

QUANTUM OPTICS GROUP Dipartimento di Fisica, Sapienza Università di Roma

Quantum non-locality without reference frame

Fabio Sciarrino

http://quantumoptics.phys.uniroma1.it

The orbital angular momentum of light

The dynamics of a light beam propagating along the z direction is described by the Helmoltz's equation in the paraxial approximation:

$$\frac{\partial^2 A(\vec{r})}{\partial x^2} + \frac{\partial^2 A(\vec{r})}{\partial y^2} = 2ik \frac{\partial A(\vec{r})}{\partial z}$$

Cartesian coordinates Cylindrical coordinates Laguerre – Gauss modes Hermite – Gauss modes Laguerre-Gauss: $u_{p,l}(r, \varphi, z) \propto u(r, z) e^{-il\theta}$ Helicoidal phase front l=0 , ± 1 , ± 2 ,... Phase Singularity

 \Rightarrow Each photon carries OAM equal to *lh*

The orbital angular momentum of light

Phase Singularity

Laguerre-Gauss:
$$u_{p,l}(r, \varphi, z) \propto u(r, z) e^{-il\varphi}$$

Helicoidal phase front
$$l=0$$
 +1 +2

<u>**Observation:**</u> For a chosen OAM subspace $o_m = \{+m, -m\}$, it is possible to construct a sphere analogous to the Poincaré one, for superpositions of leftand right- handed LG modes.

ex. Subspace
$$o_2 = \{\pm 2, -2\}$$

 $|d_{R,L}\rangle = \frac{1}{\sqrt{2}}(|\pm 2\rangle \pm i|-2\rangle) \qquad |d_{\pm}\rangle = \frac{1}{\sqrt{2}}(|\pm 2\rangle \pm |-2\rangle)$

Polarization

OAM

M. Padgett, and J. Courtial, *Optics Letters* **24**, 430 (1993)

The polarization of light

SPIN

S = 1

Left polarization

Horizzontal polarization

All the second s

Right polarization

http://www.physics.gla.ac.uk/Optics/

The transverse profile of light: the Orbital Angular Momentum

Laser beam (laser pointer)

http://www.physics.gla.ac.uk/Optics/

The transverse profile of light: the Orbital Angular Momentum

http://www.physics.gla.ac.uk/Optics/

Manipulation of orbital angular momentum

The q-plate device (1/2)

The q-plate thickness is chosen in order to have half-wave retardation depending on the working wavelength.

L. Marrucci, et al., Physical Review Letters 96, 163905 (2006)

The q-plate device (2/2)

Different q-plate geometries

Qplate in the quantum regime

$$|L\rangle_{\pi}|m\rangle_{o} \quad \xrightarrow{QP} \quad |R\rangle_{\pi}|m+2\rangle_{o}$$
$$|R\rangle_{\pi}|m\rangle_{o} \quad \xrightarrow{QP} \quad |L\rangle_{\pi}|m-2\rangle_{o}$$

Unitary evolution on a generic input state

$$\alpha |L\rangle_{\pi} |m\rangle_{o} + \beta |R\rangle_{\pi} |m\rangle_{o} \xrightarrow{QP} \alpha |R\rangle_{\pi} |m+2\rangle_{o} + \beta |L\rangle_{\pi} |m-2\rangle_{o}$$

The qplate: a quantum interface between polarization and OAM

- Single photon entanglement between polarization and OAM
 - > Quantum transferrer: polarization \rightarrow OAM
 - > Quantum transferrer: OAM \rightarrow polarization

Single photon entanglement

The q-plate introduces a quantum correlation between the OAM and the polarization π degree of freedom

E. Nagali, et al., Physical Review Letters 103, 013601 (2009)

Single photon entanglement

The q-plate introduces a quantum correlation between the OAM and the polarization π degree of freedom

E. Nagali, et al., Physical Review Letters 103, 013601 (2009)

E. Nagali, et al., Physical Review Letters 103, 013601 (2009); Optics Express 17, 18745 (2009)

Orbital angular momentum....

An extra resource for optical quantum information processing...

