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• The principles of Quantum Theory

• Hidden variable theories and their properties

• Spooky action at a distance and outcome independence

• Completeness

• Steering, Complementarity and Schrödinger’s cat
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• Operational theory: tests with composition rules

• For any system A there exists a unique test           such that

The operational language
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i∈X:     outcome
    :  event of the testCi
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B :  output label
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A :  input label 
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• Operational theory: tests with composition rules

• For any system A there exists a unique test           such that

The operational language

B=IB
ai

ai

A=I A
ρi ρi
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• Operational theory: tests with composition rules

• For any system A there exists a unique test           such that

The operational language

•C:=AB=BA

•(AB)C=A(BC)

•AI=IA=A

A

B
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• Operational theory: tests with composition rules

• For any system A there exists a unique test           such that

The operational language

IA

= A BA IA Ci
BA Ci

B IB
A BCi =

G. Chiribella, G. M. D’Ariano, and PP, Phys. Rev. A 81, 062348(2010)
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• Probabilistic theory

Operational probabilistic theories

States are functionals on effects and viceversa

Real vector spaces

Every test of type I→I is a probability distribution ⇢i aj = Pr(aj , �i)

G. Chiribella, G. M. D’Ariano, and PP, Phys. Rev. A 81, 062348(2010)

Events are linear transformations
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• Coarse graining of the test

• Atomic is an event which does not represent a coarse graining

• The refinement set of an event contains all refining events

Coarse graining and Atomicity

G. Chiribella, G. M. D’Ariano, and PP, Phys. Rev. A 81, 062348(2010)

Bj =
X

i2Xj

Ai Xj \Xk = ;
[

j2Y

Xj = X

{Ai}i2X {Bj}j2Y
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• Causality

• Local discriminability

• Atomic composition

• Perfect discriminability

• Ideal compression

• Purification

Axioms for Quantum Theory

G. Chiribella, G. M. D’Ariano, and PP, Phys. Rev. A 84, 012311 (2011)
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⇢i ajpa(⇢i) :=
X

j

= p(⇢i)
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G. Chiribella, G. M. D’Ariano, and PP, Phys. Rev. A 84, 012311 (2011)

A

B
 ≠

A

B
 0 ⇒

A

B
 

a

b
≠

A

B
 0

a
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Ã

Thursday, June 21, 12



• Causality
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• Perfect discriminability
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• Given an OPT for every circuit of type

 we can choose tests

Hidden Variable Theories for OPTs

a := {aj}j2Y

a⇢

...

A1

A2

An�1

An
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• Given an OPT for every circuit of type

 we can choose tests

• Define the sample space

Hidden Variable Theories for OPTs

a := {aj}j2Y
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...

A1

A2

An�1

An

�A1�···�An := Y � {a(1), . . . , a(n)}
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• Given an OPT for every circuit of type

 we can choose tests

• Define the sample space

• Equivalent HVT:

Hidden Variable Theories for OPTs

a := {aj}j2Y

Pr(aj |a) =
X

�2⇤

Pr�(aj |a,�)Pr�(�|a)

a⇢

...

A1

A2

An�1

An

�A1�···�An ,Pr⇢� : ⇥⇥ �

�A1�···�An := Y � {a(1), . . . , a(n)}
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• Typical setting: local measurements

Hidden variable theories and locality

⇢ ...

A2

An�1

An

A1 a

b

z
y
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• Typical setting: local measurements

• This setting is used to prove non-locality of quantum theory

Hidden variable theories and locality

⇢ ...

A2

An�1

An

A1 a

b

z
y

Pr(ai, bj |a, b) �=
X

�2⇤

Pr�(ai|a,�)Pr�(bj |b,�)Pr�(�)
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Basic properties of HVTs

• λ-Independence Pr�(�|a, b, . . . ) = Pr�(�|a0, b0, . . . )
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Basic properties of HVTs

• λ-Independence

• Parameter Independence

• Free Choice*

Pr�(�|a, b, . . . ) = Pr�(�|a0, b0, . . . )

Pr�(ai|a, b, . . . ,�) = Pr�(ai|a,�)

Pr�(a) > 0, 8a
Pr�(a|bi, b,�) = Pr�(a|b0i, b0,�0)

* R. Colbeck and R. Renner, arXiv:1111.6597 (2011)
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Determinism

• Strong determinism:

•  Weak determinism:

�a,� ⇥! ai s.t. Pr�(ai|a,�) = 1

�a, b, . . . ,� ⇥! (ai, bj , . . . ) s.t. Pr�(ai, bj , . . . |a, b, . . . ,�) = 1
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Existence theorems

• T1: Given any empirical model, there is an equivalent hidden-variable model 

which satisfies Strong Determinism*.

