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Semi-classical gravity

There are conceptual difficulties with the quantum treatment of gravity: problem

of time, finding solutions to Wheeler-DeWitt equation, etc. Therefore one often

resorts to semi-classical approximations:

→Matter is treated quantum mechanically, as quantum field on curved

space-time.

E.g. scalar field Ψ(φ)

→Grativity is treated classically, described by

Gµν =
8πG

c4
〈Ψ|T̂µν|Ψ〉
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Is there a better (i.e. more refined) semi-classical approximation

based on de Broglie-Bohm theory?

In de Broglie-Bohm theory matter is described by Ψ(φ) and actual scalar field

φB(x, t). Proposal for semi-classical theory:

Gµν =
8πG

c4
Tµν(φB)
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Is there a better (i.e. more refined) semi-classical approximation

based on de Broglie-Bohm theory?

In de Broglie-Bohm theory matter is described by Ψ(φ) and actual scalar field

φB(x, t). Proposal for semi-classical theory:

Gµν =
8πG

c4
Tµν(φB)

→ In general doesn’t work because ∇µT
µν(φB) 6= 0!

(In non-relativistic de Broglie-Bohm theory energy is not conserved.)
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Is there a better (i.e. more refined) semi-classical approximation

based on de Broglie-Bohm theory?

In de Broglie-Bohm theory matter is described by Ψ(φ) and actual scalar field

φB(x, t). Proposal for semi-classical theory:

Gµν =
8πG

c4
Tµν(φB)

→ In general doesn’t work because ∇µT
µν(φB) 6= 0!

(In non-relativistic de Broglie-Bohm theory energy is not conserved.)

Similar situation in scalar electrodynamics:

Quantum matter field described by Ψ(φ) and actual scalar field φB(x, t). Semi-

classical theory:

∂µF
µν = jν(φB)

→ In general doesn’t work because ∂νj
ν(φB) 6= 0!
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Outline

• Introduction to de Broglie-Bohm

• Semi-classical approximation in non-relativistic de Broglie-Bohm

• Semi-classical approximation in scalar electrodynamics

• Semi-classical approximation in mini-superspace model
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Non-relativistic de Broglie-Bohm theory

(a.k.a. pilot-wave theory, Bohmian mechanics, . . . )

• De Broglie (1927), Bohm (1952)

• Particles moving under influence of the wave function.

• Dynamics:

i~∂tψ =

(
−

n∑
k=1

~2

2mk
∇2
k + V

)
ψ

dxk
dt

= vψk (x1, . . . ,xn, t),

where

vψk =
~
mk

Im
∇kψ

ψ
=

1

mk
∇kS, ψ = |ψ|eiS/~
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• Double Slit experiment:
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• Quantum equilibrium:

- for an ensemble of systems with wave function ψ

- distribution of particle positions ρ(x) = |ψ(x)|2

• Quantum equilibrium is preserved by the particle motion because it satisfies the

continuity equation:

∂t|ψ|2 +

n∑
k=1

∇k · (vψk |ψ|
2) = 0

→ For other Schrödinger equations, the continuity equation of |ψ|2 may be used

to find a suitable guidance law.

That is

∂t|ψ|2 + divjψ = 0

suggests the guidance law

Ẋ =
jψ

|ψ|2
(treatment of arbitrary Hamiltonians: Struyve & Valentini (2009))
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•Classical limit:

ẋ =
1

m
∇S ⇒ mẍ = −∇(V + Q)

ψ = |ψ|eiS/~, Q = − ~2

2m

∇2|ψ|
|ψ|

= quantum potential

Classical trajectories when |∇Q| � |∇V |.
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•Wave function of subsystem: conditional wave function

Consider composite system: ψ(x1, x2, t), (X1(t), X2(t))

Conditional wave function for system 1:

χ(x, t) = ψ(x1, X2(t), t)

The trajectory X1(t) satisfies

dX1(t)

dt
= vχ(X1(t), t) =

1

m1
Im
∇1χ(x1, t)

χ(x1, t)

∣∣∣∣∣
x1=X1(t)

Conditional wave function χ:

- will satisfy Schrödinger equation in certain cases

- will undergo collapse
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Semi-classical approximation: non-relativistic quantum mechanics

• System 1: quantum mechanical. System 2: classical

Usual approach (mean field):

i∂tψ(x1, t) =

(
− ∇

2
1

2m1
+ V (x1, X2(t))

)
ψ(x1, t)

m2Ẍ2(t) = 〈ψ|F2(x1, X2(t))|ψ〉 , F2 = −∇2V

→ backreaction through mean force
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Semi-classical approximation: non-relativistic quantum mechanics

