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1.1.- Why we have to worry about  many-body systems ?

 

SAmperimeter
 

Amperimeter I(t) measured
WhatWhat wewe measuremeasure whenwhen wewe measuremeasure thethe currentcurrent ??
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RIN I(t) computed 

in the DUT

 , 0Ts
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Integral (surface) conservation

( , ) 0TJ r t 


Differential (local) conservation

Ths

0d J
 
 

( )dE r t 
 Continuity equation

WhichWhich magnitudemagnitude accomplishaccomplish thethe differentialdifferential (local)(local) conservationconservation ??
The many 

body problem
0cJ

dt


( , ) ( , ) /E r t r t  
   

( , )( , ) 0c
dE r tJ r t
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Poisson (Coulomb) 
equation

Continuity equation

q
The total current measured at the ammeter is equal to that computed at the DUT
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1.1.- Why we have to worry about  many-body systems ?

P.A.M. Dirac, 1929

The many 
body problem

“The general theory of quantum mechanics is now 
almost complete. The underlying physical laws 

necessary for the mathematical theory of a large part 
of physics and the whole of chemistry are thus 

completely known, and the difficulty is only that thecompletely known, and the difficulty is only that the 
exact application of these laws leads to equations 

much too complicated to be soluble.”

Max Born, 1960

”It would indeed be remarkable if Nature fortified herself 
against further advances in knowledge behind the 
analytical difficulties of the many-body problem ”analytical difficulties of the many-body problem.
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1.2.- Why we have to worry about  sequential measurement ?

Two “orthodox” dynamical law for describing the evolution of a quantum system:

( ) ( )di x t H x t
dt

  /( ) (0) (0)iHtt e U   

Unitary-evolution (when no measure): Schrodinger equation1-law:

dt

(0) ( )x x u t  ( ) (0)t u u 

Non-unitary-evolution (when measure): “Collapse”2-law:

(0) ( )ix x u t  ( ) (0)i it u u 

Example: a single-time (ensemble) measurement

( )i i
i

I I P I   i i i
i

I u u  ˆ
i i

i

I u u  Î 

Example: a single time (ensemble) measurement

2
( )i i i iP I u u u    ˆ

i i iI u I u
i

1 i i
i

u u
For ergodic system          Time-average is equal to ensemble averageg y g q g
The prediction of DC current can be computed without worrying about “collapse”
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S i l
1.2.- Why we have to worry about  sequential measurement ?

Example: noise (current fluctuations) measurement 

Sequential 
measurement

Engineers do not like noise, it makes errors in the device. 

Ph i i t j i b it h h th t A
)

Physicist enjoy noise, because it shows phenomena that 
are not present in DC.

ot
al

 C
ur

re
nt

(m
A

( )I t ( ) ( )I t I t I   ( )R  ( )S f

To

fluctuations Autocorrelation Fourier transform

  


 -j2 fS(f)= R( ) e d  2 1t t   R( )= I(t) I(t+ )

Time (ps)



-

2 1 ( ) ( ) ( )

  
2

2 1R( )= I(t )I(t ) DCI

We need the measurement of  I(t2) after the measurement I(t1).
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1.2.- Why we have to worry about  multi-time measurement  ?
Sequential 

How we can compute the quantum two-times correlations ?

q
measurement

 2 1 2 1 2 1I(t )I(t ) I (t )·I (t )· I (t ),I (t )j i j i
j i

P  

  †
2 1

ˆ ˆI (t ),I (t ) (0) ( ) ( ) (0)j i i i j j i iP u u U u u U u u   

How we can compute the probability ? With the modulus of the wavefunction

1( ) (0)i it u u 

ˆ
Measuring at t1

How we can compute the probability ? With the modulus of the wavefunction

2-law:
t1

2 1
ˆ( ) ( ) ( )t U t   

2 2( ) ( )t u u t  

Time-evolution

Measuring at t2

1-law:

2-law:

Time

t2 2 2( ) ( )j jt u u t g

2
ˆ( ) ( ) (0)j j i it u u U u u  Final state 

t2
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2.1.- Bohmian mechanics (quantum hydrodynamics)

D. Bohm

1952

L. De Broglie

1924

J.S. Bell

1960
t1

      
     

2
21( ,.., , ) ( ) ( )

N
Nr r ti U r r t r r t

“Playing” with the many-particle Schrodinger equation....