• T2: Given any empirical model, there is an equivalent hidden-variable model 

which satisfies Weak Determinism and λ-Independence*.

* A. Brandenburger and N. Yanofsky, J. Phys. A: Math. Theor. 41, 425302 (2008)

T1 does not grant λ-independence and parameter independence

T2 does not grant parameter independence
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Assumption

• We will consider only HVTs with both

• λ-Independence

• Parameter independence
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Properties of HVTs
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Properties of HVTs

• Outcome Independence

• Locality

• Completeness

 Locality ⇔ Parameter Independence + Outcome Independence

Pr�(ai|a, b, . . . , bj , ck, . . . ,�) = Pr�(ai|a, b, . . . ,�)

Pr�(ai, bj , . . . |a, b, . . . ,�) = Pr�(ai|a,�)Pr�(bj |b,�) . . .

Pr�µ(ai|a,�, µ) = Pr�(ai|a,�), 8�, µ Pr�,µ(�, µ) > 0
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Properties of HVTs

• Outcome Independence

• Locality

• Completeness

 Locality ⇔ Parameter Independence + Outcome Independence

• Notice: violation of locality ⇔ violation of Outcome Independence

Pr�(ai|a, b, . . . , bj , ck, . . . ,�) = Pr�(ai|a, b, . . . ,�)

Pr�(ai, bj , . . . |a, b, . . . ,�) = Pr�(ai|a,�)Pr�(bj |b,�) . . .

Pr�µ(ai|a,�, µ) = Pr�(ai|a,�), 8�, µ Pr�,µ(�, µ) > 0
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Spooky action at a distance

• A theory is spooky* if any equivalent HVT violates Outcome Independence

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Spooky action at a distance

• A theory is spooky* if any equivalent HVT violates Outcome Independence

• Quantum Theory is spooky (violation of CHSH)

• We consider only theories with 

λ-Independence + Parameter independence

• CHSH ensures that any HVT for Quantum Theory must violate locality

➡ It necessarily violates outcome independence

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Complete operational probabilistic theories

• HVT for an OPT: descriptively non significant* if for every pure state

Pr�[ai, bj , . . . |a, b, . . . , | ,�] = Pr�[ai, bj , . . . |a, b, . . . , | ,�0]

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Complete operational probabilistic theories

• HVT for an OPT: descriptively non significant* if for every pure state

• OPT: complete if any HVT is descriptively non significant

• Quantum Theory is complete**

Pr�[ai, bj , . . . |a, b, . . . , | ,�] = Pr�[ai, bj , . . . |a, b, . . . , | ,�0]

** R. Colbeck and R. Renner, Nature Communications 2, 411 (2011)

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Complete spooky theories

• Theorem*: a complete theory is spooky if and only if there exists a pure state 
Ψ and tests a:=(a0,a1) and b:=(b0,b1) such that

pij := Pr(ai, bj |�)

A

B
 

a

b

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

3

FIG. 1. The tetrahedron (outlined in thick black line) rep-
resents the set of possible values of probabilities p00, p01,
p10 satisfying the normalization condition. The hyperbolic
paraboloid identifies the probabilities that satisfy Outcome
Independence.

Notice that the previous result does not require any
choice by the observers, since it needs only one test for
each subsystem. Consequently, there are no assumptions
about the observers’ free will, and the previous theorem
provides an extension of Brandenburger Yanofsky’s re-
formulation of the EPR paradox [17].
Generally, requiring 0 ≤ p00, p01, p10, p11 ≤ 1 and∑
pij = 1 implies that p00, p01, p10 must lie in the

tetrahedron outlined in figure 1 (p11 is simply obtained
by the normalisation condition). The spookiness con-
dition, namely Eq. (6), defines a hyperbolic paraboloid.
All spooky theories give rise to points of the tetrahedron
that do not lie on the surface of the paraboloid, and it
is clear that the non spooky theories are singular: if we
choose the outcome probabilities for the measurement in
Eq. (5) by randomly picking a point inside the tetrahe-
dron of Fig. 1, it is very unlikely to end up with one
residing on the hyperbolic paraboloid.

