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@ Introduction



Open quantum systems: reduced dynamical maps
(E,Hg, pp) - Environment
g

pse — pse(t) = U(t)pseU'(t)
i \ \J
Sys
(5, Hops) ps — ps(t) = Tre[U(t)pse U'(1)]
(S+E Hs @ He,pse )
IF the initial total state is psg = ps ® pg and pg is fixed
One parameter family of CPT reduced dynamical maps {\(t)},~




Completely positive quantum dynamical semigroups

o Which equations of motion provide a well-defined time
evolution?

Semigroup composition law
AEAN(s) =N(t+s) VE>s>0
Theorem (Gorini-Kossakowski-Sudarshan (1976))

A linear operator L is the generator of a CPT quantum dynamical
semigroup {A\(t) = eLt}t>0 iff it can be written as

N2—1
1
Lp=—i[H,pl+ ) 7a (%paL -3 {Ulaa,p})

a=1

Yo >0, H=Hf

@ Extends to infinite dimensional Hilbert spaces for bounded
generators [G. Lindblad (1976)]

e Master equation: dp(t)/dt = Lp(t)



Memory effects in quantum dynamics

e et o= <

The influence that the open system has on the environment
does not affect the open system back again.

Memory effects in open-system dynamics can be neglected, as
for classical Markov stochastic processes




Memory effects in quantum dynamics
¢ [ Markov candition: 7c < 75|

The influence that the open system has on the environment
does not affect the open system back again.

Memory effects in open-system dynamics can be neglected, as
for classical Markov stochastic processes

@ There are many physical systems where this condition is not
satisfied: energy transfer in photosynthetic complexes,
photonic band gaps, quantum dots,...

@ One has to look for a more general description of the dynamics




o Classical non-Markov processes



Classical Markov processes

Discrete Markov process with values in {xy}

Chapman-Kolmogorov equation

o The definition involves the entire hierarchy of probability distributions

o It is of interest to find signatures of non-Markovianity in the
dynamics of one-point probability distributions [B.Vacchini, A.Smirne,
E.-M.Laine, J.Piilo, H.-P.Breuer (2011)]



Classical Markov processes

Discrete Markov process with values in {xy}

Chapman-Kolmogorov equation

o The definition involves the entire hierarchy of probability distributions

o It is of interest to find signatures of non-Markovianity in the
dynamics of one-point probability distributions [B.Vacchini, A.Smirne,
E.-M.Laine, J.Piilo, H.-P.Breuer (2011)]

e Finite dimensional system p (t) = A(t,0) p (0)
p (t) probability vector, A (t,0) stochastic matrix:

(A)jk >0 Z(A)jk =1



P-divisibility and Chapman-Kolmogorov equation

P-divisibility of {A(,0)},¢

e If A(t,s) = A(t —s,0) = semigroup composition law
In general, A(t,s) = A(t,0)A"1(s,0), so that
p(t) =A(t,s)p(s) transition maps,

but is A(t,s) a stochastic matrix?



P-divisibility and Chapman-Kolmogorov equation

P-divisibility of {A(t,0)},~¢

e If A(t,s) = A(t —s,0) = semigroup composition law
In general, A(t,s) = A(t,0)A"1(s,0), so that
p(t) =A(t,s)p(s) transition maps,
but is A(t,s) a stochastic matrix?
IF the process is Markovian = (A(t, s))x = p11U; t|k, s) = P-div

In non-Markov processes




Semi-Markov processes

|

n ) :@ @ Markov chain: mj

y @ Renewal processes: f(t)
@

@ Uniquely determined by k — j transition probabilities and w.t.d. f,(t)
o Survival probabilities  gi(t) =1 — [ d7fi(7)

Integrodifferential equation for the one-point probability vector

0 = [ ar S W) =) = Walr)pu(e =)

Vij(t) = ijbk(t) fk(t) = /Ot dr bk(T)gk(t — 7')

o The process is Markovian iff fi(t) = A\ge Mt



Explicit examples

Two-states system, state-independent w.t.d. and bistochastic matrix

q(t) = Z p(2n,t) — Zp(2n +1,t)

n=0 n=0

P-divisibility is broken iff |g(t)| increases

oef="Fxf of=fxh of=puA+(1-—ph

BN 1

T : : iR
08F™ 1 [ 0.8[
\ | |
06 R& 3 3 1 0.6 3
Wl S I
02 ,/ : 02f_

In all these situations the process is non-Markovian, but
P-divisibility still holds in some cases, depending on f(t).
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Kolmogorov distance

