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|. Stochastic descriptions:
Non-Markovian quantum jumps



Open system dynamics: Density matrix vs. ensemble of state vectors

A master equation for the density matrix p:

d’;_it) - %[Hs,p] + ;FmCmpC,; —%gfm(Cn}Cmp + pC,;Cm)

Also: at each point of time, density matrix p
as ensemble of state vectors:

p0=3 "2 20X, 0)
- Y1(to) — vi(t) ... Y1 (tn)
N s vers Ya(to) — ¥2(t1) ... 2 (tn)
YN (to) —Un(t) e VN (tn)

The time-evolution of each ¥, contains continuous or discontinuous
stochastic element...



Quantum

Jump
methods:

Markovian

MCWF

(Dalibard, Castin, Molmer)
Quantum Trajectories
(Zoller, Carmichael)

Simple classification of Monte Carlo methods

non-Markovian

Fictitious modes (Imamoglu)

Pseudo modes (Garraway)

Doubled H-space (Breuer, Petruccione)
Triple H-space (Breuer)

NMQ)]

Diffusion
methods:

QSD
(Diosi, Gisin, Percival...)

Non-Markovian QSD

(Strunz, Diosi, Gisin)

Stochastic Schrodinger equations
(Bassi)

Plus:Wiseman, Gambetta, Budini, Gaspard,
Lacroix...and others

(not comprehensive list, apologies for any
omissions)



Markovian Monte Carlo wave function method, example

Quantum jump: Discontinuous stochastic change of the state vector.

Example: excited state probability P

for a driven 2-level atom
Unstable excited state

Markovian Monte Carlo
single realization |ensemble average

coupling

Il decay channel

(deterministic) (random jump)

Ground state P

Time

damped Rabi oscillation

Dalibard, Castin, Molmer: Phys. Rev. Lett. 68, 580 (1992) of the atom



Jump probability, example

Time-evolution of state vector V¥i:

At each point of time: decide if quantum jump happened.

P;: probability that a quantum jump occurs in a given time

interval Ot:

Py =6t 1

/

time-step

decay rate

For example: 2-level atom

Probability for atom being transferred from
the excited to the ground state and photon

emitted.

T

De
\ . of e
occupation probability
of excited state

o
l




Markovian vs. non-Markovian evolution (1)

What happens when the decay rate turns negative?

Example: 2-level atom in photonic band gap.

1
Decay rate g5

(exact) 0

@ Li=0Tp <0

Markovian description of quantum jumps fails, since gives
negative jump probability.
For example: negative probability that atom emits a photon.



Markovian vs. non-Markovian evolution (2)

Markovian proof with the master equation:

Cila()X0)|C]
o (t+6t)=(1- pa)ﬂ"ba(t + SN Pl + 5t)} E ) ()X (,(2)]

1 —Pa l)ba:(t)l Cj| l/’a(t»
deterministic part random jumps
no jump probability jump probabilities

Averaging over the deterministic and stochastic parts with
the corresponding probabilities gives the master equation

...for the non-Markovian case gives paths with
weights >| and <0 ...

What is the valid process corresponding to

quantum jumps with negative rates?




Non-Markovian quantum jumps

Starting point:
General non-Markovian master equation local-in-time:

dp(t) 1 _y * T
— = i—h[HS,p]+ ;Am(t)CmpCm —EgAm(t)(CmCmm pCmCm)

Jump operators Cp,
Time dependent decay rates A (t).

Decay rates have temporarily negative values.

Example: 2-level atom in photonic band gap. l

Jump operator C for positive decay: 0_ = ‘g> <6’
dp(t 1 1
W (s, ] D (0)l)elple) ol — 5DE)(1e) (el + pled ()




Non-Markovian quantum jumps

Quantum jump in negative decay region:
The direction of the j jump process reversed

m|Y)
V) (=) 9"y = HC ik A, (t) > 0

0)
VO = e, Ziu’ Am(t) <0

Jump probability: N: number of ensemble members in the target state
N’: number of ensemble members in the source state

N
P = 28t A ()9 1C], Conl (1)
The probability proportional to the target state!

For example:

two-level atom — No SH ()| |ole)
_ = — e
= |g) (€] N, :

The essential ingredient of non-Markovian system: memory.

Characterizing feature |: Recreation of lost superpositions.



Example: 2-level atom in photonic band gap

1 v v
05 (@ |
N O -
1 ; , The simulation and exact results match.

2

DECAY
RATE [B]

) : : _
25 o8 a1 | Typical feaFures of Photonlc band gap:
= : Population trapping

@ % 04< s Example 2 | Atom'PhOtOn bound State.