I) Quantum communication...

II) Higher dimensional quantum systems...

Free space quantum communication

Violation of local realism with freedom of choice

Thomas Scheidl^a, Rupert Ursin^a, Johannes Kofler^{a,b,1}, Sven Ramelow^{a,b}, Xiao-Song Ma^{a,b}, Thomas Herbst^b, Lothar Ratschbacher^{a,2}, Alessandro Fedrizzi^{a,3}, Nathan K. Langford^{a,4}, Thomas Jennewein^{a,5}, and Anton Zeilinger^{a,b,1}

Quantum cryptography over a distance of 144 km

Quantum Communication meets Satellite

Quantum communication (QC): transferring quantum states from one place to another using entanglement.

Quantum mechanics ensures that QC is inherently secure from being hacked

Free-space and satellite quantum channels are possible ways to increase significantly the distance limit of current quantum communication systems.

Quantum communication + Satellite

Long distance quantum cryptography, quantum teleportation, dense coding,

Problems:

- no optical medium to guide beams of light
- intense backlight
- o diffusion and absorption
- atmospheric turbulence (distortion of the light's wavefront)

How to share a reference frame ?

Alignment-free qubits

Polarization

OAM

$$R_{z}(\theta)|R\rangle_{\pi} = e^{i\theta}|R\rangle_{\pi}$$
$$R_{z}(\theta)|L\rangle_{\pi} = e^{-i\theta}|L\rangle_{\pi}$$

 $R_{z}(\theta)|+1\rangle_{oam} = e^{-i\theta}|+1\rangle_{oam}$ $R_{z}(\theta)|-1\rangle_{oam} = e^{i\theta}|-1\rangle_{oam}$

Alignment-free qubits

Experimental reference frame-free quantum communication

Idea: adopt hybrid qubits encoded in the logical basis

$$|1\rangle_{L} = |R\rangle_{p}|l\rangle_{o}$$

$$|0\rangle_{L} = |L\rangle_{p}|r\rangle_{o}.$$

polarization OAM

Under a rotation along the axis z:

 $\frac{|L/R\rangle_{\rm p}}{|l/r\rangle_{\rm o}} \to e^{\mp i\theta} |L/R\rangle_{\rm p}$ $\frac{|l/r\rangle_{\rm o}}{|l/r\rangle_{\rm o}} \to e^{\mp i\theta} |l/r\rangle_{\rm o}$

 $|1\rangle_{\rm L}$ and $|0\rangle_{\rm L}$ invariant under arbitrary rotations along the propagtion axis!

Experimental setup

V. D'Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, NS. Slussarenko, L. Marrucci, and F. Sciarrino, *Complete experimental toolbox for alignment-free quantum communication*, Nature Comm (in press)

Experimental setup

V. D'Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, *Complete experimental toolbox for alignment-free quantum communication*, [arXiv:1203.6417]

Rotational measurement kit

Reference frame-free QKD

V. D'Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, *Nature Communication* (in press)

Reference frame-free quantum non-locality

V. D'Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, *Nature Communication* (in press)

Ququart: fundamental test and cryptography

A. Cabello, V. D'Ambrosio, E. Nagali, F. Sciarrino, Phys. Rev. A 84, 030302 (2011).

Conclusions and perspectives

- Qplate: a reliable interface between OAM and polarization
- > Qubit transferrer from polarization to OAM and viceversa
- > Experimental implementation and manipulation of ququart states:
 - Optimal quantum cloning of ququart
 - Fundamental tests of quantum mechanics
 - Contextuality based QKD
- » NEXT STEPS: Higher dimensionality for fundamental test and protocols of quantum information

1.00.50.000 x_0

http://quantumoptics.phys.uniroma1.it www.phorbitech.eu

Prof. Paolo Mataloni

Dr. Fabio Sciarrino

Dr. Nicolò Spagnolo Post-Doc

Andrea Chiuri PhD student

Vincenzo D'Ambrosio PhD student

SEVENTH FRAMEWORK PROGRAMME Linda Sansoni PhD student

Dr. Chiara Vitelli Post-Doc