Theorem 2. An OPT admits a steering state of a non
trivial ensemble of two different states if and only if its
probabilities satisfy Eq. (6).

Proof. Let us prove the two-way implication in two steps.
(=⇒) By hypothesis there exist two normalized

states |α0)A, |α1)A for system A, such that there is an
effect (a0|A for which (a0 | α0)A #= (a0 | α1)A.The steer-
ing assumption implies that there exists a state |ρ)AB
for the joint system AB which steers the marginal en-
semble {p0 |α0)A , p1 |α1)A}, namely there exists a test
{(b0|B , (b1|B} such that

ρ
!"#$ A

B %&'(bi
≡ pi × )*+,αi

A (i = 0, 1) , (10)

with 0 < p0, p1 < 1 and p0 + p1 = 1. Since (a0 | α0)A #=
(a0 | α1)A, there exists 0 < |w| ≤ 1 such that (a0 | α0)A =
(a0 | α1)A + w (or equivalently (a1 | α0)A = (a1 | α1)A −
w). Therefore, using the substitutions of Eq. (5) and
normalization of |α0)A and |α1)A, the RHS of equation
(6) can be rewritten as follows

[p0 (a0 | α0)A + p1

(a0|α0)A−w
︷ ︸︸ ︷
(a0 | α1)A ]× (11)

× [p0 (a0 | α0)A + p0 (a1 | α0)A]︸ ︷︷ ︸
p0[(a0|α0)A+(a1|α0)A]≡p0(e|α0)A

= p0 (a0 | α0)A − wp0p1.

Since w #= 0 and 0 < p0, p1 < 1, we conclude that the
RHS of Eq. (6) is not equal to p0 (a0 | α0)A = p00, thus
proving Eq. (6).

(⇐=) Let us introduce for system A the states |α̃0)A,
|α̃1)A defined as-./0α̃i

A := ρ
!"#$ A

B %&'(bi
(i = 0, 1) . (12)

It is worth remarking that |α̃0)A and |α̃1)A are in gen-
eral sub-normalized. Therefore it is useful to define the
normalized states |α0)A, |α1)A for system A such that:

|α̃i)A = (e | α̃i)A × |αi)A (i = 0, 1) . (13)

Thanks to the previous definitions and Eq. (5) it is easy
to see that (e | α̃0)A + (e | α̃1)A = 1.

Eq. (6) can be rewritten using Eq. (12) as follows

(a0 | α̃0)A = [(a0 | α̃0)A + (a0 | α̃1)A]×
× [(a0 | α̃0)A + (a1 | α̃0)A] + w, (14)

where 0 < |w| ≤ 1. Since {(a0|A , (a1|A} is a complete
test, (a0 | α̃0)A + (a1 | α̃0)A = (e | α̃0)A. Consequently,
using Eq. (13), Eq. (14) becomes

(e | α̃0)A (a0 | α0)A = [(e | α̃0)A (a0 | α0)A +

+ (e | α̃1)A (a0 | α1)A]× (e | α̃0)A + w. (15)

From Eq. (15), and remembering that (e | α̃0)A +
(e | α̃1)A = 1, we conclude that (e | α̃0)A and (e | α̃1)A
cannot be zero (otherwise w would be zero, against
the hypothesis). Thus Eq. (15) can be divided
by (e | α̃0)A (e | α̃1)A, and after moving the resulting
(e | α̃0)A (a0 | α0)A / (e | α̃1)A from the RHS to the LHS,
we derive

(a0 | α0)A = (a0 | α1)A +
w

(e | α̃0)A × (e | α̃1)A
. (16)

where again we used that (e | α̃0)A + (e | α̃1)A = 1. The
last term of the RHS of the previous equation is not equal
to zero, since w #= 0. Thus we conclude that (a0 | α0)A #=
(a0 | α1)A. Since (e | α̃0)A , (e | α̃1)A #= 0, 1 the ensemble
{(e | α̃0)A |α0)A , (e | α̃1)A |α1)A} is not trivial. Finally,

p00p11 6= p01p10
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Complete spooky theories

• The paraboloid has null measure in the tetrahedron

• It seems very likely to have theories violating outcome independence
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FIG. 1. The tetrahedron (outlined in thick black line) rep-
resents the set of possible values of probabilities p00, p01,
p10 satisfying the normalization condition. The hyperbolic
paraboloid identifies the probabilities that satisfy Outcome
Independence.