% T 02f O  NMQJ simulation |1

analytical

5 -1, 10 . .
TIVE [37] i\]‘li\(Densmy matrix: average over the ensemble)

/( Single state vector history )

e —
g 1 11 Example of one state vector history:
= = 0.8} !
C 3
X = . . . . .
wa s /) Lo | 12 Quantum jump at positive decay region
Qo T .
Z O < destroys the superposition.
oc
% a 0.4} — —
LLl
e ——| 11z Due to memory, non-Markovian jump
o = v excited state ..
ORY ground state || Fecreates the superposition.
O 2 2
0 2 4 6 8 10

TIME [B ] Piilo, Maniscalco, Harkdnen, Suominen: PRL 100, 180402 (2008)



NMQJ: general algorithm

AL [auoncio - ; {cloo.]

1
2
1
2

- S arm |amecio - ; {cloan.e]

p(t) =) N?\ft) Yo () (¥a(t)]l  ensemble

(0

Deterministic evolution and positive channel jumps as before...
Negative channel with jumps

D7 o (1) = [thar (£)) (a (1)

where the source state of the jump is

[Ya(t)) = Ci_ () |[Yar (1)) /1|C5_ ()]thar (£)) ]

...and jump probability for the corresponding channel

N (t)

Pazar(®) = Ty 180 (D16t (b DIC]_(OC;. (Dler ()




Stochastic process description

Non-Markovian piecewise deterministic process.
A stochastic Schrodinger equation for non-Markovian open system:

dly(t)) = —iG(t)|Y(t))dt < (Deterministic evolution)
ositive channels (t)| (t)>
rositive channels Z [\|Ck(t)| o W(t»] dN’;:({( Poisson increments for

positive and negative

Negative channels i Z/d¢ |0y — ()] d zw'( )4_ channels

Negative channel jump rate:

P{ )} dt,'

)] di))

Denomlnator may go to zero (singularity),
associated to lost positivity (the system tries to cancel something
which never happened)

' =A; C f

LY

Characterizing feature 3:

Stochastic realizations depend on each other.

H.-P. Breuer, and J. Piilo: Europhys. Lett. 85, 50004 (2009).



Information flow, preliminaries...

PHYSICAL REVIEW A 79, 062112 (2009)

Open system dynamics with non-Markovian quantum jumps

T se_3 s . .
J. Piilo, K. Harkonen. S. Maniscalco, and K.-A. Suominen
Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland

(Received 20 February 2009; published 24 June 2009)

In memoryless Markovian open systems, the environment
acts as a sink for the system information. Due to the system-
reservoir interaction, the system of interest loses information
on its state into the environment and this lost information
does not play any further role in the system dynamics. How-
ever, if the environment has a nontrivial structure, then the
seemingly lost information can return to the system at a later
time leading to non-Markovian dynamics with memory. This
memory effect is the essence of non-Markovian dynamics.

How to understand and quantify the information flow...
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2. Quantifying and controlling
non-Markovianity

Breuer, Laine, Piilo
Phys. Rev. Lett. 103,210401 (2009)

Liu, L. Li, Huang, C.-F. Li, Guo, Laine, Breuer, Piilo
Nature Physics 7,931-934 (2011).



Motivation

No universally agreed definition of non-Markovianity:

anything not following Lindblad, non-exponential decay, memory-kernel,
negative decay rates...

Various theoretical frameworks:

Nakazima-Zwanzig, memory-kernel equations, TCL, time-local master

equations, stochastic descriptions (quantum jumps, diffusion), correlated
projection operators...

s it possible to define and quantify non-Markovianity
@ Independently of the used mathematical formalism
@ Intuitively clear interpretation

@ Physically motivated approach (instead of formal
mathematical approach)

@ What does memory mean in quantum dynamics?

Our starting point: quantify information flow and its direction
between the system and the environment...
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Trace distance

[
Z

S
i

p
Distance measure for two states pjand pa:

Trace distance D:

1
D(p1,p2) = 5Tr|p1 — p2] 0<D<1

\_

For identical states ) = (), for orthogonal states D =1

Physical interpretation: measure of distinguishability
The max probability to distinguish the two states is equal to 1 (1 i D)

In terms of information: 2
The larger D, the higher the probability to distinguish,
more information which state we have

Invariant under unitary transformations %

Contractive for all CPT-maps ¢

D(q)p17 (I)p2) S D(pl’ 102) (Nielsen, Chuang)



Measure for non-Markovianity

Non-Markovianity: Backflow of information from

the environment to the open system

A measure for non-Markovianity:

N((I)) — Ilax />O dt O'(t, ,01,2(0)).

p1,2(0)

Gives the total increase of the trace distance during the
time evolution

The total amount of information that has flown from the
environment to the system during the time evolution.