It measures the distlngmshablllty of classmal probablllty distributions

Dk (p* (t),p? lek

If A(t,s) is a stochastic matrix ((/\)Jk >0 3 (N =1)

D (1.7 (0) = 537
S WICON[(ORTION
= IS - #(9),] = Dr (pt(5). 02 ()

(t.9); (P (s) = P* (5)),,

N



Kolmogorov distance

It measures the distinguishability of cIassicaI probability distributions

DK(p( ap Z|pk |

If A(t,s) is a stochastic matrix ((/\)J.k >0 3 (N =1)
e (' (0.0°) = 33 e (P 9) = 7 (5),
< g;;m,sm|<p1<s>—p2<s>)k|
_ %zk: (0 (s) = P°(5)) .| = D (P (5),P*(5))

e Two signatures of non-Markovianity in the dynamics of p (t)
have been introduced

@ They are equivalent for the examples, but not in general




@ Non-Markovianity in quantum dynamics



The trace distance
The trace distance between two states p; and p»

@ 0<D(p1,p2) <1

e D(p1,p2) = >, |xi|/2, with x; eigenvalues of p; — p>

@ The trace distance D(p1, p2) quantifies the distinguishability
between the two states p1 and p»

@ The change in distinguishability of states of an open system S
can be interpreted as an information flow between S and E

[m]

5




Measure of non-Markovianity based on trace distance

@ Markovian dynamics: the trace distance is monotonically

non-increasing. Unidirectional information flow from S to E




Measure of non-Markovianity based on trace distance

@ Markovian dynamics: the trace distance is monotonically
non-increasing. Unidirectional information flow from S to E
Trace-distance rate of change a(t,p_ls’2(0)) = %D(pl(t),pz(t))
o > 0 back-flow of information from E to S

Non-Markovianity measure

N provides a clear criterion to experimentally detect non-Markovianity.
Transition between Markovian and non-Markovian dynamics in an
aII-opticaI setting [B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine,
H.-P. Breuer, and J. Piilo (2011)]

[m] = =




Measure of non-Markovianity based on CP-divisibility

e Different definition: Markovianity is identified with
CP-divisibility [A. Rivas, S.F. Huelga, M.B. Plenio (2010)]

CP-divisibility of {A(t, O)}tio

Time-local generator of a CP-divisible family of dynamical maps

NZ—1

L(e)o = ~TTH(E) A+ X 70(t) (2a(e)pl(6) - (o (0Ioa(e). 0} )

o 7a(t) >0, H(t) = Hi(t):  dp(t)/dt = L(t)p(t)



Measure of non-Markovianity based on CP-divisibility

e Different definition: Markovianity is identified with
CP-divisibility [A. Rivas, S.F. Huelga, M.B. Plenio (2010)]

CP-divisibility of {A(t, O)}tio

Time-local generator of a CP-divisible family of dynamical maps

NZ—1

L(e)o = ~TTH(E) A+ X 70(t) (2a(e)pl(6) - (o (0Ioa(e). 0} )

o 7a(t) >0, H(t) = Hi(t):  dp(t)/dt = L(t)p(t)

1
5IAchoi (t, t -1
Z(N)= [ dtlim 2lAchai (£ £ 1 6)
R, e—0 €

@ Choi matrix Achoi = NA ® ILN(|¢>ME<¢|)



Quantum semi-Markovian dynamics

%p(t) / drK(7)p(t — ) [H. P. Breuer and B. Vacchini (2008)]

1
KO = 0.1+ S kel) (ool ) 5 (oot 0} )
o If pr(t) = (k|p(t)|k) obey a closed system of equations, this reads

Sh = [ 3 (Wi(r)ae = 7) = Wa(roude =)

o Wig(t) = bi(t) = 2; Jk(t) = fi(t) : e(u) = bi(u)/(u + b(u))

