The informational approach to quantum theory: probabilistic theories, quantum principles, and hidden variable models

Paolo Perinotti Dipartimento di Fisica Università di Pavia

Open Problems in Quantum Mechanics, Frascati, June 21 2012

Thursday, June 21, 12

In collaboration with

• G. M. D'Ariano

• G. Chiribella

• Operational-probabilistic framework

- Operational-probabilistic framework
- The principles of Quantum Theory

- Operational-probabilistic framework
- The principles of Quantum Theory
- Hidden variable theories and their properties

- Operational-probabilistic framework
- The principles of Quantum Theory
- Hidden variable theories and their properties
 - Spooky action at a distance and outcome independence

- Operational-probabilistic framework
- The principles of Quantum Theory
- Hidden variable theories and their properties
 - Spooky action at a distance and outcome independence
 - Completeness

- Operational-probabilistic framework
- The principles of Quantum Theory
- Hidden variable theories and their properties
 - Spooky action at a distance and outcome independence
 - Completeness
 - Steering, Complementarity and Schrödinger's cat

• Operational theory: tests with composition rules

• For any system A there exists a unique test such that

• Operational theory: tests with composition rules

i \in X: outcome \mathscr{C}_i : event of the test

For any system A there exists a unique test

• Operational theory: tests with composition rules

• For any system A there exists a unique test such that

• Operational theory: tests with composition rules

A : input label B : output label

For any system A there exists a unique test

• Operational theory: tests with composition rules

A: input label B: output label

• For any system A there exists a unique test

• Operational theory: tests with composition rules

• For any system A there exists a unique test

• Operational theory: tests with composition rules

• For any system A there exists a unique test such that

• Operational theory: tests with composition rules

• For any system A there exists a unique test \mathscr{I}_A such that

$$\frac{\mathbf{A}}{\mathscr{C}_{i}}^{\mathbf{B}} = \frac{\mathbf{A}}{\mathscr{I}_{\mathbf{A}}}^{\mathbf{A}} \mathscr{C}_{i}^{\mathbf{B}} = \frac{\mathbf{A}}{\mathscr{C}_{i}}^{\mathbf{B}} \mathscr{I}_{\mathbf{B}}^{\mathbf{B}}$$

Operational probabilistic theories

Probabilistic theory

Every test of type $I \rightarrow I$ is a probability distribution

States are functionals on effects and viceversa

Real vector spaces $St_{\mathbb{R}}(A), Eff_{\mathbb{R}}(A)$

Events are linear transformations

Coarse graining and Atomicity

- Coarse graining of the test $\{\mathscr{A}_i\}_{i\in X} \longrightarrow \{\mathscr{B}_j\}_{j\in Y}$ $\mathscr{B}_j = \sum_{i\in X_j} \mathscr{A}_i \qquad \bigcup_{j\in Y} X_j = X \quad X_j \cap X_k = \emptyset$
- Atomic is an event which does not represent a coarse graining
- The refinement set of an event contains all refining events

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

Causality

$$p_a(\rho_i) := \sum_j \left(\rho_i - a_j \right) = p(\rho_i)$$

- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

- Causality
- Local discriminability

- Causality
- Local discriminability

- Causality
- Local discriminability
- Atomic composition

- Causality
- Local discriminability
- Atomic composition

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

- Causality
- Local discriminability
- Atomic composition
- Perfect discriminability
- Ideal compression
- Purification

Hidden Variable Theories for OPTs

• Given an OPT for every circuit of type

we can choose tests $a := \{a_j\}_{j \in \mathbf{Y}}$

Hidden Variable Theories for OPTs

• Given an OPT for every circuit of type

we can choose tests $a := \{a_j\}_{j \in \mathbf{Y}}$

• Define the sample space $\Psi^{\mathrm{A}_1 \otimes \cdots \otimes \mathrm{A}_n} := \mathrm{Y} imes \{a^{(1)}, \dots, a^{(n)}\}$

Hidden Variable Theories for OPTs

• Given an OPT for every circuit of type

we can choose tests $a := \{a_j\}_{j \in \mathbf{Y}}$

• Define the sample space

$$\Psi^{\mathbf{A}_1 \otimes \cdots \otimes \mathbf{A}_n} := \mathbf{Y} \times \{a^{(1)}, \dots, a^{(n)}\}$$

• Equivalent HVT:
$$\Lambda^{\mathrm{A}_1 \otimes \cdots \otimes \mathrm{A}_n}, \mathrm{Pr}^{
ho}_{\lambda} : \Psi imes I$$

$$\Pr(a_j|a) = \sum_{\lambda \in \Lambda} \Pr_{\lambda}(a_j|a,\lambda) \Pr_{\lambda}(\lambda|a)$$
Hidden variable theories and locality

