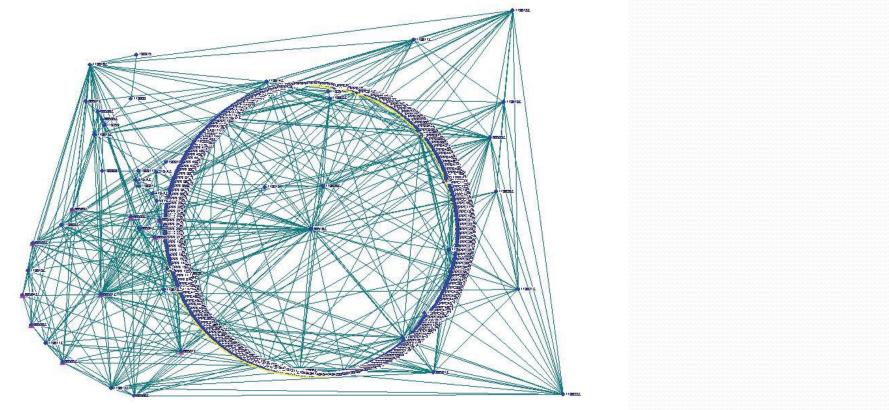

Gallo, LNF

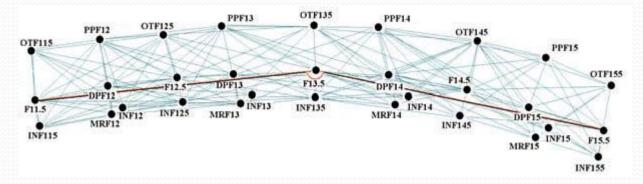
Cavities and WG network

- Cavity body
- Input couplers
- Damping waveguides
- Tuners
- Vacuum
- Mechanics
- Cooling

Vacuum system

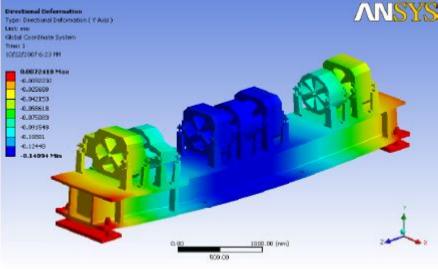
- Cost estimate ready for DR and Linac
- Waiting for definition of TL to the MR
- Discussion still open on MR beam pipe aperture → task force needed
- Needs interactions for definition of impedance budget (we are badly missing an impedance czar)




Mechanics & Alignment cost evaluation

- Magnet Supports (Girders) (evaluated)
- RF Cavity (Supports) (not evaluated, from PEP-II)
- Mechanical Installation (evaluated)
- Network survey and Alignment (evaluated)
- Final Focus (FF) Mechanical Stabilization (not evaluated yet)

Survey Network Strategy (example Tevatron)



Girders Philosophy

- Fundamental frequency > 30 Hz
- Low strain-High flexural rigidity
- Mechanical assembly

Feedbacks & Timing cost estimate

- 1.6.6 BEAM CONTROL FEEDBACK
 - 1.6.6.1 HORIZONTAL FEEDBACK (ler + her)
 - 1.6.6.2 VERTICAL FEEDBACK (ler + her)
 - 1.6.6.3 LONGITUDINAL FEEDBACK (ler + her)
 - 1.6.6.4 IP (Interaction Point) FEEDBACK
 - 1.6.6.4.1 FAST IP FEEDBACK
 - 1.6.6.4.2 DITHER FEEDBACK
 - 1.6.6.4.3 IP FEEDFORWARD
 - 1.6.6.5 SYNCHRONIZATION (2PS RMS JITTER)

- <u>Cost estimate</u> are mostly based on real quotations (single piece) without taking in account discount that can be foreseen for big order (20-30%)
- For several items cost estimate is based on reasonable considerations.
- For items that need R&D the list could be changed in the future both in terms of what is necessary and how much it costs
- Great part of the necessary instrumentation is explicitly included in the cost evaluation list: for example an oscilloscope at 1GHz , 4 channels is part of two transverse bunch-by-bunch feedbacks (hor+ver, 1 single main ring) because it will be located in the same rack of the feedback to monitor the correct behavior
- in general the accessories are included (racks, trays, crates), nevertheless the costs are roughly estimated

