SIGNATURES OF NON-MARKOVIANITY IN OPEN-SYSTEM DYNAMICS

Andrea Smirne

Università degli Studi di Milano
"Open Problems in Quantum Mechanics"
Frascati, 20-22 June 2012

Outline

- Introduction
- Classical non-Markov processes
- Non-Markovianity in quantum dynamics

Outline

- Introduction
- Classical non-Markov processes
- Non-Markovianity in quantum dynamics

Open quantum systems: reduced dynamical maps

IF the initial total state is $\rho_{S E}=\rho_{S} \otimes \rho_{E}$ and ρ_{E} is fixed
One parameter family of CPT reduced dynamical maps $\{\Lambda(t)\}_{t \geq 0}$

$$
\begin{aligned}
& \mathcal{S}\left(\mathcal{H}_{S}\right) \longrightarrow \mathcal{S}\left(\mathcal{H}_{S}\right) \\
& \rho_{S} \longrightarrow \rho_{S}(t)= \Lambda(t) \rho_{S}=\operatorname{Tr}_{E}\left[U(t) \rho_{S} \otimes \rho_{E} U^{\dagger}(t)\right] \\
&= \sum_{\alpha} M_{\alpha}(t) \rho_{S} M_{\alpha}^{\dagger}(t) \quad \sum_{\alpha} M_{\alpha}^{\dagger}(t) M_{\alpha}(t)=\mathbb{1}
\end{aligned}
$$

Completely positive quantum dynamical semigroups

\diamond Which equations of motion provide a well-defined time evolution?

Semigroup composition law

$$
\Lambda(t) \Lambda(s)=\Lambda(t+s) \forall t \geq s \geq 0
$$

Theorem (Gorini-Kossakowski-Sudarshan (1976))

A linear operator L is the generator of a CPT quantum dynamical semigroup $\left\{\Lambda(t)=\mathrm{e}^{L t}\right\}_{t \geq 0}$ iff it can be written as

$$
L \rho=-i[H, \rho]+\sum_{\alpha=1}^{N^{2}-1} \gamma_{\alpha}\left(\sigma_{\alpha} \rho \sigma_{\alpha}^{\dagger}-\frac{1}{2}\left\{\sigma_{\alpha}^{\dagger} \sigma_{\alpha}, \rho\right\}\right)
$$

$$
\gamma_{\alpha} \geq 0, H=H^{\dagger}
$$

- Extends to infinite dimensional Hilbert spaces for bounded generators [G. Lindblad (1976)]
- Master equation: $\mathrm{d} \rho(t) / \mathrm{d} t=L \rho(t)$

Memory effects in quantum dynamics

Markov condition：$\tau_{E} \ll \tau_{S}$

The influence that the open system has on the environment does not affect the open system back again．
Memory effects in open－system dynamics can be neglected，as for classical Markov stochastic processes

Memory effects in quantum dynamics

Markov condition: $\tau_{E} \ll \tau_{S}$

The influence that the open system has on the environment does not affect the open system back again. Memory effects in open-system dynamics can be neglected, as for classical Markov stochastic processes

- There are many physical systems where this condition is not satisfied: energy transfer in photosynthetic complexes, photonic band gaps, quantum dots,...
- One has to look for a more general description of the dynamics

The very notion of non-Markovianity for quantum dynamics has still to be cleared up and is a subject of intense debate

Outline

- Introduction
- Classical non-Markov processes
- Non-Markovianity in quantum dynamics

Classical Markov processes

Discrete Markov process with values in $\left\{x_{k}\right\}_{k \in \mathbb{N}}$

$$
p_{1 \mid n}\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1} ; \ldots ; x_{0}, t_{0}\right)=p_{1 \mid 1}\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}\right)
$$

Chapman-Kolmogorov equation

$$
p_{1 \mid 1}(x, t \mid y, s)=\sum_{z} p_{1 \mid 1}(x, t \mid z, \tau) p_{1 \mid 1}(z, \tau \mid y, s) \quad t \geq \tau \geq s
$$

