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Semi-classical gravity
There are conceptual difficulties with the quantum treatment of gravity: problem

of time, finding solutions to Wheeler-DeWitt equation, etc. Therefore one often

resorts to semi-classical approximations:

— Matter is treated quantum mechanically, as quantum field on curved

space-time.
E.g. scalar field U(¢)

— Grativity is treated classically, described by

G, ~
G = ([T, 0)



Is there a better (i.e. more refined) semi-classical approximation

based on de Broglie-Bohm theory?

In de Broglie-Bohm theory matter is described by W(¢) and actual scalar field

¢p(x,t). Proposal for semi-classical theory:
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— In general doesn’t work because V, 7" (¢p) # 0!

(In non-relativistic de Broglie-Bohm theory energy is not conserved.)
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based on de Broglie-Bohm theory?

In de Broglie-Bohm theory matter is described by W(¢) and actual scalar field

¢p(x,t). Proposal for semi-classical theory:

T E
G = 7TNV<¢B>

— In general doesn’t work because V, 7" (¢p) # 0!

(In non-relativistic de Broglie-Bohm theory energy is not conserved.)

Similar situation in scalar electrodynamics:
Quantum matter field described by W(¢) and actual scalar field ¢p(x,t). Semi-

classical theory:
auFW = Jj"(¢8)

— In general doesn’t work because 0,5"(¢g) # 0!
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Non-relativistic de Broglie-Bohm theory

(a.k.a. pilot-wave theory, Bohmian mechanics, ...)

e De Broglie (1927), Bohm (1952)

e Particles moving under influence of the wave function.

e Dynamics:

ihdp) = < > h—2vi + v) W

where







e Quantum equilibrium:

- for an ensemble of systems with wave function

- distribution of particle positions p(z) = |(x)|?

e Quantum equilibrium is preserved by the particle motion because it satisfies the

continuity equation:
n
O+ Vi (Vi) =0
k=1

— For other Schrodinger equations, the continuity equation of [1|* may be used

to find a suitable guidance law.
That is
O + divj¥ =

suggests the guidance law
G
' J
X ="
Gk

(treatment of arbitrary Hamiltonians: Struyve & Valentini (2009))



e Classical limit:

1
X = EVS = mx = -V (V + Q)

Ve

_ iS/h .

= quantum potential

Classical trajectories when |VQ| < |[VV].



e Wave function of subsystem: conditional wave function

Consider composite system: ¥ (xy, xo,t), (X1(t), Xa(t))

Conditional wave function for system 1:

X(xa t) — w(xla X2<t)7 t)
The trajectory Xi(t) satisfies

dX1<t>_ Y B 1 le(azl,t)
= V(1) = —Tm -

r1=X1(t)

Conditional wave function :

- will satisty Schrodinger equation in certain cases

- will undergo collapse



Semi-classical approximation: non-relativistic quantum mechanics

e System 1: quantum mechanical. System 2: classical

Usual approach (mean field):

iat¢<£ﬁ1, t) — (—ﬁ + V(Qj‘l, XQ(t))) @D(.ﬁlﬁl, t)

le

maXo(t) = (V| Fa(zy, Xo(t)[v) ,  Fo=—-V,V

— backreaction through mean force



Semi-classical approximation: non-relativistic quantum mechanics

e System 1: quantum mechanical. System 2: classical

Usual approach (mean field):
2

(e, 1) = (—L V(o X2<t>>) b, )

2m1
maXo(t) = (Y| Fylay, Xo(t))[0) ,  Fo=—=VaV

— backreaction through mean force

de Broglie-Bohm-based approach:
2

i@ﬂb(iﬁl, t) = (—& -+ V(.lel, XQ(t))) @b(l’l, t)

2m1
Xi(t) = o/ (Xu(1), 1), maXs(t) = Fy(Xa(t), Xa(t))

— backreaction through Bohmian particle



e Prezhdo and Brookby (2001):
De Broglie-Bohm-based approach yields better results than usual approach:
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FIG. I. The time-dependent scattering probability Py,
Eq. (16), for the model problem detailed in the text obtained
for the incident energy of 20 kJ/mol using exact quantum
dynamics (circles), mean-field dynamics (dashed curve), and
the Bohmian quantum-classical technique (solid curve).



e Derivation of de Broglie-Bohm-based semi-classical approxima-
tion
Full quantum mechanical description:

. Vi Vi
i0pp (21, 22, 1) = (——1 — —2 + V(ay, 562)) (21, T2, 1)

2m1 27712

Xi(t) = oy (Xa(t), Xo(t), 1), Xo(t) = v (Xa(t), Xa(t), 1)

Conditional wave function x(z1,t) = ¥(x1, Xo(t), t) satisfies

10 x(x1,t) = (—ﬁ + V (1, X2<t>)) x(x1,t) + (21, t)

2m1

and particle two:

mgXQ(t) = —VQV(Xl(t),IQ)

—VoQ(X1(t), 2)

19=X>(t) zo=Xo(t)

— Semi-classical approximation follows when I and —Vs(@) are negligible

(e.g. when particle 2 is much heavier than particle 1)



Semi-classical approximation: scalar electrodynamics
e Classical field equations:
DyD'g+m* =0,  O,F" =" =ie(¢"D"6 — 6D"*¢")
with D, = 0, +ieA,, F" = O'r'A” — 0" A" and j* charge current (9,5 = 0).

e Quantum field theory in Coulomb gauge:

e De Broglie-Bohm approach:

— Wave functional: (¢, AL, ¢)
— Actual field configurations: ¢(z), Al (x)



e De Broglie-Bohm-based semi-classical approximation:

— Matter field: quantum mechanical; Electromagnetic field: classical

— Schrodinger equation for W(e, t):

0 1,1
. 3 . T 2 2| 1|2

where C is the charge density operator.

— Guidance equation scalar field:

| 1
b = gj —ehgCS = DD —mPp=

— Classical Maxwell equations with quantum correction:

0
o

0. F" = 7"+70),
with “quantum charge current” j) = (0, jo): jo = iV%CQ

Is consistent since: 9,(j" + jj) = 0.

— Crucial in the derivation was that gauge was eliminated!
How to eliminate it in canonical quantum gravity?

(in this case: gauge = spatial diffeomorphism invariance).



Semi-classical approximation: mini-superspace model

e Restriction to homogeneous and isotropic (FRW) metrics and fields:
— Gravity: ds* = —N(t)*dt* + a(t)*d3
— Matter: ¢ = ¢(t)
Wheeler-DeWitt equation:

(HG—FHM)@D:O,

H = 4—@2@ (a@ > + G?)VG, HM — 2a3a¢ + agvM
Guidance equations (N = 1):
1 .1
1= ——0,95, = —0,5 1
a 2% ¢ a3 ¢ ( )
e Semi-classical approximation:
0 = Hytp, ¢ = _agbs (2)
and Friedmann equation with quantum correction:
a2 12

?:?+VM—|—Vg+Q (3)



Summary

Results so far:

e Consistent semi-classical approximation for:

— Non-relativistic systems
— Quantum electrodynamics

— Mini-superspace models
To do:

e 'ind semi-classical approximation for full quantum gravity
e Find higher order correction terms
e Develop rigorous expansions (e.g. a la WKB)

e Find applications (e.g. in cosmology: Hawking radiation, cosmological pertur-

bations in inflation theory)