4 )
General definition, independent of the used formalism

to solve the open system dynamics™.
- J

Breuer, Laine, Piilo: Phys. Rev. Lett. (2009)



Markovian - non-Markovian - initial correlations

General classification based on the information flow

1

(@)

time [arb. units]

Laine, Piilo, Breuer
Europhys. Lett. 92,60010 (2010)



Other measures

Wolf, Eisert, Cubitt, Cirac: PRL 2008
Markovianity vs non-Markovianity from

a snapshot of the evolution. >

Chruscinski, Kossakowski, Pascazio: PRA 2010
Asymptotic state dependence from initial conditions

Rivas, Huelga, Plenio: PRL 2010 |
Entanglement based measure (ancilla, system) [@ E }

Non-divisibility based measure

Our view: PRL 2009:

Recycling of info between S and E, quantify backflow
Memory is a feature of a system dynamics which has physical origin
instead of being a mathematical property of the equation of motion




Control: Non-Markovian dephasing

dz—f) = —1? 02, p] + ng) (02p0= — p)

Time evolution and the map: two state system |H), |V)

puu(t) = pru(0), pv,v(t) = pv,v(0),
puv(t) = &*(t)pu,v(0), pv,u(t)= &(t)pv,u(0)

Connection between the decoherence function li(t)
and the rates in the master equation

k(t) = exp </0 v(t") + ie(t’)dt’)



Markovian - non-Markovian transition experiment

Single photons in dephasing reservoir

The system: polarization states of the photon: ’H> ‘V>

Initial open system states
p1,2) = % (IH) £[V))

Environment: frequency degrees of freedom {|w) },cr |w;)

Initial environmental states ’X> — f dwf(w)‘w>
——

Modified by the FP cavity

Initial total system states

91,2(0)) = |@1.2) ® |x)
Total system evolution in the quartz plate
Ut)A) @ |w) = ™" |A) @ |w)

- H andV acquire different phase due to the different refraction indices
(birefringent quartz plate)



Markovian - non-Markovian transition experiment

Experimental setup

(3. Dephasing in quartz plate )

(2. Environment control by cavity)

4. Photon
. Preparation of photon states Da detection
'~ -
CW Light I HWP2
HWP1 BBO Db
2 -I 1y
C k
| awe Jhwe | wmirror | 1F PBS Quartz CaFVF:ty;
| |

The tilting of the FP cavity modifies the frequency spectrum.



Markovian - non-Markovian transition experiment

Environment control - frequency spectrum
695 700 705 710

60000 Fo g5 ' ' _
30000 |- J\ ]
[ N J/\_ ] 7
o (=T -
60000 : 5 ' ' ]
[0=8.0 A i
30000 |- ]
I . ! . . i

¢ 6000 Fo—= 5% A -
© 30000 - .
2 60000 P e A =
¢ 30000 [ ]
wid [ . L L 1 X
C 60000 Fo— a0 A =
=3 30000 [ ]
O 0000 [ S = ' m
O o000 :-923'5 J\ .
\ e — \
30000 |- A .
SMIEES -
0 [ 1 J/\— —AL L ]
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Tilting of the cavity modifies the initial environmental state




Markovian - non-Markovian transition experiment

Non-Markovianity

The optimal trace distance D(p1(t), p2(t)) = |k(1)|.
D(pa(t), \/a2+|f<: )bl?
b = (0) p2”(0)

a = pil(O) — p3'(0)

Two Gaussian peaks, relative weights

A
Ay = Ay = 124

1—|—A7
Decoherence function

k(1) = &2 ( " 1+ A2 + 2A cos(Aw - Ant)

One peak A =0

‘K(t) ‘ monotonically decreasing




Markovian - non-Markovian transition experiment

Trace distance dynamics -
transition from monotonic to non-monotonic behavior

points - experiments
solid line - theory

trace distance

0 50 100 150
Time

Liu, L. Li, Huang, C.-F. Li, Guo, Laine, Breuer, Piilo
Nature Physics 7,931-934 (201 1).



Markovian - non-Markovian transition

o change of trace distance
e change of concurrence

Markovian

2 4 6 8
0 (Degree)

Experimental control on the amount and direction of the

information flow between the system and the environment.

Liu, L. Li, Huang, C.-F. Li, Guo, Laine, Breuer, Piilo
Nature Physics 7,931-934 (201 1).