\diamond The definition involves the entire hierarchy of probability distributions
$\diamond \mathrm{It}$ is of interest to find signatures of non-Markovianity in the dynamics of one-point probability distributions [B.Vacchini, A.Smirne, E.-M.Laine, J.Piilo, H.-P.Breuer (2011)]

Classical Markov processes

Discrete Markov process with values in $\left\{x_{k}\right\}_{k \in \mathbb{N}}$

$$
p_{1 \mid n}\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1} ; \ldots ; x_{0}, t_{0}\right)=p_{1 \mid 1}\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}\right)
$$

Chapman-Kolmogorov equation

$$
p_{1 \mid 1}(x, t \mid y, s)=\sum_{z} p_{1 \mid 1}(x, t \mid z, \tau) p_{1 \mid 1}(z, \tau \mid y, s) \quad t \geq \tau \geq s
$$

\diamond The definition involves the entire hierarchy of probability distributions
$\diamond \mathrm{It}$ is of interest to find signatures of non-Markovianity in the dynamics of one-point probability distributions [B.Vacchini, A.Smirne, E.-M.Laine, J.Piilo, H.-P.Breuer (2011)]

- Finite dimensional system $\mathbf{p}(t)=\Lambda(t, 0) \mathbf{p}(0)$
$\mathbf{p}(t)$ probability vector, $\Lambda(t, 0)$ stochastic matrix:

$$
(\Lambda)_{j k} \geq 0 \quad \sum_{j}(\Lambda)_{j k}=1
$$

P－divisibility and Chapman－Kolmogorov equation

P－divisibility of $\{\Lambda(t, 0)\}_{t \geq 0}$

$$
\Lambda(t, 0)=\Lambda(t, s) \Lambda(s, 0) \quad \forall t \geq s \geq 0 \quad \Lambda(t, s) \text { stochastic }
$$

－If $\Lambda(t, s)=\Lambda(t-s, 0) \Rightarrow$ semigroup composition law In general，$\Lambda(t, s)=\Lambda(t, 0) \Lambda^{-1}(s, 0)$ ，so that

$$
\mathbf{p}(t)=\Lambda(t, s) \mathbf{p}(s) \quad \text { transition maps },
$$

but is $\Lambda(t, s)$ a stochastic matrix？

P-divisibility and Chapman-Kolmogorov equation

P-divisibility of $\{\Lambda(t, 0)\}_{t \geq 0}$

$$
\Lambda(t, 0)=\Lambda(t, s) \Lambda(s, 0) \quad \forall t \geq s \geq 0 \quad \Lambda(t, s) \text { stochastic }
$$

- If $\Lambda(t, s)=\Lambda(t-s, 0) \Rightarrow$ semigroup composition law In general, $\Lambda(t, s)=\Lambda(t, 0) \Lambda^{-1}(s, 0)$, so that

$$
\mathbf{p}(t)=\Lambda(t, s) \mathbf{p}(s) \quad \text { transition maps }
$$

but is $\Lambda(t, s)$ a stochastic matrix?
IF the process is Markovian $\Rightarrow(\Lambda(t, s))_{j k}=p_{1 \mid 1}(j, t \mid k, s) \Rightarrow \mathrm{P}$-div
In non-Markov processes
(1) $(\Lambda(t, s))_{j k} \neq p_{1 \mid 1}(j, t \mid k, s)$
(2) P-divisibility does not correspond to C-K equation
(3) non-P-divisibility \Rightarrow non-Markovianity, but not viceversa

Semi-Markov processes

- Markov chain: $\pi_{j k}$
- Renewal processes: $f(t)$
- Uniquely determined by $k \rightarrow j$ transition probabilities and w.t.d. $f_{k}(t)$
- Survival probabilities $\quad g_{k}(t)=1-\int_{0}^{t} \mathrm{~d} \tau f_{k}(\tau)$

