The informational approach to quantum theory: probabilistic theories, quantum principles, and hidden variable models

Paolo Perinotti
Dipartimento di Fisica
Università di Pavia

In collaboration with

- G. M. D'Ariano
- G. Chiribella
- F. Manessi

Outline

Outline

- Operational-probabilistic framework

Outline

- Operational-probabilistic framework
- The principles of Quantum Theory

Outline

- Operational-probabilistic framework
- The principles of Quantum Theory
- Hidden variable theories and their properties

Outline

- Operational-probabilistic framework
- The principles of Quantum Theory
- Hidden variable theories and their properties
- Spooky action at a distance and outcome independence

Outline

- Operational-probabilistic framework
- The principles of Quantum Theory
- Hidden variable theories and their properties
- Spooky action at a distance and outcome independence
- Completeness

Outline

- Operational-probabilistic framework
- The principles of Quantum Theory
- Hidden variable theories and their properties
- Spooky action at a distance and outcome independence
- Completeness
- Steering, Complementarity and Schrödinger's cat

The operational language

- Operational theory: tests with composition rules

- For any system A there exists a unique test
such that

The operational language

- Operational theory: tests with composition rules

- For any system A there exists a unique test

such that

The operational language

- Operational theory: tests with composition rules

- For any system A there exists a unique test
such that

The operational language

- Operational theory: tests with composition rules

- For any system A there exists a unique test
such that

The operational language

- Operational theory: tests with composition rules

- For any system A there exists a unique test
such that

The operational language

- Operational theory: tests with composition rules

- For any system A there exists a unique test

such that

The operational language

- Operational theory: tests with composition rules

$$
\begin{aligned}
& \bullet \mathrm{C}:=\mathrm{AB}=\mathrm{BA} \\
& \bullet(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC}) \\
& \bullet \mathrm{Al}=\mathrm{IA}=\mathrm{A}
\end{aligned}
$$

- For any system A there exists a unique test
such that

The operational language

- Operational theory: tests with composition rules

- For any system A there exists a unique test \mathscr{I}_{A} such that

$$
\mathrm{A} \mathscr{C}_{i} \mathrm{~B}=\mathrm{A} \mathscr{I}_{\mathrm{A}} \mathrm{~A} \mathscr{C}_{i} \mathrm{~B}=\mathrm{A} \mathscr{C}_{i} \mathrm{~B} \mathscr{I}_{\mathrm{B}} \mathrm{~B}
$$

G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 81, 062348(2010)

Operational probabilistic theories

- Probabilistic theory

Every test of type $|\rightarrow|$ is a probability distribution

States are functionals on effects and viceversa

Real vector spaces $\operatorname{St}_{\mathbb{R}}(\mathrm{A}), \operatorname{Eff}_{\mathbb{R}}(\mathrm{A})$

Events are linear transformations

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 81, 062348(2010)
```


Coarse graining and Atomicity

- Coarse graining of the test $\left\{\mathscr{A}_{i}\right\}_{i \in \mathrm{X}} \longleftrightarrow\left\{\mathscr{B}_{j}\right\}_{j \in \mathrm{Y}}$

$$
\mathscr{B}_{j}=\sum_{i \in \mathrm{X}_{j}} \mathscr{A}_{i} \quad \bigcup_{j \in \mathrm{Y}} \mathrm{x}_{j}=\mathrm{X} \quad \mathrm{X}_{j} \cap \mathrm{X}_{k}=\emptyset
$$

- Atomic is an event which does not represent a coarse graining
- The refinement set of an event contains all refining events

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 81, 062348(2010)
```


Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
```


Axioms for Quantum Theory

- Causality

$$
p_{a}\left(\rho_{i}\right):=\sum_{j} \rho_{i}-a_{j}=p\left(\rho_{i}\right)
$$

- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
```


Axioms for Quantum Theory

- Causality
- Local discriminability

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
```


Axioms for Quantum Theory

- Causality
- Local discriminability

$$
\Psi\left(\Psi^{\prime} \underset{B}{A} \rightarrow(\Psi\right.
$$

[^0]
Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
```


Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition

[^1]
Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
```


Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability

[^2]
Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
```


Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression

[^3]
Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression

[^4]
Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
```


Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

$$
\rho \sqrt{\Psi_{\rho}} \sqrt{-\mathrm{A}}_{\tilde{\mathrm{A}}} \mathrm{e}
$$

```
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
```


Axioms for Quantum Theory

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification
G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)

Hidden Variable Theories for OPTs

- Given an OPT for every circuit of type

we can choose tests $a:=\left\{a_{j}\right\}_{j \in \mathrm{Y}}$

Hidden Variable Theories for OPTs

- Given an OPT for every circuit of type

we can choose tests $a:=\left\{a_{j}\right\}_{j \in Y}$
- Define the sample space $\Psi^{\mathrm{A}_{1} \otimes \cdots \otimes \mathrm{~A}_{n}}:=\mathrm{Y} \times\left\{a^{(1)}, \ldots, a^{(n)}\right\}$

Hidden Variable Theories for OPTs

- Given an OPT for every circuit of type

we can choose tests $a:=\left\{a_{j}\right\}_{j \in \mathrm{Y}}$
- Define the sample space $\Psi^{\mathrm{A}_{1} \otimes \cdots \otimes \mathrm{~A}_{n}}:=\mathrm{Y} \times\left\{a^{(1)}, \ldots, a^{(n)}\right\}$
- Equivalent HVT:

$$
\Lambda^{\mathrm{A}_{1} \otimes \cdots \otimes \mathrm{~A}_{n}}, \operatorname{Pr}_{\lambda}^{\rho}: \Psi \times \Lambda
$$

$$
\operatorname{Pr}\left(a_{j} \mid a\right)=\sum_{\lambda \in \Lambda} \operatorname{Pr}_{\lambda}\left(a_{j} \mid a, \lambda\right) \operatorname{Pr}_{\lambda}(\lambda \mid a)
$$

Hidden variable theories and locality

- Typical setting: local measurements

Hidden variable theories and locality

- Typical setting: local measurements

- This setting is used to prove non-locality of quantum theory

$$
\operatorname{Pr}\left(a_{i}, b_{j} \mid a, b\right) \neq \sum_{\lambda \in \Lambda} \operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right) \operatorname{Pr}_{\lambda}\left(b_{j} \mid b, \lambda\right) \operatorname{Pr}_{\lambda}(\lambda)
$$

Basic properties of HVTs

- λ-Independence

$$
\operatorname{Pr}_{\lambda}(\lambda \mid a, b, \ldots)=\operatorname{Pr}_{\lambda}\left(\lambda \mid a^{\prime}, b^{\prime}, \ldots\right)
$$

Basic properties of HVTs

- λ-Independence

$$
\operatorname{Pr}_{\lambda}(\lambda \mid a, b, \ldots)=\operatorname{Pr}_{\lambda}\left(\lambda \mid a^{\prime}, b^{\prime}, \ldots\right)
$$

- Parameter Independence

$$
\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right)
$$

Basic properties of HVTs

- λ-Independence

$$
\operatorname{Pr}_{\lambda}(\lambda \mid a, b, \ldots)=\operatorname{Pr}_{\lambda}\left(\lambda \mid a^{\prime}, b^{\prime}, \ldots\right)
$$

- Parameter Independence

$$
\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right)
$$

- Free Choice*

$$
\begin{aligned}
& \operatorname{Pr}_{\lambda}\left(a \mid b_{i}, b, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a \mid b_{i}^{\prime}, b^{\prime}, \lambda^{\prime}\right) \\
& \operatorname{Pr}_{\lambda}(a)>0, \quad \forall a
\end{aligned}
$$

* R. Colbeck and R. Renner, arXiv:1111.6597 (2011)

Determinism

- Strong determinism:
$\forall a, \lambda \quad \exists!a_{i}$ s.t. $\quad \operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right)=1$
- Weak determinism:

$$
\forall a, b, \ldots, \lambda \quad \exists!\left(a_{i}, b_{j}, \ldots\right) \text { s.t. } \quad \operatorname{Pr}_{\lambda}\left(a_{i}, b_{j}, \ldots \mid a, b, \ldots, \lambda\right)=1
$$

Existence theorems

- T1: Given any empirical model, there is an equivalent hidden-variable model which satisfies Strong Determinism*.
- T2: Given any empirical model, there is an equivalent hidden-variable model which satisfies Weak Determinism and λ-Independence*.

T1 does not grant $\boldsymbol{\lambda}$-independence and parameter independence
T2 does not grant parameter independence