Notice that the previous result does not require any
choice by the observers, since it needs only one test for
each subsystem. Consequently, there are no assumptions
about the observers’ free will, and the previous theorem
provides an extension of Brandenburger Yanofsky’s re-
formulation of the EPR paradox [17].
Generally, requiring 0 ≤ p00, p01, p10, p11 ≤ 1 and∑
pij = 1 implies that p00, p01, p10 must lie in the

tetrahedron outlined in figure 1 (p11 is simply obtained
by the normalisation condition). The spookiness con-
dition, namely Eq. (6), defines a hyperbolic paraboloid.
All spooky theories give rise to points of the tetrahedron
that do not lie on the surface of the paraboloid, and it
is clear that the non spooky theories are singular: if we
choose the outcome probabilities for the measurement in
Eq. (5) by randomly picking a point inside the tetrahe-
dron of Fig. 1, it is very unlikely to end up with one
residing on the hyperbolic paraboloid.

Theorem 2. An OPT admits a steering state of a non
trivial ensemble of two different states if and only if its
probabilities satisfy Eq. (6).

Proof. Let us prove the two-way implication in two steps.
(=⇒) By hypothesis there exist two normalized

states |α0)A, |α1)A for system A, such that there is an
effect (a0|A for which (a0 | α0)A #= (a0 | α1)A.The steer-
ing assumption implies that there exists a state |ρ)AB
for the joint system AB which steers the marginal en-
semble {p0 |α0)A , p1 |α1)A}, namely there exists a test
{(b0|B , (b1|B} such that

ρ
!"#$ A

B %&'(bi
≡ pi × )*+,αi

A (i = 0, 1) , (10)

with 0 < p0, p1 < 1 and p0 + p1 = 1. Since (a0 | α0)A #=
(a0 | α1)A, there exists 0 < |w| ≤ 1 such that (a0 | α0)A =
(a0 | α1)A + w (or equivalently (a1 | α0)A = (a1 | α1)A −
w). Therefore, using the substitutions of Eq. (5) and
normalization of |α0)A and |α1)A, the RHS of equation
(6) can be rewritten as follows

[p0 (a0 | α0)A + p1

(a0|α0)A−w
︷ ︸︸ ︷
(a0 | α1)A ]× (11)

× [p0 (a0 | α0)A + p0 (a1 | α0)A]︸ ︷︷ ︸
p0[(a0|α0)A+(a1|α0)A]≡p0(e|α0)A

= p0 (a0 | α0)A − wp0p1.

Since w #= 0 and 0 < p0, p1 < 1, we conclude that the
RHS of Eq. (6) is not equal to p0 (a0 | α0)A = p00, thus
proving Eq. (6).

(⇐=) Let us introduce for system A the states |α̃0)A,
|α̃1)A defined as-./0α̃i

A := ρ
!"#$ A

B %&'(bi
(i = 0, 1) . (12)

It is worth remarking that |α̃0)A and |α̃1)A are in gen-
eral sub-normalized. Therefore it is useful to define the
normalized states |α0)A, |α1)A for system A such that:

|α̃i)A = (e | α̃i)A × |αi)A (i = 0, 1) . (13)

Thanks to the previous definitions and Eq. (5) it is easy
to see that (e | α̃0)A + (e | α̃1)A = 1.