Integrodifferential equation for the one-point probability vector

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} p_{k}(t)=\int_{0}^{t} \mathrm{~d} \tau \sum_{j}\left(W_{k j}(\tau) p_{j}(t-\tau)-W_{j k}(\tau) p_{k}(t-\tau)\right) \\
W_{j k}(t)=\pi_{j k} b_{k}(t) \quad f_{k}(t)=\int_{0}^{t} \mathrm{~d} \tau b_{k}(\tau) g_{k}(t-\tau)
\end{gathered}
$$

- The process is Markovian iff $f_{k}(t)=\lambda_{k} \mathrm{e}^{-\lambda_{k} t}$

Explicit examples

Two-states system, state-independent w.t.d. and bistochastic matrix

$$
q(t)=\sum_{n=0}^{\infty} p(2 n, t)-\sum_{n=0}^{\infty} p(2 n+1, t)
$$

P-divisibility is broken iff $|q(t)|$ increases

- $\mathrm{f}=f * f$

- $f=f_{1} * f_{2}$

- $\mathrm{f}=\mu \mathrm{f}_{1}+(1-\mu) f_{2}$

In all these situations the process is non-Markovian, but P-divisibility still holds in some cases, depending on $f(t)$.

Explicit examples

Two-states system, state-independent w.t.d. and bistochastic matrix

$$
q(t)=\sum_{n=0}^{\infty} p(2 n, t)-\sum_{n=0}^{\infty} p(2 n+1, t)
$$

P-divisibility is broken iff $|q(t)|$ increases

- $\mathrm{f}=f * f$

- $f=f_{1} * f_{2}$

- $\mathrm{f}=\mu \mathrm{f}_{1}+(1-\mu) f_{2}$

In all these situations the process is non-Markovian, but P-divisibility still holds in some cases, depending on $f(t)$.

Kolmogorov distance

It measures the distinguishability of classical probability distributions

$$
D_{K}\left(\mathbf{p}^{1}(t), \mathbf{p}^{2}(t)\right)=\frac{1}{2} \sum_{k}\left|p_{k}^{1}(t)-p_{k}^{2}(t)\right|
$$

If $\Lambda(t, s)$ is a stochastic matrix $\left((\Lambda)_{j k} \geq 0 \sum_{j}(\Lambda)_{j k}=1\right)$

$$
\begin{aligned}
D_{K}\left(\mathbf{p}^{1}(t), \mathbf{p}^{2}(t)\right) & =\frac{1}{2} \sum_{j}\left|\sum_{k} \Lambda(t, s)_{j k}\left(\mathbf{p}^{1}(s)-\mathbf{p}^{2}(s)\right)_{k}\right| \\
& \leqslant \frac{1}{2} \sum_{j} \sum_{k} \Lambda(t, s)_{j k}\left|\left(\mathbf{p}^{1}(s)-\mathbf{p}^{2}(s)\right)_{k}\right| \\
& =\frac{1}{2} \sum_{k}\left|\left(\mathbf{p}^{1}(s)-\mathbf{p}^{2}(s)\right)_{k}\right|=D_{K}\left(\mathbf{p}^{1}(s), \mathbf{p}^{2}(s)\right)
\end{aligned}
$$

Kolmogorov distance

It measures the distinguishability of classical probability distributions

$$
D_{K}\left(\mathbf{p}^{1}(t), \mathbf{p}^{2}(t)\right)=\frac{1}{2} \sum_{k}\left|p_{k}^{1}(t)-p_{k}^{2}(t)\right|
$$