3. Nonlocal memory effects

Laine, Breuer, Piilo, C.-F. Li, Guo,
Phys. Rev. Lett. 2012

Liu, Cao, Huang, C.-F. Li, Guo, Laine, Breuer, Piilo
”Photonic realization of nonlocal memory effects and non-Markovian quantum probes”,
submitted for publication



Cartoon of the system

2-qubits interacting with their local environments




Cartoon of the system

2-qubits interacting with their local environments

What happens when the environments are initially correlated?

P2(1) = @ra6) (o2 (0)
= trp (02 ® V20 (0) B[p(0)(U] () & U1 1)




Nonlocal memory effects

Considered open system: two photons
- polarizations H,V
- initial pure state

Y12) = a|HH) +b|HV) + ¢|[VH) +d|VV)

Environment: frequency degrees of freedom

’X> :/dwldwzg(wlawz) w1, wa)
- joint probability distribution

P(wlaw2) — |g(w17w2)|2

Initial system-environment product state
[0(0)) = [¥12) ® [ dwidws g(w1,ws) |w1,w2)



Nonlocal memory effects

General dephasing for 2 qubits (photons polarization)

[ laf
ba* Iﬁ‘,g (t) b bC*Alg t I€1
Ko (t

ps (t) = ca*ki(t) cb* Ht)  cf? cd*
\ da*kiy(t) db*ki(t) dc*wis(t) |d|2

Local states for qubit | and 2 [trace out qubit 2 (1)]

1(t) = ( : |a|® + |b[? (ac* + bd*d>

ca* + db*)k3(t) c|? + |

0= (L 5550 D)

(ba* + dc*)k35(t)

Global 2-qubit decoherence functions:Alz(t)
Local decoherence functions:



Nonlocal memory effects

...however, the open system map is a product of local maps
®12(t) = 4 (t)®§?2(t)-
if and only if i2(t) = k1(t)ka(t)  Ar2(t) = ki (t)r5(2)

Local interaction Hamiltonian for photon i
Hi =~ [ dwsos [ny[V)(V] + il H)(H]] @ o il

Hin(t) = x1(t) Hy + x2(t) Ha.

Decoherence functions

Ka(t) = /dwldwzp(wl,wz)e_mnwzt2

k12(t) = / dwidwy P(wy, wo)e tAnwititwats) Frequency correlations give
nonlocal map and
Alz(t) = /dwld(UzP(wl,WQ)G_iAn(wltl_wth) non-Markovian dynamics




Nonlocal memory effects

Consider
-Gaussian frequency distribution P(w1,w2)
- Variance C
- Correlation coefficient K
- initial open system states

[¥i3) = (IHH)£[VV))/v2
...trace distance dynamics of the open system

D(t) = exp [—%Anzc (t% -+ t% - 2|K|t1t2)] .

...and the non-Markovianity measure is

N: 6—'%011(A’RT)2 [eécll(AnT)sz _ 1]

Direct connection between the amount of non-Markovianity of the open
system and the correlations between the local environments




Nonlocal memory effects

Anticorrelated frequency distributions and non-Markovianity

K =0

P(wl,(.Uz)

Trace distance |A 05! a

I 2 I 2 I 2

(a) time (b) time (c) time
non-Markovian Markovian
-lN—
— o

Laine, Breuer, Piilo, C.-F. Li, Guo,
Phys. Rev. Lett. 2012.



Nonlocal memory effects

Local Markovian dynamics - global non-Markovian dynamics

| e e L LT w m

I 2-Markovian I

1+2 non-Markovian
0.8 ]
1 Markovian
0.6 » ]
Q LS

04" .

| —— System 1+2 — ———
O-zj —== System 1 .

1 ===- System 2
0.0 | | | | | | | | | | | | | | 1 |

0.0 0.5 1.0 1.5 2.0

wt
Laine, Breuer, Piilo, C.-F. Li, Guo, e

Phys. Rev. Lett. 2012.




Conclusions

|: Non-Markovian quantum jumps:
Recreation of lost superpositions due to the memory effects

2: Quantifying and controlling non-Markovianity:
- trace distance based measure, information flow
- reservoir engineering and Markovian to non-Markovian transition

3: Nonlocal memory effects:
- nonlocal map by local interaction Hamiltonian
- correlations between local environments: a new source of non-Markovianity

- application: non-Markovian quantum probe: frequency correlation of two
photons measured by their polarization state

® Memory multifaceted phenomenon,
stimulating recent theoretical progress by several groups

@ Rigorous experimental tests becoming feasible
@ Non-Markovian probes, as a resource, new diaghostic tools...
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