  
 

 
 2

1( ,.., , )
0

N
Nr r t

J r r t



         
  21

1 1
1

( , , , ) ( ,.., , ) · ( ,.., , )
2· k

N
r N N

k

i U r r t r r t
t m

Look for a continuity equation:

t2

 


  
  1

1
,.., , 0k N

k
J r r t

t

 
      2
1 1 1( ,.., , ) ( ,.., , ) / ( ,.., , )k N k N Nv r r t J r r t r r tDefine a velocity:

Look for a continuity equation:

Define a Bohmian trajectory:   
   
1 1 0 1[ ] [ ] '· ( [ '],.., [ '], ')

o

t

k Nt
r t r t d t v r t r t t

The computation of many-particle trajectories exactly reproduce the evolution of the

4

The computation of many particle trajectories exactly reproduce the evolution of the 
modulus of the wavefunction. 
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2.1.- Bohmian mechanics (quantum hydrodynamics)

Example: A wave packet impinging upon a double barrier structure

 ( , )x t

v x t
J x t

( )
( , )



1.- First, 

2 - Second v x t
x t

( , )
| ( , )|


 2

t

2.- Second, 

3.- Third: 

0

[ ] ( [ '], ')· '
t

i i i
ox t x v x t t dt  

“…In any case, the basic reason for not paying attention to the Bohm approach

Main criticism against Bohmian formalism:

is not some sort of ideological rigidity, but much simpler…It is just that we are 
all too busy with our own work to spend time on something that doesn’t seem
likely to help us make progress with our real problems”. 

Steven Weinberg (private comunication with Shelly Goldstein)
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2.2.- The conditional wave function: a successful tool The many 
body problem

( )t
M grid pointsThe “BIG” many-particle wave-function for N particles:

1 1( ,..., , )( [ ] [ ] ) NJ x x tv x t x t t 

1( ,..., , )Nx x t
configuration pointNM

1 1 2
1 1

(( , [ ],.., [ ], )( [ ] [ ] ) N
N

J x x t x t tv x t x t t 

1 1

1 1 2
1 [ ],...., [ ]

( [ ],.., [ ], )
( ,..., , )

N N

N
N x x t x x t

v x t x t t
x x t

 




1 1

1 1 2
1 2 [ ]

( [ ],.., [ ], )
( , [ ],.., [ ], )N

N x x t

v x t x t t
r x t x t t





The “LITTLE” conditional wave functions for N particles:

1 2 1 1( , [ ],.., [ ], ) ( , )Nx x t x t t x t  
M grid points

configuration point·M N

The “LITTLE” conditional wave-functions for N particles:

configuration pointM N
The computation of many-particle trajectories from one BIG or from N LITTLE 

conditional wave functions are exactly identical. 
What is the equation satisfied by the conditional wave-function ?
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2.2.- The conditional wave function: a successful tool

2 2
1 1( , ) ( [ ] ) ( [ ] ) · ( [ ] ) ( )x ti U x x t t G x x t t i J x x t t x t

  
      

    1 1 1 1 1 1 1 12
1

( , [ ], ) ( , [ ], ) ( , [ ], ) ( , )
2 b b bi U x x t t G x x t t i J x x t t x t

t m x
       



Good points : [X. Oriols, Phys. Rev. Lett. 98, 066803 (2007)]

An exact procedure for computing many-particle Bohmian trajectories

The correlations are introduced into the time-dependent potentials

4th The interacting potential from (a classical-like) Bohmian trajectories

The correlations are introduced into the time-dependent potentials

5th There is a real potential to account for “non-classical” correlations

6th There is a imaginary potential to account for non-conserving norms

The terms G and J depends on the many-particle wave-function

Bad points :

This is exactly the same difficulty found in the DFT (or TD-DFT)
16



2.2.- The conditional wave function: a successful tool

Example: two Coulomb interacting particles

1 1

2 2
21 1 1 1
1 1 1 1 1 2

0 1 2 1 1 [ ]

( , ) ( , )( , ) ; [ ] [ ]
2 * 4 [ ] | ( , ) |

o

t

o
t r r t

r t q J r ti r t r t r t dt
t m r r t r t  



              


 

       
1 1[ ]o r r t 

2 2
22 2 2 2
2 2 2 2 2 2

( , ) ( , )( , ) ; [ ] [ ]
2 * 4 [ ] | ( ) |

t

o
r t q J r ti r t r t r t dt
t m r t r r t  

             


       
2 20 1 2 2 2 [ ]

2 * 4 [ ] | ( , ) |
ot r r t

t m r t r r t  
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2.2.- The conditional wave function: a successful tool

Example: two (Coulomb and Exchange) interacting particles

But, Bohmian trajectories associated to particle x1 or to x2 are distinguishable.