Diagnostics cost estimate

- COST ESTIMATE BASED ON
 - Budgetary Offer for the most expensive systems (BPM)

Serio, LNF

- Offer from Cable/Connectors Manufacturer
- Pricelists of Commercial Diagnostic Instruments
- Pricelist of UHV components
- Past and Recent Experience of Similar Systems
- Educated Guess

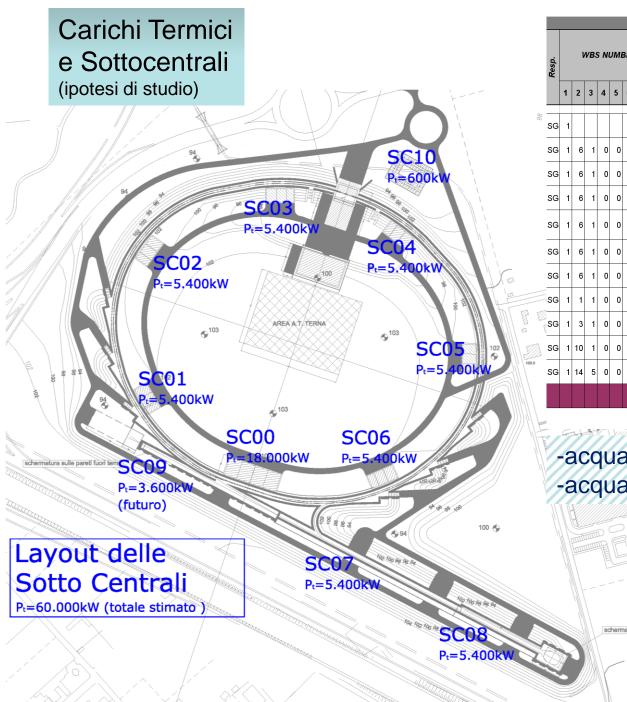
Diagnostics needed

	LINAC	Transfer Lines	Damping Ring	Storage Rings	IP
Beam passage/Presence			Screen		
Position/Closed orbit	Stripli	ines	Butto	n BPM	
Emittance		Screen	SR Monitor (Visib	ole/X-Ray Pinhole)	
Energy/Energy Spread	Magnet + SEM	Hodoscope			
Charge/Current	Faraday Cup/	Faraday Cup/WCM/TCM DCCT			
Bunch by bunch current	WCM/Fast Photodiode/BbB Feedback				
Bunch length	Streak Camera				
Beam size	Scre	Screen SR Monitor (Visible/X-Ray Pinhole)			
Coherent Beam Response		Tune Monitor/BbB Feedback			
Incoherent Beam Response		SR Monitor			
Polarization		TBD	TBD	TBD	
Luminosity				TBD	
Fast Loss	Long Ionization Chamber/Cherenkov Fiber				
Slow Losses			Coincidence PIN Diode + Counter		

SuperB SR - Operative Conditions

Туре	First Turn	Run-in	Machine Studies	Luminosity Run
Dynamic range > 66 dB	< 1 mA	10-200 mA	200-2000 mA	2000 mA
Screen	x			
BPM-Single pass	Coarse	Coarse	Fine	
BPM-Turn by Turn		Coarse	х	
BPM-Stored beam		Coarse	Hi-res	Hi-res + FBK
Beam Profile (visible light)		Coarse	Fine	Fine
Beam Size			Hi-res	Hi-res
Tune Monitor		Coarse	Fine	Fine
Tune kick (H&V)		Х	x	
Current		Coarse	Fine	Fine
Bunch by bunch Current		Coarse	Fine	Fine
Polarization			?	?
Fast Beam Loss	x	Х	Х	x
Slow Beam Loss			Х	x
Luminosity			x	x

HVAC cost estimate



Air Ventilation System

-controllo aria in ambiente -controllo pressurizzazione -trattamento dell'aria di rinnovo

> La prima **ipotesi** di dimensionamento di ciascuna Sottocentrale di Ventilazione, prevede l'alternanza di stazioni di immissione aria e di espulsione aria.

