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1. Stochastic descriptions:
Non-Markovian quantum jumps



Open system dynamics: Density matrix vs. ensemble of state vectors
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Also: at each point of time, density matrix ρ
as ensemble of state vectors:

The time-evolution of each Ψi contains continuous or 
discontinuous stochastic element.
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Ensemble of
N state vectors

The time-evolution of each Ψi contains continuous or discontinuous
stochastic element...

A master equation for the density matrix ρ:



Simple classification of Monte Carlo methods

Quantum
Jump
methods:

Diffusion
methods:

Markovian non-Markovian

MCWF 
(Dalibard, Castin, Molmer)
Quantum Trajectories
(Zoller, Carmichael)

Fictitious modes (Imamoglu)
Pseudo modes (Garraway)
Doubled H-space (Breuer, Petruccione)
Triple H-space (Breuer)
NMQJ

QSD
(Diosi, Gisin, Percival...)

Non-Markovian QSD
(Strunz, Diosi, Gisin)
Stochastic Schrödinger equations
(Bassi)

Plus: Wiseman, Gambetta, Budini, Gaspard, 
Lacroix...and others
(not comprehensive list, apologies for any 
omissions)



Markovian Monte Carlo wave function method, example

Quantum jump: Discontinuous stochastic change of the state vector.

Example: excited state probability P
for a driven 2-level atom

Unstable excited state

Ground state

E

G

decay channel
(random jump)

coupling
(deterministic)

Time

P

Time

single realization ensemble average

damped Rabi oscillation
 of the atom

Markovian Monte Carlo

Dalibard, Castin, Molmer:  Phys. Rev. Lett. 68, 580 (1992)



Jump probability, example

Time-evolution of state vector Ψi:

At each point of time: decide if quantum jump happened.

Pj: probability that a quantum jump occurs in a given time 
interval δt:

Pj = δt Γ pe

time-step
decay rate

occupation probability
 of excited state

For example: 2-level atom
Probability for atom being transferred from 
the excited to the ground state and photon 
emitted. 

E

G



Markovian vs. non-Markovian evolution (1)

What happens when the decay rate turns negative?

๏ Markovian description of quantum jumps fails, since gives 
    negative jump probability. 
    For example: negative probability that atom emits a photon.

Example: 2-level atom in photonic band gap.

Time

Pj = δt Γ pe < 0

Decay rate 
(exact)



Markovian vs. non-Markovian evolution (2)

 Markovian proof with the master equation:

๏ Averaging over the deterministic and stochastic parts with
    the corresponding probabilities gives the master equation

deterministic part random jumps

no jump probability jump probabilities

๏ ...for the non-Markovian case gives paths with
    weights >1 and < 0 ... 

What is the valid process corresponding to 
quantum jumps with negative rates? 



Non-Markovian quantum jumps
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Starting point: 
General non-Markovian master equation local-in-time:

๏ Jump operators  Cm

๏ Time dependent decay rates Δm(t).
๏ Decay rates have temporarily negative values.

σ− = |g〉〈e|
Example: 2-level atom in photonic band gap. 
Jump operator C for positive decay:

dρ(t)
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=
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Non-Markovian quantum jumps

The essential ingredient of non-Markovian system: memory.
Characterizing feature 1: Recreation of lost superpositions.

 For example: 
two-level atom

P =
N0

Ng
δt|Γ(t)| |〈ψ0|e〉|2
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Γ(t) > 0

Γ(t) < 0

σ− = |g〉〈e|

Quantum jump in negative decay region: 
The direction of the jump process reversed

|ψ〉 ← |ψ′〉 =
Cm|ψ〉

||Cm|ψ〉|| , ∆m(t) < 0

|ψ〉 → |ψ′〉 =
Cm|ψ〉

||Cm|ψ〉|| , ∆m(t) > 0

P =
N

N ′ δt|∆m(t)|〈ψ|C†
mCm|ψ(t)〉

Jump probability: N: number of ensemble members in the target state
N’: number of ensemble members in the source state

The probability proportional to the target state!



Example: 2-level atom in photonic band gap
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NMQJ simulation
analytical

The simulation and exact results match.
Typical features of photonic band gap:
๏ Population trapping
๏ Atom-photon bound state.