Ensemble results associated to x1 are indistinguishable from those associated to x2. 

10
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2.2.- The conditional wave function: a successful tool

Is it possible to improve the estimations of G and J functions ?

2 2
1 1

1 1 1 1 1 1 1 12
1

( , ) ( , [ ], ) ( , [ ], ) · ( , [ ], ) ( , )
2 b b b

x ti U x x t t G x x t t i J x x t t x t
t m x

  
        

   

2 2

2
21 2 1 2

1 2 1 2 2 2 2 22[ ]
2 2[ ] [ ]

( , , ) 1 ( , , )( , , ) ( , , ) ( [ ]) ( [ ]) ....
2!x x t

t t

x x t x x tx x t x x t x x t x x t
x x

  
       

 

Taylor expansion of the many-particle wave function:

2 2 2 22 2[ ] [ ]x x t x x t 

The “LITTLE” conditional wave-functions for the derivatives:

2 2
1 2 1 1[ ]

( , , ) ( , )
x x t

x x t x t


  
1

2 2

1 2
1

2 [ ]

( , , ) ( , )
n

n
n

x x t

x x t x t
x



 
 



A co pled s stem of eq ations for the deri ati es conditional a e f nctions
2 2 2

2 11 1 1 1 2 1 2
1 1 1 1 1 12

01 2 [ ]

( , ) ( , ) [ ] ( , , )( , ) ( , ) ( , )
2 2

n n n in
n n i

n i
i t

x t x t d x t n U x x ti x t i x t x t
t m x m dt i x


 




               
  

A coupled system of equations for the  derivatives conditional wave-functions

[T.Norsen, Found. Phys 40, 1858 (2010)]
2 2

01 2 [ ]i x x t  

For n=0,1,2,3,4,5.......
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2.3.- The computation of the displacement current

 
TheThe TOTALTOTAL timetime--dependentdependent currentcurrent::

Quantum ensemble average value
( , )( ) ( )· ·

D D

c
S S

E r tI t J t ds ds
t

  
 
  ( , )

( ) ( ) · ·
D D

c
S S

E r t
I t J t ds ds

t



 
 

  

2( ) ( ) ( )E r t dr dr r r t E r r r t 
        

Ensemble over all position distributions weighted by the probability 

1 1 1( , ) ..... ( ,..., , ) ( , ,..., , )N N NE r t dr dr r r t E r r r t  
N

Solving the N-particle Poisson equation

1
1

( , ,..., , ) ( )
N

N i
i

E r r r t q r r


  
     

S l i th N ti l S h di ti ?

2
21

1 1
( ,..., , ) ( ,..., , ) ( ,..., , )

N
N

k N N
r r ti U r r t r r t

  
        


      

Solving the N-particle Schrodinger equation  ¿?

The many 
body problem

1 1
1

( , , , ) ( , , , )
2 k N N

kt m
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2.3.- The computation of the displacement current

( )E r t


TheThe TOTALTOTAL timetime--dependentdependent ““Bohmian”currentBohmian”current::

2( ) ( ) ( )E d d E 
        

( , )
( ) ( ) · ·

D D

c
S S

E r t
I t J t ds ds

t



 
 

  

2
1 1 1( , ) ..... ( ,..., , ) ( , ,..., , )N N NE r t dr dr r r t E r r r t  

       

An ensemble of Bohmian trajectories reproduces the wavefunction modulus

2
1 1 1

1

1( ,..., , ) lim ( [ ])····· ( [ ])
M

j j
N N NM j

r r t r r t r r t
M

 




        

Th di i f AC b d f bl j i

1( , [ ],..., [ ], ) ( [ ])
N

j j j j
N iE r r t r t t q r r t  

     

The prediction of AC current can be computed from an ensemble over  trajectories.

1 1 1[ ] ; ( , )j jr t r t 

1 M

1
1

( , [ ],..., [ ], ) ( [ ])N i
i

E r r t r t t q r r t


 
[ ] ; ( , )j j

N N Nr t r t 
….

