
SIGNATURES OF NON-MARKOVIANITY

IN OPEN-SYSTEM DYNAMICS

Andrea Smirne
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Open quantum systems: reduced dynamical maps

ρSE −→ ρSE (t) = U(t)ρSEU†(t)

↓ ↓
ρS −→ ρS(t) = TrE [U(t)ρSEU†(t)]

IF the initial total state is ρSE = ρS ⊗ ρE and ρE is fixed

One parameter family of CPT reduced dynamical maps {Λ(t)}t≥0

S (HS) −→ S (HS)

ρS −→ ρS(t) =: Λ(t)ρS = TrE

[
U(t)ρS ⊗ ρEU†(t)

]
=
∑
α

Mα(t)ρSM†α(t)
∑
α

M†α(t)Mα(t) = 1



Completely positive quantum dynamical semigroups

� Which equations of motion provide a well-defined time
evolution?

Semigroup composition law

Λ(t)Λ(s) = Λ(t + s) ∀t ≥ s ≥ 0

Theorem (Gorini-Kossakowski-Sudarshan (1976))

A linear operator L is the generator of a CPT quantum dynamical
semigroup

{
Λ(t) = eLt

}
t≥0

iff it can be written as

Lρ = −i [ H, ρ] +
N2−1∑
α=1

γα

(
σαρσ

†
α −

1

2

{
σ†ασα, ρ

})

γα ≥ 0, H = H†

Extends to infinite dimensional Hilbert spaces for bounded
generators [G. Lindblad (1976)]

Master equation: dρ(t)/dt = Lρ(t)



Memory effects in quantum dynamics

� Markov condition: τE � τS

The influence that the open system has on the environment
does not affect the open system back again.
Memory effects in open-system dynamics can be neglected, as
for classical Markov stochastic processes

There are many physical systems where this condition is not
satisfied: energy transfer in photosynthetic complexes,
photonic band gaps, quantum dots,...

One has to look for a more general description of the dynamics

The very notion of non-Markovianity for quantum dynamics has still
to be cleared up and is a subject of intense debate
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Classical Markov processes

Discrete Markov process with values in {xk}k∈N

p1|n (xn, tn|xn−1, tn−1; . . . ; x0, t0) = p1|1 (xn, tn|xn−1, tn−1)

Chapman-Kolmogorov equation

p1|1 (x , t|y , s) =
∑
z

p1|1 (x , t|z , τ) p1|1 (z , τ |y , s) t ≥ τ ≥ s

� The definition involves the entire hierarchy of probability distributions

� It is of interest to find signatures of non-Markovianity in the
dynamics of one-point probability distributions [B.Vacchini, A.Smirne,
E.-M.Laine, J.Piilo, H.-P.Breuer (2011)]

Finite dimensional system p (t) = Λ (t, 0) p (0)

p (t) probability vector, Λ (t, 0) stochastic matrix:

(Λ)jk ≥ 0
∑
j

(Λ)jk = 1
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P-divisibility and Chapman-Kolmogorov equation

P-divisibility of {Λ(t, 0)}t≥0

Λ(t, 0) = Λ(t, s)Λ(s, 0) ∀t ≥ s ≥ 0 Λ(t, s) stochastic

If Λ(t, s) = Λ(t − s, 0)⇒ semigroup composition law

In general, Λ(t, s) = Λ(t, 0)Λ−1(s, 0), so that

p (t) = Λ (t, s) p (s) transition maps,

but is Λ (t, s) a stochastic matrix?

IF the process is Markovian ⇒ (Λ(t, s))jk = p1|1(j , t|k , s)⇒ P-div

In non-Markov processes

1 (Λ(t, s))jk 6= p1|1(j , t|k , s)

2 P-divisibility does not correspond to C-K equation

3 non-P-divisibility ⇒ non-Markovianity, but not viceversa
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Semi-Markov processes
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Markov chain: πjk

Renewal processes: f (t)

Uniquely determined by k → j transition probabilities and w.t.d. fk(t)

Survival probabilities gk(t) = 1−
∫ t

0 dτ fk(τ)

Integrodifferential equation for the one-point probability vector

d

dt
pk(t) =

∫ t

0

dτ
∑
j

(Wkj(τ)pj(t − τ)−Wjk(τ)pk(t − τ))

Wjk(t) = πjkbk(t) fk(t) =

∫ t

0

dτ bk(τ)gk(t − τ)

The process is Markovian iff fk(t) = λke
−λk t



Explicit examples

Two-states system, state-independent w.t.d. and bistochastic matrix

q (t) =
∞∑
n=0

p(2n, t)−
∞∑
n=0

p(2n + 1, t)

P-divisibility is broken iff |q(t)| increases

f = f ∗ f
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In all these situations the process is non-Markovian, but
P-divisibility still holds in some cases, depending on f (t).