Density matrix: average over the ensemble

Example of one state vector history:

I: Quantum jump at positive decay region
destroys the superposition.

II: Due to memory, non-Markovian jump  
recreates the superposition.
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Piilo, Maniscalco, Härkönen, Suominen: PRL 100, 180402 (2008)



NMQJ: general algorithm

Deterministic evolution and positive channel jumps as before...
Negative channel with jumps

...and jump probability for the corresponding channel

where the source state of the jump is

ensemble



Stochastic process description

Non-Markovian piecewise deterministic process.
A stochastic Schrödinger equation for non-Markovian open system:

d|ψ(t)〉 = −iG(t)|ψ(t)〉dt

+
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Poisson increments for 
positive and negative 
channels

Deterministic evolution

Positive channels

Negative channels

H.-P. Breuer, and J. Piilo: Europhys. Lett.  85, 50004 (2009).

Negative channel jump rate:

๏ Denominator may go to zero (singularity),
    associated to lost positivity (the system tries to cancel something  
    which never happened) 

Characterizing feature 3: 
Stochastic realizations depend on each other. 



Information flow, preliminaries...

How to understand and quantify the information flow...



2. Quantifying and controlling
non-Markovianity

Breuer, Laine, Piilo
Phys. Rev. Lett. 103, 210401 (2009)

Liu, L. Li, Huang, C.-F. Li, Guo, Laine, Breuer, Piilo 
Nature Physics 7, 931-934 (2011). 



Motivation

๏ No universally agreed definition of non-Markovianity: 
       anything not following Lindblad, non-exponential decay, memory-kernel,
       negative decay rates...

Is it possible to define and quantify non-Markovianity
๏ Independently of the used mathematical formalism
๏ Intuitively clear interpretation
๏ Physically motivated approach (instead of formal 
mathematical approach)
๏ What does memory mean in quantum dynamics?

Our starting point: quantify information flow and its direction 
between the system and the environment...

๏Various theoretical frameworks: 
       Nakazima-Zwanzig, memory-kernel equations, TCL, time-local master
      equations, stochastic descriptions (quantum jumps, diffusion), correlated
       projection operators... 



Trace distance

๏ Physical interpretation: measure of distinguishability
 The max probability to distinguish the two states is equal to

Distance measure for two  states ρ1 and ρ2:
Trace distance D: 

๏ For identical states          , for orthogonal states 

๏ In terms of information: 
    The larger D,  the higher the probability to distinguish, 
    more information which state we have

(Nielsen, Chuang)

๏ Contractive for all CPT-maps 

๏Invariant under unitary transformations



Measure for non-Markovianity

A measure for non-Markovianity:

๏ Gives the total increase of the trace distance during the 
time evolution
๏ The total amount of information that has flown from the 
environment to the  system during the time evolution. 

General definition, independent of the used formalism
to solve the open system dynamics*.

Non-Markovianity: Backflow of information from
the environment to the open system

Breuer, Laine, Piilo: Phys. Rev. Lett. (2009)
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Laine, Piilo, Breuer
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Other measures

Our view: PRL 2009:
๏ Recycling of info between S and E, quantify backflow
๏ Memory is a feature of a system dynamics which has physical origin
    instead of being a mathematical property of the equation of motion  

Chruscinski, Kossakowski, Pascazio: PRA 2010
๏Asymptotic state dependence from initial conditions ...

∞time

Rivas, Huelga, Plenio: PRL 2010 
๏ Entanglement based measure (ancilla, system) 
๏ Non-divisibility based measure ES

A

๏ Markovianity vs non-Markovianity from
    a snapshot of the evolution.

Wolf, Eisert, Cubitt, Cirac:  PRL 2008

time
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 and the rates in the master equation

Control: Non-Markovian dephasing

๏ Time evolution and the map: two state system       ,|H〉 |V 〉



 Single photons in dephasing reservoir

๏ The system: polarization states of the photon: |H〉 |V 〉

๏ Environment: frequency degrees of freedom |ωi〉{|ω〉}ω∈R

|ψ1,2(0)〉 = |ϕ1,2〉 ⊗ |χ〉
๏ Initial total system states

|ϕ1,2〉 = 1√
2
(|H〉± |V 〉)

๏ Initial open system states

๏ Initial environmental states |χ〉 =
∫
dωf(ω)|ω〉{

Modified by the FP cavity

U(t)|λ〉 ⊗ |ω〉 = einλωt|λ〉 ⊗ |ω〉
๏ Total system evolution in the quartz plate

 - H and V acquire different phase due to the different refraction indices 
  (birefringent quartz plate)

Markovian - non-Markovian transition experiment



Markovian - non-Markovian transition experiment

๏The tilting of the FP cavity modifies the frequency spectrum.