Eq. (6) can be rewritten using Eq. (12) as follows

(a0 | α̃0)A = [(a0 | α̃0)A + (a0 | α̃1)A]×
× [(a0 | α̃0)A + (a1 | α̃0)A] + w, (14)

where 0 < |w| ≤ 1. Since {(a0|A , (a1|A} is a complete
test, (a0 | α̃0)A + (a1 | α̃0)A = (e | α̃0)A. Consequently,
using Eq. (13), Eq. (14) becomes

(e | α̃0)A (a0 | α0)A = [(e | α̃0)A (a0 | α0)A +

+ (e | α̃1)A (a0 | α1)A]× (e | α̃0)A + w. (15)

From Eq. (15), and remembering that (e | α̃0)A +
(e | α̃1)A = 1, we conclude that (e | α̃0)A and (e | α̃1)A
cannot be zero (otherwise w would be zero, against
the hypothesis). Thus Eq. (15) can be divided
by (e | α̃0)A (e | α̃1)A, and after moving the resulting
(e | α̃0)A (a0 | α0)A / (e | α̃1)A from the RHS to the LHS,
we derive

(a0 | α0)A = (a0 | α1)A +
w

(e | α̃0)A × (e | α̃1)A
. (16)

where again we used that (e | α̃0)A + (e | α̃1)A = 1. The
last term of the RHS of the previous equation is not equal
to zero, since w #= 0. Thus we conclude that (a0 | α0)A #=
(a0 | α1)A. Since (e | α̃0)A , (e | α̃1)A #= 0, 1 the ensemble
{(e | α̃0)A |α0)A , (e | α̃1)A |α1)A} is not trivial. Finally,
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Complete spooky theories

• The paraboloid has null measure in the tetrahedron

• It seems very likely to have theories violating outcome independence

• Question: how can one characterise complete theories?

3

FIG. 1. The tetrahedron (outlined in thick black line) rep-
resents the set of possible values of probabilities p00, p01,
p10 satisfying the normalization condition. The hyperbolic
paraboloid identifies the probabilities that satisfy Outcome
Independence.

Notice that the previous result does not require any
choice by the observers, since it needs only one test for
each subsystem. Consequently, there are no assumptions
about the observers’ free will, and the previous theorem
provides an extension of Brandenburger Yanofsky’s re-
formulation of the EPR paradox [17].
Generally, requiring 0 ≤ p00, p01, p10, p11 ≤ 1 and∑
pij = 1 implies that p00, p01, p10 must lie in the

tetrahedron outlined in figure 1 (p11 is simply obtained
by the normalisation condition). The spookiness con-
dition, namely Eq. (6), defines a hyperbolic paraboloid.
All spooky theories give rise to points of the tetrahedron
that do not lie on the surface of the paraboloid, and it
is clear that the non spooky theories are singular: if we
choose the outcome probabilities for the measurement in
Eq. (5) by randomly picking a point inside the tetrahe-
dron of Fig. 1, it is very unlikely to end up with one
residing on the hyperbolic paraboloid.

Theorem 2. An OPT admits a steering state of a non
trivial ensemble of two different states if and only if its
probabilities satisfy Eq. (6).

Proof. Let us prove the two-way implication in two steps.
(=⇒) By hypothesis there exist two normalized

states |α0)A, |α1)A for system A, such that there is an
effect (a0|A for which (a0 | α0)A #= (a0 | α1)A.The steer-
ing assumption implies that there exists a state |ρ)AB
for the joint system AB which steers the marginal en-
semble {p0 |α0)A , p1 |α1)A}, namely there exists a test
{(b0|B , (b1|B} such that

ρ
!"#$ A

B %&'(bi
≡ pi × )*+,αi

A (i = 0, 1) , (10)

with 0 < p0, p1 < 1 and p0 + p1 = 1. Since (a0 | α0)A #=
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(6) can be rewritten as follows

[p0 (a0 | α0)A + p1

(a0|α0)A−w
︷ ︸︸ ︷
(a0 | α1)A ]× (11)

× [p0 (a0 | α0)A + p0 (a1 | α0)A]︸ ︷︷ ︸
p0[(a0|α0)A+(a1|α0)A]≡p0(e|α0)A

= p0 (a0 | α0)A − wp0p1.

Since w #= 0 and 0 < p0, p1 < 1, we conclude that the
RHS of Eq. (6) is not equal to p0 (a0 | α0)A = p00, thus
proving Eq. (6).