If $\Lambda(t, s)$ is a stochastic matrix $\left((\Lambda)_{j k} \geq 0 \sum_{j}(\Lambda)_{j k}=1\right)$

$$
\begin{aligned}
D_{K}\left(\mathbf{p}^{1}(t), \mathbf{p}^{2}(t)\right) & =\frac{1}{2} \sum_{j}\left|\sum_{k} \Lambda(t, s)_{j k}\left(\mathbf{p}^{1}(s)-\mathbf{p}^{2}(s)\right)_{k}\right| \\
& \leqslant \frac{1}{2} \sum_{j} \sum_{k} \Lambda(t, s)_{j k}\left|\left(\mathbf{p}^{1}(s)-\mathbf{p}^{2}(s)\right)_{k}\right| \\
& =\frac{1}{2} \sum_{k}\left|\left(\mathbf{p}^{1}(s)-\mathbf{p}^{2}(s)\right)_{k}\right|=D_{K}\left(\mathbf{p}^{1}(s), \mathbf{p}^{2}(s)\right)
\end{aligned}
$$

- Two signatures of non-Markovianity in the dynamics of $\mathbf{p}(t)$ have been introduced
- They are equivalent for the examples, but not in general
- They are sufficient but not necessary conditions to detect a non-Markov process

Outline

- Introduction
- Classical non-Markov processes
- Non-Markovianity in quantum dynamics

The trace distance

The trace distance between two states ρ_{1} and ρ_{2}

$$
D\left(\rho_{1}, \rho_{2}\right)=\frac{1}{2}\left\|\rho_{1}-\rho_{2}\right\|_{1}=\frac{1}{2} \operatorname{Tr}\left|\rho_{1}-\rho_{2}\right| \quad|A|=\sqrt{A^{\dagger} A}
$$

- $D\left(\rho_{1}, \rho_{2}\right)=\sum_{i}\left|x_{i}\right| / 2$, with x_{i} eigenvalues of $\rho_{1}-\rho_{2}$
- $0 \leq D\left(\rho_{1}, \rho_{2}\right) \leq 1$
- all positive and trace preserving maps Λ are contractions for the trace distance

$$
D\left(\wedge \rho_{1}, \wedge \rho_{2}\right) \leq D\left(\rho_{1}, \rho_{2}\right)
$$

- The trace distance $D\left(\rho_{1}, \rho_{2}\right)$ quantifies the distinguishability between the two states ρ_{1} and ρ_{2}
- The change in distinguishability of states of an open system S can be interpreted as an information flow between S and E

Measure of non－Markovianity based on trace distance

Reduced dynamics can be characterized by investigating the trace distance $D\left(\rho_{S}^{1}(t), \rho_{S}^{2}(t)\right)$ between a pair of open－system states $\rho_{S}^{1}(t)$ and $\rho_{S}^{2}(t)$ ，which evolve from different initial conditions
－Markovian dynamics：the trace distance is monotonically non－increasing．Unidirectional information flow from S to E

Measure of non-Markovianity based on trace distance

Reduced dynamics can be characterized by investigating the trace distance $D\left(\rho_{S}^{1}(t), \rho_{S}^{2}(t)\right)$ between a pair of open-system states $\rho_{S}^{1}(t)$ and $\rho_{S}^{2}(t)$, which evolve from different initial conditions

- Markovian dynamics: the trace distance is monotonically non-increasing. Unidirectional information flow from S to E

Trace-distance rate of change $\sigma\left(t, \rho_{S}^{1,2}(0)\right)=\frac{d}{d t} D\left(\rho_{1}(t), \rho_{2}(t)\right)$ $\sigma>0$ back-flow of information from E to S

Non-Markovianity measure [H.-P. Breuer, E.-M. Laine, J. Piilo (2009)]

$$
\mathcal{N}(\Lambda)=\max _{\substack{1,2 \\ \rho_{S}^{1}(0)}} \int_{\sigma>0} d t \sigma\left(t, \rho_{1,2}^{S}(0)\right)
$$

\mathcal{N} provides a clear criterion to experimentally detect non-Markovianity. Transition between Markovian and non-Markovian dynamics in an all-optical setting [B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo (2011)]

Measure of non-Markovianity based on CP-divisibility

- Different definition: Markovianity is identified with CP-divisibility [A. Rivas, S.F. Huelga, M.B. Plenio (2010)]