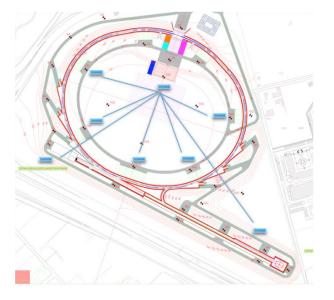
> > Schillaci, LNS

									LOAD IDENTIFICATION			
Resp.		ı	NB:	s N	имі	BEF	र		-Equipment -Device -Label	Sottocentrale	Qua ntity	COOLING SYSTEM <kw></kw>
	1	2	3	4	5	6	7	8				[Kw t]
sc	€ 1								LINAC TRANSFER LINES R.F.C.	S.C.00	1	18.000
sc	6 1	6	1	0	0	0	0		STORAGE RING	S.C.01	1	5.400
sc	6 1	6	1	0	0	0	0		STORAGE RING	S.C.02	1	5.400
sc	ə 1	6	1	0	0	0	0		STORAGE RING CRIOGENICS	S.C.03	1	5.400
sc	€ 1	6	1	0	0	0	0		STORAGE RING COLLIDER HALL SALA CONTROLLO	S.C.04	1	5.400
sc	€ 1	6	1	0	0	0	0		STORAGE RING	S.C.05	1	5.400
sc	€ 1	6	1	0	0	0	0		STORAGE RING	S.C.06	1	5.400
sc	€ 1	1	1	0	0	0	0		LINAC SYSTEM TUNNEL	S.C.07	1	5.400
sc	€ 1	3	1	0	0	0	0		LINAC SYSTEM TUNNEL DAMPING RING	S.C.08	1	5.400
sc	6 1	10	1	0	0	0	0		LABORATORIO LINAC LINAC PHOTON LINE TUNNEL	S.C.09	1	3.600
sc	6 1	14	5	0	0	0	0		Palazzina Uffici	S.C.10	1	504
										SOM	MANO	65304,

-acqua refrigerata per gli apparati -acqua refrigerata per gli ambienti

Schillaci, LNS

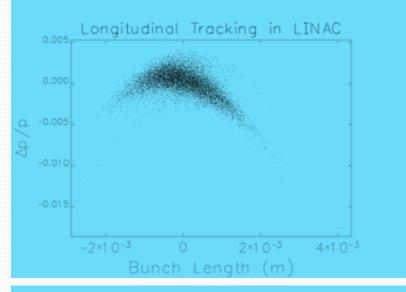
Controls, Computing a !CHAOS developing


Mazzitelli, LNF

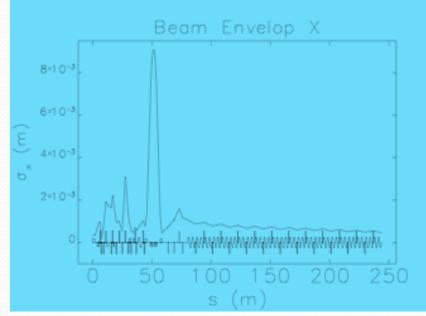
The !CHAOS collaboration continues the development of the **control system core**, integrating the expected functionality. A **first Open Source release** is available on the INFN web site <u>http://chaos.infn.it/</u>

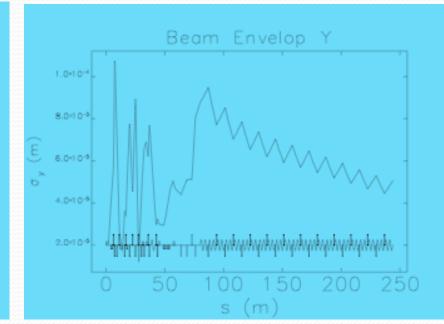
University of Cagliari and computer science department of Tor Vergata recently **joint** the collaboration with **thesis** and **PhD positions**

The **cost estimation** is going on taking into account also the networking and computing infrastructure needed to Controls and Accelerator project development and maintenance (EMDS, PMDS, etc). **Integration** of standard I/O device (GPIB, LIBERA BPM) is started in order to check real performances. **Commercial partners** collaborations are under study