1
1

1( , ) lim ( , [ ],..., [ ], )j j j
NM j

E r t E r r t r t t
M
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2.3.- The computation of the displacement current

[A. Alarcon, JSTM (2009)]TheThe TOTALTOTAL timetime--dependentdependent ““Bohmian”currentBohmian”current::

( )


 


( , )
( ) ( ) · ·

D D

c
S S

E r t
I t J t ds ds

t



 
 

   ( , )( , ) 0c
dE r tJ r t

dt


 
    

 

  

Each trajectory of the ensemble fulfils the TOTAL current conservation law. 
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2.4- The computation of multi-time measurement2.4- The computation of multi-time measurement

AA “simple”“simple” explanationexplanation onon BohmianBohmian measurementmeasurement…………

 1,..., , ,Nr r y t
 

The wavefunction:

 1, , , ,N y

The trajectories:

yyjj[t]= I(t)[t]= I(t)1 2 3[ ], [ ], [ ],..., [ ],j j j j
Nr t r t r t r t   

 [ ]jr r y t t
 

The conditional wavefunction:
The many 

Time (ps)

 1,..., , [ ],Nr r y t t body problem

25
[A.Alarcón et. al. Chapter 6, Applied Bohmian Mechanics (2012)]



2.1.3.- Multi-time Bohmian measuremen of the current

IsIs thethe BohmianBohmian solutionsolution ofof thethe measurementmeasurement equalequal toto thethe OrthodoxOrthodox solutionsolution ??

Bohmian trajectory
I(t)=y[t]

Copenhagen operators
I(t)= eigenvalue of an Operator 

WhatWhat wouldwould happenhappen ifif I(t) I(t) ??werewere notnot equalequal toto

Copenhagen supporters: The measuring apparatus is wrong, because Bohmian
mechanics has to reproduce orthodox quantum mechanics.

Bohmian supporters: The operator is wrong, because
orthodox quantum mechanics has to reproduce Bohmian
mechanics.

“N ï li b t t ”

26
[D. Durr, S. Goldstein, N. Zanghi, J. Stat. Phys., 116, 959-1055, (2004)]
“Naïve realism about operators”



2.4- The computation of multi-time measurement

IsIs thethe BohmianBohmian solutionsolution ofof thethe measurementmeasurement equalequal toto thethe OrthodoxOrthodox solutionsolution ??

1
1

1 ˆ
x

k N

k k
kx

Î q p
L m





   
 


Total current operator

     1 1 ,
ˆ

x
x

x xI t I t I p
p

M p p  
 

Its associated (degenerate) projector=POVM  Total current operator ( g ) p j

     
1

0ˆf
I tt M t       
1

Final (unnormalized) state after measurement is a 
total momentum eigenstate.

The probability of being transmitted at  t2 and 
reflected at t3 is zero

A.- Following  a collapsed wave function

The probability of being transmitted at t2 and

reflected at t3 is zero. 

B.- Following  a trajectory
The probability of  being transmitted at  t2 and 
reflected at t3 is zero.

27



2.4- The computation of multi-time measurement

 Partition “Noise” comparison for electron devices without (many-body) Coulomb ?

1.5

2.0 Buttiker results

SAMPLE (A) 0.3

[M.Buttiker PRL1990]

2nd quantization approach
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3.2.- DC current beyond mean field

Effect of Coulomb correlation on current and noise [X.Oriols, APL(2005) ]
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4.- Conclusions and future work

There is a need for predictions of the dynamics properties of quantum devices….. 

1.- FORMALISM: We have shown the ability of many-particle Bohmian
trajectories (extracted from conditional wave functions) to accurately and 
efficiently compute time dependent transport (AC, noise, transients,…).

2.- SIMULATOR: Using these ideas, we have developed a user-friendly, hand-
made simulator for time-dependent electron transport, named: 

Bohmian Interacting Transport for non-equiLibrium eLEctronic Structures
[G. Albareda et al. Phys. Rev. B 79, 075315 (2009)]

[F. L. Traversa, et al. IEEE Trans. on Electron devices, 58(7)  2104 (2011) ]
[G. Albareda et al. Phys. Rev. B 82, 085301(2010)]
[G. Albareda et al. Phys. Rev. B 79, 075315 (2009)]

Freely available at http:\europe.uab.es\bitlles
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4.- Conclusions and future work
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