• Typical setting: local measurements

Hidden variable theories and locality

• Typical setting: local measurements

• This setting is used to prove non-locality of quantum theory

$$\Pr(a_i, b_j | a, b) \neq \sum_{\lambda \in \Lambda} \Pr_{\lambda}(a_i | a, \lambda) \Pr_{\lambda}(b_j | b, \lambda) \Pr_{\lambda}(\lambda)$$

Basic properties of HVTs

• λ -Independence

$$\Pr_{\lambda}(\lambda|a,b,\dots) = \Pr_{\lambda}(\lambda|a',b',\dots)$$

Basic properties of HVTs

• λ -Independence $\Pr_{\lambda}(\lambda|a, b, ...) = \Pr_{\lambda}(\lambda|a', b', ...)$

• Parameter Independence

$$\Pr_{\lambda}(a_i|a, b, \dots, \lambda) = \Pr_{\lambda}(a_i|a, \lambda)$$

Basic properties of HVTs

• λ -Independence $\operatorname{Pr}_{\lambda}(\lambda|a, b, \dots) = \operatorname{Pr}_{\lambda}(\lambda|a', b', \dots)$

• Parameter Independence

$$\Pr_{\lambda}(a_i|a, b, \dots, \lambda) = \Pr_{\lambda}(a_i|a, \lambda)$$

Free Choice*

 $\Pr_{\lambda}(a|b_i, b, \lambda) = \Pr_{\lambda}(a|b'_i, b', \lambda')$ $\Pr_{\lambda}(a) > 0, \quad \forall a$

* R. Colbeck and R. Renner, arXiv:1111.6597 (2011)

Thursday, June 21, 12

Determinism

• Strong determinism:

$$\forall a, \lambda \quad \exists ! a_i \text{ s.t. } \Pr_{\lambda}(a_i | a, \lambda) = 1$$

• Weak determinism:

$$\forall a, b, \dots, \lambda \quad \exists ! (a_i, b_j, \dots) \text{ s.t. } \Pr_{\lambda}(a_i, b_j, \dots | a, b, \dots, \lambda) = 1$$

Existence theorems

 T1: Given any empirical model, there is an equivalent hidden-variable model which satisfies Strong Determinism*.

• T2: Given any empirical model, there is an equivalent hidden-variable model which satisfies Weak Determinism and λ -Independence^{*}.

T1 does not grant λ -independence and parameter independence

T2 does not grant parameter independence

* A. Brandenburger and N. Yanofsky, J. Phys. A: Math. Theor. 41, 425302 (2008)

Assumption

• We will consider only HVTs with both

Assumption

• We will consider only HVTs with both

• λ -Independence

Assumption

• We will consider only HVTs with both

• λ-Independence

• Parameter independence

• Outcome Independence

- Outcome Independence $\Pr_{\lambda}(a_i|a, b, \dots, b_j, c_k, \dots, \lambda) = \Pr_{\lambda}(a_i|a, b, \dots, \lambda)$
- Locality

- Outcome Independence $\Pr_{\lambda}(a_i|a, b, \dots, b_j, c_k, \dots, \lambda) = \Pr_{\lambda}(a_i|a, b, \dots, \lambda)$
- Locality $\operatorname{Pr}_{\lambda}(a_i, b_j, \dots | a, b, \dots, \lambda) = \operatorname{Pr}_{\lambda}(a_i | a, \lambda) \operatorname{Pr}_{\lambda}(b_j | b, \lambda) \dots$
- Completeness

- Outcome Independence $\Pr_{\lambda}(a_i|a, b, \dots, b_j, c_k, \dots, \lambda) = \Pr_{\lambda}(a_i|a, b, \dots, \lambda)$
- Locality $\operatorname{Pr}_{\lambda}(a_i, b_j, \dots | a, b, \dots, \lambda) = \operatorname{Pr}_{\lambda}(a_i | a, \lambda) \operatorname{Pr}_{\lambda}(b_j | b, \lambda) \dots$
- Completeness $\operatorname{Pr}_{\lambda\mu}(a_i|a,\lambda,\mu) = \operatorname{Pr}_{\lambda}(a_i|a,\lambda), \quad \forall \lambda,\mu \ \operatorname{Pr}_{\lambda,\mu}(\lambda,\mu) > 0$