(⇐=) Let us introduce for system A the states |α̃0)A,
|α̃1)A defined as-./0α̃i

A := ρ
!"#$ A

B %&'(bi
(i = 0, 1) . (12)

It is worth remarking that |α̃0)A and |α̃1)A are in gen-
eral sub-normalized. Therefore it is useful to define the
normalized states |α0)A, |α1)A for system A such that:

|α̃i)A = (e | α̃i)A × |αi)A (i = 0, 1) . (13)

Thanks to the previous definitions and Eq. (5) it is easy
to see that (e | α̃0)A + (e | α̃1)A = 1.

Eq. (6) can be rewritten using Eq. (12) as follows

(a0 | α̃0)A = [(a0 | α̃0)A + (a0 | α̃1)A]×
× [(a0 | α̃0)A + (a1 | α̃0)A] + w, (14)

where 0 < |w| ≤ 1. Since {(a0|A , (a1|A} is a complete
test, (a0 | α̃0)A + (a1 | α̃0)A = (e | α̃0)A. Consequently,
using Eq. (13), Eq. (14) becomes

(e | α̃0)A (a0 | α0)A = [(e | α̃0)A (a0 | α0)A +

+ (e | α̃1)A (a0 | α1)A]× (e | α̃0)A + w. (15)

From Eq. (15), and remembering that (e | α̃0)A +
(e | α̃1)A = 1, we conclude that (e | α̃0)A and (e | α̃1)A
cannot be zero (otherwise w would be zero, against
the hypothesis). Thus Eq. (15) can be divided
by (e | α̃0)A (e | α̃1)A, and after moving the resulting
(e | α̃0)A (a0 | α0)A / (e | α̃1)A from the RHS to the LHS,
we derive

(a0 | α0)A = (a0 | α1)A +
w

(e | α̃0)A × (e | α̃1)A
. (16)

where again we used that (e | α̃0)A + (e | α̃1)A = 1. The
last term of the RHS of the previous equation is not equal
to zero, since w #= 0. Thus we conclude that (a0 | α0)A #=
(a0 | α1)A. Since (e | α̃0)A , (e | α̃1)A #= 0, 1 the ensemble
{(e | α̃0)A |α0)A , (e | α̃1)A |α1)A} is not trivial. Finally,
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Complete spooky theories

• The paraboloid has null measure in the tetrahedron

• It seems very likely to have theories violating outcome independence

• Question: how can one characterise complete theories?

• Is completeness sufficient to single out Classical and Quantum statistics?
3

FIG. 1. The tetrahedron (outlined in thick black line) rep-
resents the set of possible values of probabilities p00, p01,
p10 satisfying the normalization condition. The hyperbolic
paraboloid identifies the probabilities that satisfy Outcome
Independence.

Notice that the previous result does not require any
choice by the observers, since it needs only one test for
each subsystem. Consequently, there are no assumptions
about the observers’ free will, and the previous theorem
provides an extension of Brandenburger Yanofsky’s re-
formulation of the EPR paradox [17].
Generally, requiring 0 ≤ p00, p01, p10, p11 ≤ 1 and∑
pij = 1 implies that p00, p01, p10 must lie in the

tetrahedron outlined in figure 1 (p11 is simply obtained
by the normalisation condition). The spookiness con-
dition, namely Eq. (6), defines a hyperbolic paraboloid.
All spooky theories give rise to points of the tetrahedron
that do not lie on the surface of the paraboloid, and it
is clear that the non spooky theories are singular: if we
choose the outcome probabilities for the measurement in
Eq. (5) by randomly picking a point inside the tetrahe-
dron of Fig. 1, it is very unlikely to end up with one
residing on the hyperbolic paraboloid.

Theorem 2. An OPT admits a steering state of a non
trivial ensemble of two different states if and only if its
probabilities satisfy Eq. (6).