Explicit examples

Two-states system, state-independent w.t.d. and bistochastic matrix

q (t) =
∞∑
n=0

p(2n, t)−
∞∑
n=0

p(2n + 1, t)

P-divisibility is broken iff |q(t)| increases

f = f ∗ f

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Λt

q!t"

f = f1 ∗ f2

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

st

q!t"

f = µf1 + (1− µ) f2

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Λt

q!t"

In all these situations the process is non-Markovian, but
P-divisibility still holds in some cases, depending on f (t).



Kolmogorov distance

It measures the distinguishability of classical probability distributions

DK

(
p1 (t) ,p2 (t)

)
=

1

2

∑
k

∣∣p1
k (t)− p2

k (t)
∣∣

If Λ(t, s) is a stochastic matrix ((Λ)jk ≥ 0
∑

j (Λ)jk = 1)

DK

(
p1 (t) ,p2 (t)

)
=

1

2

∑
j

∣∣∣∣∣∑
k

Λ (t, s)jk
(
p1 (s)− p2 (s)

)
k

∣∣∣∣∣
6

1

2

∑
j

∑
k

Λ (t, s)jk
∣∣(p1 (s)− p2 (s)

)
k

∣∣
=

1

2

∑
k

∣∣(p1 (s)− p2 (s)
)
k

∣∣ = DK

(
p1 (s) ,p2 (s)

)

Two signatures of non-Markovianity in the dynamics of p (t)
have been introduced

They are equivalent for the examples, but not in general

They are sufficient but not necessary conditions to detect a
non-Markov process
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The trace distance

The trace distance between two states ρ1 and ρ2

D(ρ1, ρ2) =
1

2
‖ρ1 − ρ2‖1 =

1

2
Tr|ρ1 − ρ2| |A| =

√
A†A

D(ρ1, ρ2) =
∑

i |xi |/2, with xi eigenvalues of ρ1 − ρ2

0 ≤ D(ρ1, ρ2) ≤ 1

all positive and trace preserving maps Λ are contractions for
the trace distance

D(Λρ1,Λρ2) ≤ D(ρ1, ρ2)

The trace distance D(ρ1, ρ2) quantifies the distinguishability
between the two states ρ1 and ρ2

The change in distinguishability of states of an open system S
can be interpreted as an information flow between S and E



Measure of non-Markovianity based on trace distance

Reduced dynamics can be characterized by investigating the trace
distance D(ρ1

S(t), ρ2
S(t)) between a pair of open-system states ρ1

S(t)
and ρ2

S(t), which evolve from different initial conditions

Markovian dynamics: the trace distance is monotonically
non-increasing. Unidirectional information flow from S to E

Trace-distance rate of change σ(t, ρ1,2
S (0)) = d

dt D(ρ1(t), ρ2(t))
σ > 0 back-flow of information from E to S

Non-Markovianity measure [H.-P. Breuer, E.-M. Laine, J. Piilo (2009)]

N (Λ) = max
ρ1,2
S (0)

∫
σ>0

dtσ(t, ρS1,2(0))

N provides a clear criterion to experimentally detect non-Markovianity.
Transition between Markovian and non-Markovian dynamics in an
all-optical setting [B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine,

H.-P. Breuer, and J. Piilo (2011)]
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Measure of non-Markovianity based on CP-divisibility

Different definition: Markovianity is identified with
CP-divisibility [A. Rivas, S.F. Huelga, M.B. Plenio (2010)]

CP-divisibility of {Λ(t, 0)}t≥0

Λ(t, 0) = Λ(t, s)Λ(s, 0) ∀t ≥ s ≥ 0 Λ(t, s) CP

Time-local generator of a CP-divisible family of dynamical maps

L(t)ρ = −i [ H(t), ρ] +
N2−1∑
α=1

γα(t)

(
σα(t)ρσ†α(t)− 1

2

{
σ†α(t)σα(t), ρ

})
γα(t) ≥ 0, H(t) = H†(t); dρ(t)/dt = L(t)ρ(t)