```
* A. Brandenburger and N. Yanofsky, J. Phys. A: Math. Theor. 41, 425302 (2008)
```


Assumption

- We will consider only HVTs with both

Assumption

- We will consider only HVTs with both
- λ-Independence

Assumption

- We will consider only HVTs with both
- λ-Independence
- Parameter independence

Properties of HVTs

- Outcome Independence

Properties of HVTs

- Outcome Independence $\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, b_{j}, c_{k}, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, \lambda\right)$
- Locality

Properties of HVTs

- Outcome Independence $\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, b_{j}, c_{k}, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, \lambda\right)$
- Locality

$$
\operatorname{Pr}_{\lambda}\left(a_{i}, b_{j}, \ldots \mid a, b, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right) \operatorname{Pr}_{\lambda}\left(b_{j} \mid b, \lambda\right) \ldots
$$

- Completeness

Properties of HVTs

- Outcome Independence $\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, b_{j}, c_{k}, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, \lambda\right)$
- Locality

$$
\begin{aligned}
& \operatorname{Pr}_{\lambda}\left(a_{i}, b_{j}, \ldots \mid a, b, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right) \operatorname{Pr}_{\lambda}\left(b_{j} \mid b, \lambda\right) \ldots \\
& \operatorname{Pr}_{\lambda \mu}\left(a_{i} \mid a, \lambda, \mu\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right), \quad \forall \lambda, \mu \operatorname{Pr}_{\lambda, \mu}(\lambda, \mu)>0
\end{aligned}
$$

- Completeness

Locality \Leftrightarrow Parameter Independence + Outcome Independence

Properties of HVTs

- Outcome Independence $\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, b_{j}, c_{k}, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, b, \ldots, \lambda\right)$
- Locality

$$
\begin{aligned}
& \operatorname{Pr}_{\lambda}\left(a_{i}, b_{j}, \ldots \mid a, b, \ldots, \lambda\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right) \operatorname{Pr}_{\lambda}\left(b_{j} \mid b, \lambda\right) \ldots \\
& \operatorname{Pr}_{\lambda \mu}\left(a_{i} \mid a, \lambda, \mu\right)=\operatorname{Pr}_{\lambda}\left(a_{i} \mid a, \lambda\right), \quad \forall \lambda, \mu \operatorname{Pr}_{\lambda, \mu}(\lambda, \mu)>0
\end{aligned}
$$

- Completeness

Locality \Leftrightarrow Parameter Independence + Outcome Independence

- Notice: violation of locality \Leftrightarrow violation of Outcome Independence

Spooky action at a distance

- A theory is spooky* if any equivalent HVT violates Outcome Independence
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Spooky action at a distance

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Spooky action at a distance

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
- We consider only theories with
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Spooky action at a distance

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
- We consider only theories with
λ-Independence + Parameter independence
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Spooky action at a distance

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
- We consider only theories with
λ-Independence + Parameter independence
- CHSH ensures that any HVT for Quantum Theory must violate locality
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Spooky action at a distance

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
- We consider only theories with
λ-Independence + Parameter independence
- CHSH ensures that any HVT for Quantum Theory must violate locality
- It necessarily violates outcome independence
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Complete operational probabilistic theories

- HVT for an OPT: descriptively non significant* if for every pure state

$$
\operatorname{Pr}_{\lambda}\left[a_{i}, b_{j}, \ldots|a, b, \ldots,| \Psi, \lambda\right]=\operatorname{Pr}_{\lambda}\left[a_{i}, b_{j}, \ldots|a, b, \ldots,| \Psi, \lambda^{\prime}\right]
$$

* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Complete operational probabilistic theories

- HVT for an OPT: descriptively non significant* if for every pure state

$$
\operatorname{Pr}_{\lambda}\left[a_{i}, b_{j}, \ldots|a, b, \ldots,| \Psi, \lambda\right]=\operatorname{Pr}_{\lambda}\left[a_{i}, b_{j}, \ldots|a, b, \ldots,| \Psi, \lambda^{\prime}\right]
$$

- OPT: complete if any HVT is descriptively non significant
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Complete operational probabilistic theories