CP-divisibility of $\{\Lambda(t, 0)\}_{t \geq 0}$

$$
\Lambda(t, 0)=\Lambda(t, s) \Lambda(s, 0) \quad \forall t \geq s \geq 0 \quad \Lambda(t, s) \quad \mathrm{CP}
$$

Time-local generator of a CP-divisible family of dynamical maps

$$
\begin{aligned}
& L(t) \rho=-i[H(t), \rho]+\sum_{\alpha=1}^{N^{2}-1} \gamma_{\alpha}(t)\left(\sigma_{\alpha}(t) \rho \sigma_{\alpha}^{\dagger}(t)-\frac{1}{2}\left\{\sigma_{\alpha}^{\dagger}(t) \sigma_{\alpha}(t), \rho\right\}\right) \\
& \text { - } \gamma_{\alpha}(t) \geq 0, H(t)=H^{\dagger}(t) ; \quad \mathrm{d} \rho(t) / \mathrm{d} t=L(t) \rho(t)
\end{aligned}
$$

Measure of non-Markovianity based on CP-divisibility

- Different definition: Markovianity is identified with CP-divisibility [A. Rivas, S.F. Huelga, M.B. Plenio (2010)]

CP-divisibility of $\{\Lambda(t, 0)\}_{t \geq 0}$

$$
\Lambda(t, 0)=\Lambda(t, s) \Lambda(s, 0) \quad \forall t \geq s \geq 0 \quad \Lambda(t, s) \quad \mathrm{CP}
$$

Time-local generator of a CP-divisible family of dynamical maps

$$
\begin{gathered}
L(t) \rho=-i[H(t), \rho]+\sum_{\alpha=1}^{N^{2}-1} \gamma_{\alpha}(t)\left(\sigma_{\alpha}(t) \rho \sigma_{\alpha}^{\dagger}(t)-\frac{1}{2}\left\{\sigma_{\alpha}^{\dagger}(t) \sigma_{\alpha}(t), \rho\right\}\right) \\
\bullet \gamma_{\alpha}(t) \geq 0, H(t)=H^{\dagger}(t) ; \quad \mathrm{d} \rho(t) / \mathrm{d} t=L(t) \rho(t) \\
\mathcal{I}(\Lambda)=\int_{\mathbb{R}_{+}} \mathrm{d} t \lim _{\epsilon \rightarrow 0} \frac{\frac{1}{2}\left\|\Lambda_{\text {Choi }}(t, t+\epsilon)\right\|_{1}-1}{\epsilon}
\end{gathered}
$$

- Choi matrix $\Lambda_{\text {Choi }}=N \Lambda \otimes \mathbb{1}_{N}\left(|\phi\rangle_{M E}\langle\phi|\right)$

Quantum semi-Markovian dynamics

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t) & =\int_{0}^{t} \mathrm{~d} \tau \mathcal{K}(\tau) \rho(t-\tau) \quad[\mathrm{H} . \text { P. Breuer and B. Vacchini (2008)] } \\
K(\tau) \rho & =-i[H(\tau), \rho]+\sum_{\alpha} k_{\alpha}(\tau)\left(\sigma_{\alpha}(\tau) \rho \sigma_{\alpha}^{\dagger}(\tau)-\frac{1}{2}\left\{\sigma_{\alpha}^{\dagger}(\tau) \sigma_{\alpha}(\tau), \rho\right\}\right)
\end{aligned}
$$

\diamond If $p_{k}(t) \equiv\langle k| \rho(t)|k\rangle$ obey a closed system of equations, this reads

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{k}(t)=\int_{0}^{t} \mathrm{~d} \tau \sum_{j}\left(W_{k j}(\tau) p_{j}(t-\tau)-W_{j k}(\tau) p_{k}(t-\tau)\right)
$$

$$
\diamond W_{k j}(t) \rightarrow b_{k}(t)=\sum_{j} W_{j k}(t) \rightarrow f_{k}(t): \hat{f}_{k}(u)=\hat{b}_{k}(u) /\left(u+\hat{b}_{k}(u)\right)
$$