Proof. Let us prove the two-way implication in two steps.
(=⇒) By hypothesis there exist two normalized

states |α0)A, |α1)A for system A, such that there is an
effect (a0|A for which (a0 | α0)A #= (a0 | α1)A.The steer-
ing assumption implies that there exists a state |ρ)AB
for the joint system AB which steers the marginal en-
semble {p0 |α0)A , p1 |α1)A}, namely there exists a test
{(b0|B , (b1|B} such that

ρ
!"#$ A

B %&'(bi
≡ pi × )*+,αi

A (i = 0, 1) , (10)

with 0 < p0, p1 < 1 and p0 + p1 = 1. Since (a0 | α0)A #=
(a0 | α1)A, there exists 0 < |w| ≤ 1 such that (a0 | α0)A =
(a0 | α1)A + w (or equivalently (a1 | α0)A = (a1 | α1)A −
w). Therefore, using the substitutions of Eq. (5) and
normalization of |α0)A and |α1)A, the RHS of equation
(6) can be rewritten as follows

[p0 (a0 | α0)A + p1

(a0|α0)A−w
︷ ︸︸ ︷
(a0 | α1)A ]× (11)

× [p0 (a0 | α0)A + p0 (a1 | α0)A]︸ ︷︷ ︸
p0[(a0|α0)A+(a1|α0)A]≡p0(e|α0)A

= p0 (a0 | α0)A − wp0p1.

Since w #= 0 and 0 < p0, p1 < 1, we conclude that the
RHS of Eq. (6) is not equal to p0 (a0 | α0)A = p00, thus
proving Eq. (6).

(⇐=) Let us introduce for system A the states |α̃0)A,
|α̃1)A defined as-./0α̃i

A := ρ
!"#$ A

B %&'(bi
(i = 0, 1) . (12)

It is worth remarking that |α̃0)A and |α̃1)A are in gen-
eral sub-normalized. Therefore it is useful to define the
normalized states |α0)A, |α1)A for system A such that:

|α̃i)A = (e | α̃i)A × |αi)A (i = 0, 1) . (13)

Thanks to the previous definitions and Eq. (5) it is easy
to see that (e | α̃0)A + (e | α̃1)A = 1.

Eq. (6) can be rewritten using Eq. (12) as follows

(a0 | α̃0)A = [(a0 | α̃0)A + (a0 | α̃1)A]×
× [(a0 | α̃0)A + (a1 | α̃0)A] + w, (14)

where 0 < |w| ≤ 1. Since {(a0|A , (a1|A} is a complete
test, (a0 | α̃0)A + (a1 | α̃0)A = (e | α̃0)A. Consequently,
using Eq. (13), Eq. (14) becomes

(e | α̃0)A (a0 | α0)A = [(e | α̃0)A (a0 | α0)A +

+ (e | α̃1)A (a0 | α1)A]× (e | α̃0)A + w. (15)

From Eq. (15), and remembering that (e | α̃0)A +
(e | α̃1)A = 1, we conclude that (e | α̃0)A and (e | α̃1)A
cannot be zero (otherwise w would be zero, against
the hypothesis). Thus Eq. (15) can be divided
by (e | α̃0)A (e | α̃1)A, and after moving the resulting
(e | α̃0)A (a0 | α0)A / (e | α̃1)A from the RHS to the LHS,
we derive

(a0 | α0)A = (a0 | α1)A +
w

(e | α̃0)A × (e | α̃1)A
. (16)

where again we used that (e | α̃0)A + (e | α̃1)A = 1. The
last term of the RHS of the previous equation is not equal
to zero, since w #= 0. Thus we conclude that (a0 | α0)A #=
(a0 | α1)A. Since (e | α̃0)A , (e | α̃1)A #= 0, 1 the ensemble
{(e | α̃0)A |α0)A , (e | α̃1)A |α1)A} is not trivial. Finally,
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Steering and outcome independence

• Theorem*: An OPT admits a steering state for a non trivial ensemble of two 
different states if and only if its probabilities satisfy

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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ai
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p00p11 6= p01p10
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Steering and spookiness

• Corollary*: For a complete OPT the following are equivalent

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Steering and spookiness

• Corollary*: For a complete OPT the following are equivalent

1. 
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Steering and spookiness

• Corollary*: For a complete OPT the following are equivalent

1. 

2. 

3.     Spookiness

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Propositions

• Proposition*: a test a=(a0, a1) such that there exist two states ρ0, ρ1 s.t. 

Pr(ai|⇥j) = �ij

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Propositions

• Proposition*: a test a=(a0, a1) such that there exist two states ρ0, ρ1 s.t. 

