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Measurement problem

Schrödinger evolution
(linear, deterministic)

WPR postulate
(non-linear, stochastic)

macroscopic 
superpositions

QM

Stochastic Schrödinger equation
(non-linear, stochastic)

Collapse models

• Measurement problem:

• Pragmatic solution:  WPR postulate
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Collapse Models

• Idea:  “Spontaneous collapses occur more or less all 
the time, more or less everywhere” (J. Bell)

The Schrödinger equation is modified, to include such effects 
which are non-linear and stochastic

• Constraints:
norm preserving equation

no faster than light
structure almost 
uniquely defined

non-linear stochastic
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Non-Markovian unravelling

• Stochastic unravelling for open quantum systems:

the interaction with the environment is described by a noise

Markovian: white noise

Non-Markovian: colored noise

• Non-Markovian QSD:
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L. Diosi, W.T. Strunz, Phys. Lett. A  235 (1997).
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Non-Markovian QMUPL model with dissipation

gaussian 
noise

correlation 
function

functional derivative

integral term

general correlation function

• Non-Markovian collapse equation with dissipation:

• Physical model: free particle, collapse in space, non-Markovian 
and dissipative

• Difficulties

dissipative 
term
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Solution of the non-Markovian and dissipative 
free particle equation

Green’s 
function

non-standard action

path-integration
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Free particle trajectory

same structure as the white noise case

are deterministic,

Green’s function:

are stochastic

Gaussian 
structure Gaussian wave functions preserve their form

Ct, Dt, Et

non-local term more 
difficult to treat

need to set up a 
new formalism

p
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L. Ferialdi,  A. Bassi
EPL 98, 30009 (2012).
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Fourth order 
differential equation

• Second order integro-
differential equation

• Explicit solution for the exponential correlation function
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• Parameters completely determined in terms of the solution of
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Behaviour of Gaussian wave functions 
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• The wave function shrinks in time.

• The stronger the dissipation, the lower 
the temperature, the weaker the collapse.

• The spread reaches an asymptotic finite 
value.

• The larger the value of γ, the faster the 
collapse of the wave function.

• The spread is not strictly decreasing with γ.

• The dissipation makes the transition 
smoother.

Spread evolution for different T Spread VS γ
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Behaviour of Gaussian wave functions 

Non-white dissipative
Non-white
White dissipative
White
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• In the non-Markovian and in the 
dissipative models the collapse is 
slower than in the white noise case. 
When these two effects are 
combined the process is even slower. 

• The behavior is qualitatively the 
same for every version of the 
model: the spread decreases in time, 
reaching an asymptotic finite value.

in the Markovian model all frequencies 
contribute (in the non-Markovian high-
frequencies are suppressed)

a finite temperature noise is less energetic 
than an infinite temperature noise.
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Master equation

• Infinite temperature model: master equation for the 
harmonic oscillator
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need to set up a new formalism

⇢t = E [|�tih�t|]•  
because of p standard 
techniques cannot be applied

• Interesting to apply measures of non-Markovianity



Luca Ferialdi

Conclusions & future research

• Application to energy transfer phenomena and ultra-fast 
chemical reaction

• SSEs are a powerful 
mathematical technique

analytical solution
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numerical simulations

• Ultimate goal: microscopic derivation for non-Markovian 
dynamics
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