Experimental setup

1. Preparation of photon states

2. Environment control by cavity

3. Dephasing in quartz plate

4. Photon
 detection



Markovian - non-Markovian transition experiment

Tilting of the cavity modifies the initial environmental state 

Environment control - frequency spectrum



Markovian - non-Markovian transition experiment

Non-Markovianity

A1 = 1
1+A , A2 = A

1+A

๏ Two Gaussian peaks, relative weights

A = 0

|κ(t)|
๏ One peak

monotonically decreasing
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2
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√
1 +A2 + 2A cos(∆ω ·∆nt)

๏ Decoherence function

D(ρ1(t), ρ2(t)) = |κ(t)|.๏  The optimal trace distance



Markovian - non-Markovian transition experiment

Trace distance dynamics  - 
transition from monotonic to non-monotonic behavior
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Liu, L. Li, Huang, C.-F. Li, Guo, Laine, Breuer, Piilo
Nature Physics 7, 931-934 (2011). 



Markovian - non-Markovian transition

Experimental control on the amount and direction of the 
information flow between the system and the environment.

Liu, L. Li, Huang, C.-F. Li, Guo, Laine, Breuer, Piilo
Nature Physics 7, 931-934 (2011). 



3. Nonlocal memory effects

Laine, Breuer, Piilo, C.-F. Li, Guo,
Phys. Rev. Lett. 2012

Liu, Cao, Huang, C.-F. Li, Guo, Laine, Breuer, Piilo
”Photonic realization of nonlocal memory effects and non-Markovian quantum probes”,
submitted for publication



Cartoon of the system
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2-qubits interacting with their local environments
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What happens when the environments are initially correlated?

2-qubits interacting with their local environments

Cartoon of the system



Nonlocal memory effects 

๏ Considered open system: two photons
    - polarizations H, V
    - initial pure state

|χ〉 =
∫
dωf(ω)|ω〉{

๏ Environment: frequency degrees of freedom

    - joint probability distribution

๏ Initial system-environment product state



๏ General dephasing for 2 qubits (photons, polarization)

๏ Local states for qubit 1 and 2 [trace out qubit 2 (1)]

Nonlocal memory effects 

๏ Global 2-qubit decoherence functions:        , 

๏ Local decoherence functions:        ,



๏ Decoherence functions

๏...however, the open system map is a product of local maps

if and only if

๏Local interaction Hamiltonian for photon i

Nonlocal memory effects 

Frequency correlations give
nonlocal map and

 non-Markovian dynamics



๏ Consider
   -Gaussian frequency distribution
   - Variance C
   - Correlation coefficient K
   - initial open system states 

๏...trace distance dynamics of the open system

๏...and the non-Markovianity measure is 

Direct connection between the amount of non-Markovianity of the open 
system and the correlations between the local environments

Nonlocal memory effects 



Nonlocal memory effects 
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Laine, Breuer, Piilo, C.-F. Li, Guo,
Phys. Rev. Lett. 2012.
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Conclusions

2: Quantifying and controlling non-Markovianity:
   - trace distance based measure, information flow
   - reservoir engineering and Markovian to non-Markovian transition

1: Non-Markovian quantum jumps:
Recreation of lost superpositions due to the memory effects

๏ Memory multifaceted phenomenon,  
    stimulating recent theoretical progress by several groups
๏ Rigorous experimental tests becoming feasible
๏ Non-Markovian probes, as a resource, new diagnostic tools...

3: Nonlocal memory effects:
    - nonlocal map by local interaction Hamiltonian
    - correlations between local environments: a new source of non-Markovianity
    - application: non-Markovian quantum probe: frequency correlation of two
     photons measured by their polarization state  
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