• System 1: quantum mechanical. System 2: classical

Usual approach (mean field):

i∂tψ(x1, t) =

(
− ∇

2
1

2m1
+ V (x1, X2(t))

)
ψ(x1, t)

m2Ẍ2(t) = 〈ψ|F2(x1, X2(t))|ψ〉 , F2 = −∇2V

→ backreaction through mean force

de Broglie-Bohm-based approach:

i∂tψ(x1, t) =

(
− ∇

2
1

2m1
+ V (x1, X2(t))

)
ψ(x1, t)

Ẋ1(t) = vψ1 (X1(t), t) , m2Ẍ2(t) = F2(X1(t), X2(t))

→ backreaction through Bohmian particle
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• Prezhdo and Brookby (2001):

De Broglie-Bohm-based approach yields better results than usual approach:
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•Derivation of de Broglie-Bohm-based semi-classical approxima-

tion

Full quantum mechanical description:

i∂tψ(x1, x2, t) =

(
− ∇

2
1

2m1
− ∇

2
2

2m2
+ V (x1, x2)

)
ψ(x1, x2, t)

Ẋ1(t) = vψ1 (X1(t), X2(t), t) , Ẋ2(t) = vψ2 (X1(t), X2(t), t)

Conditional wave function χ(x1, t) = ψ(x1, X2(t), t) satisfies

i∂tχ(x1, t) =

(
− ∇

2
1

2m1
+ V (x1, X2(t))

)
χ(x1, t) + I(x1, t)

and particle two:

m2Ẍ2(t) = −∇2V (X1(t), x2)
∣∣∣
x2=X2(t)

−∇2Q(X1(t), x2)
∣∣∣
x2=X2(t)

→ Semi-classical approximation follows when I and −∇2Q are negligible

(e.g. when particle 2 is much heavier than particle 1)
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Semi-classical approximation: scalar electrodynamics

• Classical field equations:

DµD
µφ + m2φ = 0 , ∂µF

µν = jν = ie (φ∗Dνφ− φDν∗φ∗)

with Dµ = ∂µ + ieAµ, F µν = ∂µAν − ∂νAµ and jµ charge current (∂µj
µ = 0).

• Quantum field theory in Coulomb gauge:

. . .

• De Broglie-Bohm approach:

– Wave functional: Ψ(φ,AT , t)

– Actual field configurations: φ(x),AT (x)

. . .
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• De Broglie-Bohm-based semi-classical approximation:

– Matter field: quantum mechanical; Electromagnetic field: classical

– Schrödinger equation for Ψ(φ, t):

i∂tΨ =

∫
d3x

(
− δ2

δφ∗δφ
+ |(∇− ieAT )φ|2 + m2|φ|2 − 1

2
C 1

∇2
C
)

Ψ ,

where C is the charge density operator.

– Guidance equation scalar field:

φ̇ =
δS

δφ∗
− eφ 1

∇2
CS ⇒ DµD

µφ−m2φ = − δQ
δφ∗

– Classical Maxwell equations with quantum correction:

∂µF
µν = jν+jνQ ,

with “quantum charge current” jνQ = (0, jQ): jQ = i∇ 1
∇2CQ

Is consistent since: ∂µ(jµ + jµQ) = 0.

→Crucial in the derivation was that gauge was eliminated!

How to eliminate it in canonical quantum gravity?

(in this case: gauge = spatial diffeomorphism invariance).
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Semi-classical approximation: mini-superspace model

• Restriction to homogeneous and isotropic (FRW) metrics and fields:

– Gravity: ds2 = −N(t)2dt2 + a(t)2dΩ2
3

– Matter: φ = φ(t)

Wheeler-DeWitt equation:

(HG + HM)ψ = 0 ,

HG =
1

4a2
∂a(a∂a) + a3VG , HM = − 1

2a3
∂2φ + a3VM

Guidance equations (N = 1):

ȧ = − 1

2a
∂aS , φ̇ =

1

a3
∂φS (1)

• Semi-classical approximation:

i∂tψ = HMψ , φ̇ =
1

a3
∂φS (2)

and Friedmann equation with quantum correction:

ȧ2

a2
=
φ̇2

2
+ VM + VG+Q (3)
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Summary

Results so far:

• Consistent semi-classical approximation for:

– Non-relativistic systems

– Quantum electrodynamics

– Mini-superspace models

To do:

• Find semi-classical approximation for full quantum gravity

• Find higher order correction terms

• Develop rigorous expansions (e.g. à la WKB)

• Find applications (e.g. in cosmology: Hawking radiation, cosmological pertur-

bations in inflation theory)
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