If $f_{k}(t)$ is a proper w.t.d. \Rightarrow quantum semi-Markovian dynamics

Quantum semi-Markovian dynamics

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t) & =\int_{0}^{t} \mathrm{~d} \tau \mathcal{K}(\tau) \rho(t-\tau) \quad[\text { H. P. Breuer and B. Vacchini (2008)] } \\
K(\tau) \rho & =-i[H(\tau), \rho]+\sum_{\alpha} k_{\alpha}(\tau)\left(\sigma_{\alpha}(\tau) \rho \sigma_{\alpha}^{\dagger}(\tau)-\frac{1}{2}\left\{\sigma_{\alpha}^{\dagger}(\tau) \sigma_{\alpha}(\tau), \rho\right\}\right)
\end{aligned}
$$

\diamond If $p_{k}(t) \equiv\langle k| \rho(t)|k\rangle$ obey a closed system of equations, this reads

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{k}(t)=\int_{0}^{t} \mathrm{~d} \tau \sum_{j}\left(W_{k j}(\tau) p_{j}(t-\tau)-W_{j k}(\tau) p_{k}(t-\tau)\right)
$$

$\diamond W_{k j}(t) \rightarrow b_{k}(t)=\sum_{j} W_{j k}(t) \rightarrow f_{k}(t): \hat{f}_{k}(u)=\hat{b}_{k}(u) /\left(u+\hat{b}_{k}(u)\right)$
If $f_{k}(t)$ is a proper w.t.d. \Rightarrow quantum semi-Markovian dynamics

- Special case [A. Budini (2004)]

$$
\frac{\mathrm{d}}{\mathrm{dt}} \rho(t)=\int_{0}^{t} d \tau b(t-\tau)[\mathcal{E}-\mathbb{1}] \rho(\tau) \quad \mathcal{E} \text { CPT map }
$$

If $f(t)$ is a w.t.d. $\rho(t)=\sum_{n=0}^{\infty} p(n, t) \mathcal{E}^{n} \rho(0)$ and CP is guaranteed

Dissipative dynamics

For a CPT map $\mathcal{E} \rho=\sigma_{-} \rho \sigma_{+}+\sigma_{+} \rho \sigma_{-}$

$$
\begin{gathered}
\rho(t)=\left(\begin{array}{cc}
p_{\mathrm{e}}(t) \rho_{11}+p_{\mathrm{o}}(t) \rho_{00} & g(t) \rho_{10} \\
g(t) \rho_{01} & p_{\mathrm{o}}(t) \rho_{11}+p_{\mathrm{e}}(t) \rho_{00}
\end{array}\right) \\
\Lambda(t, 0)=\operatorname{diag}(1, g(t), g(t), q(t)) \\
\frac{\mathrm{d}}{\mathrm{dt}} \rho=\gamma(t)\left(\sigma_{+} \rho \sigma_{-}-\frac{1}{2}\left\{\sigma_{-} \sigma_{+}, \rho\right\}+\sigma_{-} \rho \sigma_{+}-\frac{1}{2}\left\{\sigma_{+} \sigma_{-}, \rho\right\}\right)+\delta(t)\left(\sigma_{z} \rho \sigma_{z}-\rho\right)
\end{gathered}
$$

\diamond From time-local master equation CP-divisibility can be directly inferred

$$
\begin{gathered}
\gamma(t)=-\frac{1}{2} \frac{\dot{q}(t)}{q(t)} \\
\delta(t)=\frac{1}{2}\left(\frac{f(t)}{g(t)}-\gamma(t)\right)
\end{gathered}
$$

- CP-divisibility and decrease of trace distance are not equivalent: $\delta(t)$ affects CP-divisibility, not trace distance monotonicity

Explicit examples for different w.t.d.