Locality \Leftrightarrow Parameter Independence + Outcome Independence

- Outcome Independence $\Pr_{\lambda}(a_i|a, b, \dots, b_j, c_k, \dots, \lambda) = \Pr_{\lambda}(a_i|a, b, \dots, \lambda)$
- Locality $\operatorname{Pr}_{\lambda}(a_i, b_j, \dots | a, b, \dots, \lambda) = \operatorname{Pr}_{\lambda}(a_i | a, \lambda) \operatorname{Pr}_{\lambda}(b_j | b, \lambda) \dots$
- Completeness $\operatorname{Pr}_{\lambda\mu}(a_i|a,\lambda,\mu) = \operatorname{Pr}_{\lambda}(a_i|a,\lambda), \quad \forall \lambda,\mu \ \operatorname{Pr}_{\lambda,\mu}(\lambda,\mu) > 0$

Locality \Leftrightarrow Parameter Independence + Outcome Independence

Notice: violation of locality ⇔ violation of Outcome Independence

• A theory is spooky* if any equivalent HVT violates Outcome Independence

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
 - We consider only theories with

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
 - We consider only theories with

 λ -Independence + Parameter independence

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
 - We consider only theories with

 λ -Independence + Parameter independence

• CHSH ensures that any HVT for Quantum Theory must violate locality

- A theory is spooky* if any equivalent HVT violates Outcome Independence
- Quantum Theory is spooky (violation of CHSH)
 - We consider only theories with

 λ -Independence + Parameter independence

- CHSH ensures that any HVT for Quantum Theory must violate locality
 - ➡ It necessarily violates outcome independence

```
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```

Complete operational probabilistic theories

• HVT for an OPT: descriptively non significant* if for every pure state

$$\Pr_{\lambda}[a_i, b_j, \dots | a, b, \dots, | \Psi, \lambda] = \Pr_{\lambda}[a_i, b_j, \dots | a, b, \dots, | \Psi, \lambda']$$

Complete operational probabilistic theories

• HVT for an OPT: descriptively non significant* if for every pure state

 $\Pr_{\lambda}[a_i, b_j, \dots | a, b, \dots, | \Psi, \lambda] = \Pr_{\lambda}[a_i, b_j, \dots | a, b, \dots, | \Psi, \lambda']$

• OPT: complete if any HVT is descriptively non significant

Complete operational probabilistic theories

• HVT for an OPT: descriptively non significant* if for every pure state

 $\Pr_{\lambda}[a_i, b_j, \dots | a, b, \dots, | \Psi, \lambda] = \Pr_{\lambda}[a_i, b_j, \dots | a, b, \dots, | \Psi, \lambda']$

- OPT: complete if any HVT is descriptively non significant
 - Quantum Theory is complete**

```
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
** R. Colbeck and R. Renner, Nature Communications 2, 411 (2011)
```

Thursday, June 21, 12

 Theorem*: a complete theory is spooky if and only if there exists a pure state Ψ and tests a:=(a₀,a₁) and b:=(b₀,b₁) such that

- The paraboloid has null measure in the tetrahedron
- It seems very likely to have theories violating outcome independence

- The paraboloid has null measure in the tetrahedron
- It seems very likely to have theories violating outcome independence
 - Question: how can one characterise complete theories?

- The paraboloid has null measure in the tetrahedron
- It seems very likely to have theories violating outcome independence
 - Question: how can one characterise complete theories?
 - Is completeness sufficient to single out Classical and Quantum statistics?

Steering and outcome independence

 Theorem*: An OPT admits a steering state for a non trivial ensemble of two different states if and only if its probabilities satisfy

 $p_{00}p_{11} \neq p_{01}p_{10}$

• Corollary*: For a complete OPT the following are equivalent

• Corollary*: For a complete OPT the following are equivalent

 $p_{00}p_{11} \neq p_{01}p_{10}$

• Corollary*: For a complete OPT the following are equivalent

• Corollary*: For a complete OPT the following are equivalent

3. Spookiness

Propositions

• Proposition*: a test $a=(a_0, a_1)$ such that there exist two states ρ_0 , ρ_1 s.t.

 $\Pr(a_i|\rho_j) = \delta_{ij}$

Propositions

• Proposition*: a test $a=(a_0, a_1)$ such that there exist two states ρ_0 , ρ_1 s.t.

$$\Pr(a_i|\rho_j) = \delta_{ij}$$

• The proposition can have definite truth values, corresponding to preparations ρ_0 (false), and ρ_1 (true).

Propositions

• Proposition*: a test $a=(a_0, a_1)$ such that there exist two states ρ_0 , ρ_1 s.t.

$$\Pr(a_i|\rho_j) = \delta_{ij}$$

- The proposition can have definite truth values, corresponding to preparations ρ_0 (false), and ρ_1 (true).
- In Quantum Theory propositions correspond to orthogonal projections
Propositions

• Proposition^{*}: a test $a=(a_0, a_1)$ such that there exist two states ρ_0 , ρ_1 s.t.

$$\Pr(a_i|\rho_j) = \delta_{ij}$$

- The proposition can have definite truth values, corresponding to preparations ρ_0 (false), and ρ_1 (true).
- In Quantum Theory propositions correspond to orthogonal projections
 - Their existence in Quantum Theory is granted by the axiom of discriminability of non fully mixed states**:

Every state that is not fully mixed can be perfectly discriminated from another state