- HVT for an OPT: descriptively non significant* if for every pure state

$$
\operatorname{Pr}_{\lambda}\left[a_{i}, b_{j}, \ldots|a, b, \ldots,| \Psi, \lambda\right]=\operatorname{Pr}_{\lambda}\left[a_{i}, b_{j}, \ldots|a, b, \ldots,| \Psi, \lambda^{\prime}\right]
$$

- OPT: complete if any HVT is descriptively non significant
- Quantum Theory is complete**
** R. Colbeck and R. Renner, Nature Communications 2, 411 (2011)

Complete spooky theories

- Theorem*: a complete theory is spooky if and only if there exists a pure state Ψ and tests $\mathrm{a}:=\left(\mathrm{a}_{0}, \mathrm{a}_{1}\right)$ and $\mathrm{b}:=\left(\mathrm{b}_{0}, \mathrm{~b}_{1}\right)$ such that

$$
\begin{gathered}
p_{00} p_{11} \neq p_{01} p_{10} \\
p_{i j}:=\operatorname{Pr}\left(a_{i}, b_{j} \mid \Psi\right)
\end{gathered}
$$

* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Complete spooky theories

- The paraboloid has null measure in the tetrahedron
- It seems very likely to have theories violating outcome independence

Complete spooky theories

- The paraboloid has null measure in the tetrahedron
- It seems very likely to have theories violating outcome independence
- Question: how can one characterise complete theories?

Complete spooky theories

- The paraboloid has null measure in the tetrahedron
- It seems very likely to have theories violating outcome independence
- Question: how can one characterise complete theories?
- Is completeness sufficient to single out Classical and Quantum statistics?

Steering and outcome independence

- Theorem*: An OPT admits a steering state for a non trivial ensemble of two different states if and only if its probabilities satisfy

$$
p_{00} p_{11} \neq p_{01} p_{10}
$$

* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Steering and spookiness

- Corollary*: For a complete OPT the following are equivalent
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Steering and spookiness

- Corollary*: For a complete OPT the following are equivalent

$$
p_{00} p_{11} \neq p_{01} p_{10}
$$

* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Steering and spookiness

- Corollary*: For a complete OPT the following are equivalent

$$
p_{00} p_{11} \neq p_{01} p_{10}
$$

* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Steering and spookiness

- Corollary*: For a complete OPT the following are equivalent

$$
p_{00} p_{11} \neq p_{01} p_{10}
$$

3. Spookiness

* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Propositions

- Proposition*: a test $\mathrm{a}=\left(\mathrm{a}_{0}, a_{1}\right)$ such that there exist two states ρ_{0}, ρ_{1} s.t.

$$
\operatorname{Pr}\left(a_{i} \mid \rho_{j}\right)=\delta_{i j}
$$

* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Propositions

- Proposition*: a test $a=\left(a_{0}, a_{1}\right)$ such that there exist two states ρ_{0}, ρ_{1} s.t.

$$
\operatorname{Pr}\left(a_{i} \mid \rho_{j}\right)=\delta_{i j}
$$

- The proposition can have definite truth values, corresponding to preparations ρ_{0} (false), and ρ_{1} (true).
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Propositions

- Proposition*: a test $a=\left(a, a_{1}\right)$ such that there exist two states ρ_{0}, ρ_{1} s.t.

$$
\operatorname{Pr}\left(a_{i} \mid \rho_{j}\right)=\delta_{i j}
$$

- The proposition can have definite truth values, corresponding to preparations ρ_{0} (false), and ρ_{1} (true).
- In Quantum Theory propositions correspond to orthogonal projections
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Propositions

- Proposition*: a test $a=\left(a, a_{1}\right)$ such that there exist two states ρ_{0}, ρ_{1} s.t.

$$
\operatorname{Pr}\left(a_{i} \mid \rho_{j}\right)=\delta_{i j}
$$

- The proposition can have definite truth values, corresponding to preparations ρ_{0} (false), and ρ_{1} (true).
- In Quantum Theory propositions correspond to orthogonal projections
- Their existence in Quantum Theory is granted by the axiom of discriminability of non fully mixed states**:

Every state that is not fully mixed can be perfectly discriminated from another state

* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
** G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011).

Complementarity

- An OPT entails complementarity if there are two propositions $\mathrm{a}^{(\mathrm{i})}=\left(\mathrm{a}^{\left.()_{0}\right)}, \mathrm{a}^{\left.()_{1}\right)}\right.$) s.t.

$$
\operatorname{Pr}\left(a_{i}^{(0)} \mid \rho\right)=1 \quad \Rightarrow \quad 0<\operatorname{Pr}\left(a_{j}^{(1)} \mid \rho\right)<1
$$