I (Λ) =

∫
R+

dt lim
ε→0

1
2‖ΛChoi (t, t + ε) ‖1 − 1

ε

Choi matrix ΛChoi = NΛ⊗ 1N(|φ〉ME 〈φ|)
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Quantum semi-Markovian dynamics

d

dt
ρ(t) =

∫ t

0

dτK(τ)ρ(t − τ) [H. P. Breuer and B. Vacchini (2008)]

K(τ)ρ = −i [H(τ), ρ] +
∑
α

kα(τ)

(
σα(τ)ρσ†α(τ)− 1

2

{
σ†α(τ)σα(τ), ρ

})
� If pk(t) ≡ 〈k |ρ(t)|k〉 obey a closed system of equations, this reads

d

dt
pk(t) =

∫ t

0

dτ
∑
j

(Wkj(τ)pj(t − τ)−Wjk(τ)pk(t − τ))

� Wkj(t)→ bk(t) =
∑

j Wjk(t)→ fk(t) : f̂k(u) = b̂k(u)/(u + b̂k(u))

If fk(t) is a proper w.t.d. ⇒ quantum semi-Markovian dynamics

Special case [A. Budini (2004)]

d

dt
ρ (t) =

∫ t

0

dτ b (t − τ) [E − 1] ρ (τ) E CPT map

If f (t) is a w.t.d. ρ(t) =
∑∞

n=0 p(n, t)Enρ(0) and CP is guaranteed
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Dissipative dynamics

For a CPT map Eρ = σ−ρσ+ + σ+ρσ−

ρ (t)=

(
pe(t)ρ11 + po(t)ρ00 g(t)ρ10

g(t)ρ01 po(t)ρ11 + pe(t)ρ00

)

Λ (t, 0) = diag (1, g (t) , g (t) , q (t))

d

dt
ρ = γ (t)

(
σ+ρσ− −

1

2
{σ−σ+, ρ}+ σ−ρσ+ −

1

2
{σ+σ−, ρ}

)
+ δ (t) (σzρσz − ρ)

� From time-local master equation CP-divisibility can be directly inferred

γ (t) = −1

2

q̇ (t)

q (t)

δ (t) =
1

2

(
f (t)

g (t)
− γ (t)

)
CP-divisibility and decrease of trace distance are not equivalent: δ(t)
affects CP-divisibility, not trace distance monotonicity



Explicit examples for different w.t.d.

f = f ∗ f
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N (Λ) =

∫
Ω+

dt
d

dt
|q (t)| =

1

eπ − 1
[Vacchini, Smirne, Laine, Piilo, Breuer (2011)]

I (Λ) =

∫
Ω+

dt
d

dt
log |q (t)| =∞

For the convolution of a higher number of f (t), N (Λ) detects
an increasing non-Markovianity, while I (Λ) is always ∞
For a proper f, N (Λ) = 0, but I (Λ) > 0

Both measures can be zero also for non-exponential f (t)



The trace distance as a witness for initial correlations

� The assumption of a product total initial state is questionable in
many physical systems, especially outside the weak coupling regime

� ρ1
S(t) evolved from ρ1

SE (0) and ρ2
S(t) evolved from ρ2

SE (0)

Markovian dynamics

Non-Markovian dynamics

with initial product state

Non-Markovian dynamics

with initial correlations

Fixed the environmental state, D(ρ1
S(t), ρ2

S(t)) > D(ρ1
S(0), ρ2

S(0))
means that at least one of the initial total states was correlated
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Experimental realization

A. Smirne, D. Brivio, S. Cialdi, B. Vacchini, and M.G.A. Paris (2011)

|ψSE (α)〉 =
1√
2

∫
dθsdθig(θs)g(θi )

×
(
|Hθs ωs〉|Hθi ωi 〉+ e i(αθs+f (θs ))|V θs ωs〉|V θi ωi 〉

)

• f (θs) = sin(λθ)

� f (θs) = τθs

λ = −0.6 rad/pixel

τ = 0.1 rad/pixel



Conclusions and outlook

Differences between non-Markovian behavior in the state
dynamics of a physical system and the notion of non-Markov
process: P-divisibility versus Chapman-Kolmogorov

Trace distance allows a clear characterization of non-Markovi-
anity in quantum systems. No need for any information about
the environment, nor for the knowledge of dynamical maps

� Connection between non-Markovianity and correlations due to
system-environment interaction

� Dynamics of multi-time correlation functions: beyond the
quantum regression theorem
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