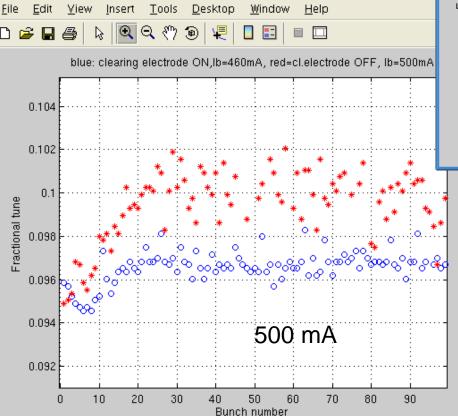


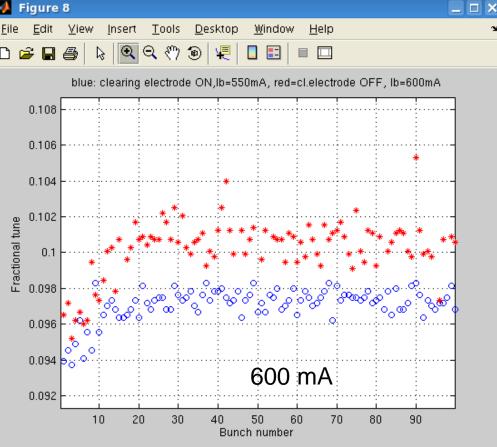
L2/L3 Network layout more than 2000 network device have been estimated up to now




Beam simulation from DR to Linac end

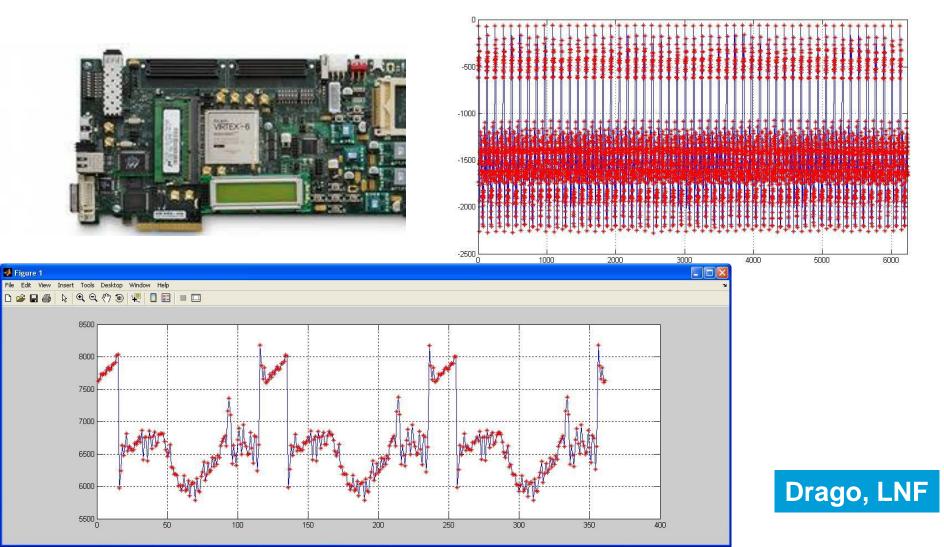
Pellegrini, Pd-LNF


	DR exit	Linac end
ELECTRONS		
Energy (GeV)	1.0	4.18
Bunch charge (pC)	300	
Emittance es (nm)	23	5.5
Emittance e _y (nm)	0.20	0.047
Bunch length (mm)	4.8	0.67
Energy spread Ap/p rms	6.2e-4	1.6e-3
Energy spread Δp/p 99%	±1.9e-3	±4.3e-3
POSITRONS		
Energy (GeV)	1.0	6.7
Bunch charge (pC)	300	
Emittance e _s (nm)	28	4.2
Emittance e _s (nm)	5	.075
Bunch length (mm)	4.8	0.67
Energy spread Ap/p rms	6.2e-4	1.3e-3
Energy spread Ap/p 99%	±1.9e-3	±3.6e-3



Horizontal bunch-by-bunch fractional tune measured by the feedback system (April 2012)

Drago, LNF



DAFNE e+ beam, 100 bunches, spaced by 2.7ns with 20 buckets gap

Turning off the electrodes in 4 wigglers and 2 dipoles, the horizontal tune goes up

FEEDBACK developments:

To start an R&D activity for the IP feedback: in May a new 14-bit hardware based on ready-made low cost board has been used to acquire long tracks of DA Φ NE e+ bunch-by-bunch data. The output signal was also used to time the front end clock

Conclusions

- The cost estimate is expected to be ready by early July
- In the meantime we have prepared (see Variola's talk) a list of work packages for MR and Injection to be able to freeze the accelerator footprint before October (!)
- Each work package includes
 - a mandate
 - a coordinator
 - a list of key topics to be addressed
 - needed manpower