- $\mathrm{f}=f * f$

- $\mathrm{f}=\mu \mathrm{f}_{1}+(1-\mu) f_{2}$

$\mathcal{N}(\Lambda)=\int_{\Omega_{+}} \mathrm{d} t \frac{\mathrm{~d}}{\mathrm{~d} t}|q(t)|=\frac{1}{e^{\pi}-1}$ [Vacchini, Smirne, Laine, Piilo, Breuer (2011)]
$\mathcal{I}(\Lambda)=\int_{\Omega_{+}} \mathrm{d} t \frac{\mathrm{~d}}{\mathrm{dt}} \log |q(t)|=\infty$
- For the convolution of a higher number of $f(t), \mathcal{N}(\Lambda)$ detects an increasing non-Markovianity, while $\mathcal{I}(\Lambda)$ is always ∞
- For a proper $\mathrm{f}, \mathcal{N}(\Lambda)=0$, but $\mathcal{I}(\Lambda)>0$
- Both measures can be zero also for non-exponential $f(t)$

The trace distance as a witness for initial correlations

\diamond The assumption of a product total initial state is questionable in many physical systems, especially outside the weak coupling regime
$\diamond \rho_{S}^{1}(t)$ evolved from $\rho_{S E}^{1}(0)$ and $\rho_{S}^{2}(t)$ evolved from $\rho_{S E}^{2}(0)$

- __ Markovian dynamics
- Non-Markovian dynamics with initial product state
- _ Non-Markovian dynamics with initial correlations

The trace distance as a witness for initial correlations

\diamond The assumption of a product total initial state is questionable in many physical systems, especially outside the weak coupling regime $\diamond \rho_{S}^{1}(t)$ evolved from $\rho_{S E}^{1}(0)$ and $\rho_{S}^{2}(t)$ evolved from $\rho_{S E}^{2}(0)$

- Markovian dynamics
- Non-Markovian dynamics with initial product state
- _ Non-Markovian dynamics with initial correlations

Fixed the environmental state, $D\left(\rho_{S}^{1}(t), \rho_{S}^{2}(t)\right)>D\left(\rho_{S}^{1}(0), \rho_{S}^{2}(0)\right)$ means that at least one of the initial total states was correlated

Experimental realization

A. Smirne, D. Brivio, S. Cialdi, B. Vacchini, and M.G.A. Paris (2011)

Conclusions and outlook

－Differences between non－Markovian behavior in the state dynamics of a physical system and the notion of non－Markov process：P－divisibility versus Chapman－Kolmogorov
－Trace distance allows a clear characterization of non－Markovi－ anity in quantum systems．No need for any information about the environment，nor for the knowledge of dynamical maps

Conclusions and outlook

- Differences between non-Markovian behavior in the state dynamics of a physical system and the notion of non-Markov process: P-divisibility versus Chapman-Kolmogorov
- Trace distance allows a clear characterization of non-Markovianity in quantum systems. No need for any information about the environment, nor for the knowledge of dynamical maps
\diamond Connection between non-Markovianity and correlations due to system-environment interaction
\diamond Dynamics of multi-time correlation functions: beyond the quantum regression theorem

Acknowledgments

- Heinz-Peter Breuer, Theoretical Condensed Matter Physics and Quantum Statistics at Universität Freiburg
- Jyrki Piilo, Non-Markovian Processes and Complex Systems Group at University of Turku
B. Vacchini, A. Smirne, E.-M. Laine, J. Piilo, and H.-P. Breuer, New J. Phys. 13, 093004 (2011)

Bibliography

V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys 17, 821 (1976);
G. Lindblad, Comm. Math. Phys. 48, 119 (1976);
H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009);
B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, Nature Phys. 7, 931 (2011);
A. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050403 (2010);
H.-P. Breuer and B. Vacchini, Phys. Rev. Lett. 101, 140402 (2008);
A. A. Budini, Phys. Rev. A 69, 042107 (2004).