- An OPT entails complementarity if and only if there is a set of propositions $\left.a^{(i)}=\left(a^{(i)}, a^{(i)}\right)_{1}\right)$ s.t.

$$
\operatorname{Pr}\left(a_{j}^{(i)} \mid \rho\right)=1 \quad \Rightarrow \quad \exists k, l \quad 0<\operatorname{Pr}\left(a_{l}^{(k)} \mid \rho\right)<1
$$

[^5]
Schrödinger's cat I

G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Schrödinger's cat I

- An OPT with complementarity exhibits Schrödinger's cat-like paradox

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```


Schrödinger's cat II

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\left\{p_{0} \rho^{(0)}, p_{1} \rho^{(1)}\right\}$ where $\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(0)}\right)=1 \quad \operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(1)}\right)=0$ the states verifying "alive" or "dead" are remotely prepared

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```


Schrödinger's cat II

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\left\{p_{0} \rho^{(0)}, p_{1} \rho^{(1)}\right\}$ where $\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(0)}\right)=1 \quad \operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(1)}\right)=0$ the states verifying "alive" or "dead" are remotely prepared
- Such a theory is necessarily spooky

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```


Schrödinger's cat II

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\left\{p_{0} \rho^{(0)}, p_{1} \rho^{(1)}\right\}$ where $\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(0)}\right)=1 \quad \operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(1)}\right)=0$ the states verifying "alive" or "dead" are remotely prepared
- Such a theory is necessarily spooky
- The paradox stems from both violation of locality (outcome independence) and complementarity

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```


Schrödinger's cat III

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\left\{p_{0} \rho^{(0)}, p_{1} \rho^{(1)}\right\}$ where $\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(0)}\right)=1 \quad 0<\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(1)}\right)<1$ the states verifying "alive" or "long moustache" are remotely prepared

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```


Schrödinger's cat III

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\left\{p_{0} \rho^{(0)}, p_{1} \rho^{(1)}\right\}$ where $\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(0)}\right)=1 \quad 0<\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(1)}\right)<1$ the states verifying "alive" or "long moustache" are remotely prepared
- States verifying complementary propositions are different

[^6]
Schrödinger's cat III

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\left\{p_{0} \rho^{(0)}, p_{1} \rho^{(1)}\right\}$ where $\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(0)}\right)=1 \quad 0<\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(1)}\right)<1$ the states verifying "alive" or "long moustache" are remotely prepared
- States verifying complementary propositions are different
- Such a theory is necessarily spooky

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```


Schrödinger's cat III

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\left\{p_{0} \rho^{(0)}, p_{1} \rho^{(1)}\right\}$ where $\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(0)}\right)=1 \quad 0<\operatorname{Pr}\left(a_{0}^{(0)} \mid \rho^{(1)}\right)<1$ the states verifying "alive" or "long moustache" are remotely prepared
- States verifying complementary propositions are different
- Such a theory is necessarily spooky
- The paradox stems from violation of locality (outcome independence)

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```


Concluding remarks

- Quantum Theory as an OPT
- five standard axioms for information theories
- purification postulate
- Can completeness be an alternate postulate?
- Completeness, spookiness and pure state steering
- Steering, complementarity and Schrödinger's cat
- HVTs can provide useful classification of OPTs

[^0]: G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)

[^1]: G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)

[^2]: G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)

[^3]: G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)

[^4]: G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011)

[^5]: G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

[^6]: G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