• The proposition can have definite truth values, corresponding to preparations 
ρ0 (false), and ρ1 (true).

Pr(ai|⇥j) = �ij

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Propositions

• Proposition*: a test a=(a0, a1) such that there exist two states ρ0, ρ1 s.t. 

• The proposition can have definite truth values, corresponding to preparations 
ρ0 (false), and ρ1 (true).

• In Quantum Theory propositions correspond to orthogonal projections

Pr(ai|⇥j) = �ij
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Thursday, June 21, 12



Propositions

• Proposition*: a test a=(a0, a1) such that there exist two states ρ0, ρ1 s.t. 

• The proposition can have definite truth values, corresponding to preparations 
ρ0 (false), and ρ1 (true).

• In Quantum Theory propositions correspond to orthogonal projections

• Their existence in Quantum Theory is granted by the axiom of 
discriminability of non fully mixed states**:

 Every state that is not fully mixed can be perfectly discriminated from 
another state

Pr(ai|⇥j) = �ij

** G. Chiribella, G. M. D’Ariano, and PP, Phys. Rev. A 84, 012311 (2011).

* G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Complementarity

• An OPT entails complementarity if there are two propositions a(i)=(a(i)0, a(i)1) s.t.

• An OPT entails complementarity if and only if there is a set of propositions  
a(i)=(a(i)0, a(i)1) s.t.

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

Pr(a(i)j |�) = 1 � ⇥ k, l 0 < Pr(a(k)l |�) < 1

Pr(a(0)i |�) = 1 � 0 < Pr(a(1)j |�) < 1
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Schrödinger’s cat I

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Schrödinger’s cat I

• An OPT with complementarity exhibits Schrödinger’s cat-like paradox 

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

a(0) = a(1) ={ {} }, ,
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Schrödinger’s cat II

• Given a complete OPT with complementarity and a pure steering state for the 

ensemble                           where

the states verifying “alive” or “dead” are remotely prepared

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

{p0�(0), p1�(1)} Pr(a(0)0 |�(0)) = 1 Pr(a(0)0 |⇢(1)) = 0
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Schrödinger’s cat II

• Given a complete OPT with complementarity and a pure steering state for the 

ensemble                           where

the states verifying “alive” or “dead” are remotely prepared

• Such a theory is necessarily spooky

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

{p0�(0), p1�(1)} Pr(a(0)0 |�(0)) = 1 Pr(a(0)0 |⇢(1)) = 0
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Schrödinger’s cat II

• Given a complete OPT with complementarity and a pure steering state for the 

ensemble                           where

the states verifying “alive” or “dead” are remotely prepared

• Such a theory is necessarily spooky

• The paradox stems from both violation of locality (outcome independence) 

and complementarity

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

{p0�(0), p1�(1)} Pr(a(0)0 |�(0)) = 1 Pr(a(0)0 |⇢(1)) = 0
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Schrödinger’s cat III

• Given a complete OPT with complementarity and a pure steering state for the 

ensemble                           where

the states verifying “alive” or “long moustache” are remotely prepared

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

0 < Pr(a(0)0 |�(1)) < 1{p0�(0), p1�(1)} Pr(a(0)0 |�(0)) = 1
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Schrödinger’s cat III

• Given a complete OPT with complementarity and a pure steering state for the 

ensemble                           where

the states verifying “alive” or “long moustache” are remotely prepared

• States verifying complementary propositions are different

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).

0 < Pr(a(0)0 |�(1)) < 1{p0�(0), p1�(1)} Pr(a(0)0 |�(0)) = 1
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Schrödinger’s cat III

• Given a complete OPT with complementarity and a pure steering state for the 

ensemble                           where

the states verifying “alive” or “long moustache” are remotely prepared

• States verifying complementary propositions are different

• Such a theory is necessarily spooky

• The paradox stems from violation of locality (outcome independence)

G. M. D’Ariano, F. Manessi, and PP arXiv:1108.3681 (2011).
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Concluding remarks

• Quantum Theory as an OPT 

• five standard axioms for information theories

• purification postulate

• Can completeness be an alternate postulate?

• Completeness, spookiness and pure state steering

• Steering, complementarity and Schrödinger’s cat

• HVTs can provide useful classification of OPTs
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