```
* G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
** G. Chiribella, G. M. D'Ariano, and PP, Phys. Rev. A 84, 012311 (2011).
```

Thursday, June 21, 12

Complementarity

• An OPT entails complementarity if there are two propositions $a^{(i)}=(a^{(i)}_{0}, a^{(i)}_{1})$ s.t.

$$\Pr(a_i^{(0)}|\rho) = 1 \quad \Rightarrow \quad 0 < \Pr(a_j^{(1)}|\rho) < 1$$

 An OPT entails complementarity if and only if there is a set of propositions a⁽ⁱ⁾=(a⁽ⁱ⁾₀, a⁽ⁱ⁾₁) s.t.

$$\Pr(a_j^{(i)}|\rho) = 1 \quad \Rightarrow \quad \exists k, l \quad 0 < \Pr(a_l^{(k)}|\rho) < 1$$

• An OPT with complementarity exhibits Schrödinger's cat-like paradox

$$a^{(0)} = \{ \underbrace{a^{(1)}}_{a \to a}, \underbrace{a^{(1)}}_{a \to a} \} \quad a^{(1)} = \{ \underbrace{a^{(1)}}_{a \to a}, \underbrace{a^{(1)}}_{a \to a} \}$$

• Given a complete OPT with complementarity and a pure steering state for the ensemble $\{p_0\rho^{(0)}, p_1\rho^{(1)}\}$ where $\Pr(a_0^{(0)}|\rho^{(0)}) = 1$ $\Pr(a_0^{(0)}|\rho^{(1)}) = 0$ the states verifying "alive" or "dead" are remotely prepared

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\{p_0\rho^{(0)}, p_1\rho^{(1)}\}$ where $\Pr(a_0^{(0)}|\rho^{(0)}) = 1$ $\Pr(a_0^{(0)}|\rho^{(1)}) = 0$ the states verifying "alive" or "dead" are remotely prepared
- Such a theory is necessarily spooky

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\{p_0\rho^{(0)}, p_1\rho^{(1)}\}$ where $\Pr(a_0^{(0)}|\rho^{(0)}) = 1$ $\Pr(a_0^{(0)}|\rho^{(1)}) = 0$ the states verifying "alive" or "dead" are remotely prepared
- Such a theory is necessarily spooky
- The paradox stems from both violation of locality (outcome independence) and complementarity

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```

• Given a complete OPT with complementarity and a pure steering state for the ensemble $\{p_0\rho^{(0)}, p_1\rho^{(1)}\}$ where $\Pr(a_0^{(0)}|\rho^{(0)}) = 1$ $0 < \Pr(a_0^{(0)}|\rho^{(1)}) < 1$ the states verifying "alive" or "long moustache" are remotely prepared

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\{p_0\rho^{(0)}, p_1\rho^{(1)}\}$ where $\Pr(a_0^{(0)}|\rho^{(0)}) = 1$ $0 < \Pr(a_0^{(0)}|\rho^{(1)}) < 1$ the states verifying "alive" or "long moustache" are remotely prepared
- States verifying complementary propositions are different

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\{p_0\rho^{(0)}, p_1\rho^{(1)}\}$ where $\Pr(a_0^{(0)}|\rho^{(0)}) = 1$ $0 < \Pr(a_0^{(0)}|\rho^{(1)}) < 1$ the states verifying "alive" or "long moustache" are remotely prepared
- States verifying complementary propositions are different
 - Such a theory is necessarily spooky

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```

- Given a complete OPT with complementarity and a pure steering state for the ensemble $\{p_0\rho^{(0)}, p_1\rho^{(1)}\}$ where $\Pr(a_0^{(0)}|\rho^{(0)}) = 1$ $0 < \Pr(a_0^{(0)}|\rho^{(1)}) < 1$ the states verifying "alive" or "long moustache" are remotely prepared
- States verifying complementary propositions are different
 - Such a theory is necessarily spooky
- The paradox stems from violation of locality (outcome independence)

```
G. M. D'Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
```

Concluding remarks

- Quantum Theory as an OPT
 - five standard axioms for information theories
 - purification postulate
- Can completeness be an alternate postulate?
 - Completeness, spookiness and pure state steering
- Steering, complementarity and Schrödinger's cat
 - HVTs can provide useful classification of OPTs