If fi(t) is a proper w.t.d. = quantum semi-Markovian dynamics



Quantum semi-Markovian dynamics

t
—p(t) = / drK(7)p(t — ) [H. P. Breuer and B. Vacchini (2008)]
0

1
KO = 0.1+ S kel) (ool ) 5 (oot 0} )
o If pr(t) = (k|p(t)|k) obey a closed system of equations, this reads

() = / 3 (W)= ) = Wa(r)o =)

o Wig(t) = bi(t) = >; jk(f) = fi(t) : Fi(u) = bi(u)/(u + bi(v))
If fi(t) is a proper w.t.d. = quantum semi-Markovian dynamics

@ Special case [A. Budini (2004)]

%p(t) = /OdTb(th)[ﬁf]l]p(T) &€ CPT map

If £(t)is aw.td. p(t) = 02qp(n t)E"p(0) and CP is guaranteed




Dissipative dynamics

For a CPT map Ep=o0_poy + oypo_

_( Pe(t)p11 + po(t)poo g(t)p1wo
p (t)_< g(t)po1 Po(t)p11 + pe(t)poo )

A(t,0) = diag (1, g (1), & (1), q(t))

d

1 1
4 =) (a+pa_ o oo pos - {«m_,p}) 1+ 6(t) (02002 — )

o From time-local master equation CP-divisibility can be directly inferred

140
v(t) = *Em

50 =3 (11 -10)

e CP-divisibility and decrease of trace distance are not equivalent: 0(t)
affects CP-divisibility, not trace distance monotonicity



Explicit examples for different w.t.d.

o f="Fxf o f=uf+(1-pk

N(A)=/Q 2 ), (1=

I(A)=/Q dr%logm(m:oo

-
>

3
n

qa®), YO /1, 6@ /A
s
=
qm), ¥ /2,80 /A
|
|
|
I
|

3
s

[Vacchlnl Smirne, Laine, Piilo, Breuer (2011)]

@ For the convolution of a higher number of f(t), N (A) detects
an increasing non-Markovianity, while Z (A) is always oo

@ For a proper f, N'(A) =0, but Z(A) >0



The trace distance as a witness for initial correlations

o The assumption of a product total initial state is questionable in
many physical systems, especially outside the weak coupling regime

o ps(t) evolved from pt.(0) and p%(t) evolved from pZg(0)

Markovian dynamics

Non-Markovian dynamics

with initial product state

Non-Markovian dynamics

with initial correlations

0 5 10
time [arb. units]



The trace distance as a witness for initial correlations

o The assumption of a product total initial state is questionable in
many physical systems, especially outside the weak coupling regime

o ps(t) evolved from pt.(0) and p%(t) evolved from pZg(0)

° Markovian dynamics

° Non-Markovian dynamics

with initial product state

Non-Markovian dynamics

with initial correlations

0 5 10
time [arb. units]




Experimental realization

A. Smirne, D. Brivio, S. Cialdi, B. Vacchini, and M.G.A. Paris (2011)

QH

o f(65) = sin(\8)
W f(0s) =76,

A = —0.6rad/pixel
7 = 0.1rad/pixel

trace distance

lse(a)) = % / d6.d6;g(6.)g(6:)

x (|H05 ws)|HO: wi) + @O+ 0D Vg, )| Ve w,-))

0.4
a (rad/pixel)

0.6

o 4 -
= ©

o
~
Aaisia

0.2



Conclusions and outlook

o Differences between non-Markovian behavior in the state
dynamics of a physical system and the notion of non-Markov
process: P-divisibility versus Chapman-Kolmogorov

@ Trace distance allows a clear characterization of non-Markovi-
anity in quantum systems. No need for any information about
the environment, nor for the knowledge of dynamical maps



Conclusions and outlook

o Differences between non-Markovian behavior in the state
dynamics of a physical system and the notion of non-Markov
process: P-divisibility versus Chapman-Kolmogorov

@ Trace distance allows a clear characterization of non-Markovi-
anity in quantum systems. No need for any information about
the environment, nor for the knowledge of dynamical maps

o Connection between non-Markovianity and correlations due to
system-environment interaction

o Dynamics of multi-time correlation functions: beyond the
quantum regression theorem
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