Non-commutative fields in semiclassical gravity, anomalous diffusion and deformed Fock space

Michele Arzano

Dipartimento di Fisica "Sapienza" University of Rome

June 21, 2012

Beyond local QFT

Beyond local QFT

What's the difference in their phase space, in the associated field theories and what happens after quantization?

Outline

- "Bending" phase space in 3d gravity: group valued momenta and NC-fields
- NC heat kernel: running spectral dimension
- 4d case: κ-Poincaré, κ-Minkowski
- κ -Fock space: "hidden entanglement" at the Planck scale

Gravitational field in 2+1 dimensions admits no local d.o.f.!

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices → conical space (Deser, Jackiw, 't Hooft, 1984)

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- ullet Point particles "puncture" space-like slices $o conical \ space \ ({ t Deser, Jackiw, 't Hooft, 1984})$
- ullet Euclidean plane with a wedge "cut-out" deficit angle $8\pi {\it Gm}$

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- ullet Point particles "puncture" space-like slices o conical space (Deser, Jackiw, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle $8\pi Gm$

For one particle the metric in cylindrical coordinates will be given by

$$ds^2 = -d\tau^2 + dr^2 + (1 - 4Gm)r^2d\varphi^2$$

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- ullet Point particles "puncture" space-like slices o conical space (Deser, Jackiw, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle $8\pi Gm$

For one particle the metric in cylindrical coordinates will be given by

$$ds^2 = -d\tau^2 + dr^2 + (1 - 4Gm)r^2d\varphi^2$$

• The length of a circular path centered at r=0 divided by its radius will be $<2\pi$. The *deficit angle* $\alpha=8\pi Gm$ is proportional to the *mass* of the particle m

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- ullet Point particles "puncture" space-like slices o conical space (Deser, Jackiw, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle $8\pi Gm$

For one particle the metric in cylindrical coordinates will be given by

$$ds^{2} = -d\tau^{2} + dr^{2} + (1 - 4Gm)r^{2}d\varphi^{2}$$

- The length of a circular path centered at r=0 divided by its radius will be $<2\pi$. The *deficit angle* $\alpha=8\pi Gm$ is proportional to the *mass* of the particle m
- Next step: characterize the phase space of such topologically gravitating particle

• In 3d Minkowski space *positions* and *momenta* given by points on $\mathbb{R}^{2,1} \Longrightarrow$ (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$

- In 3d Minkowski space *positions* and *momenta* given by points on $\mathbb{R}^{2,1}$ \Longrightarrow (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: associate positions and momenta to a conical defect (see Matschull and Welling 1998):

- In 3d Minkowski space *positions* and *momenta* given by points on $\mathbb{R}^{2,1}$ \Longrightarrow (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: associate positions and momenta to a conical defect (see Matschull and Welling 1998):
- **Position** of point particle given by $\mathbf{x}(au) \equiv \mathbf{q}|_{r=0} \in \mathbb{R}^{2,1}$

- In 3d Minkowski space *positions* and *momenta* given by points on $\mathbb{R}^{2,1}$ \Longrightarrow (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: associate positions and momenta to a conical defect (see Matschull and Welling 1998):
- **Position** of point particle given by $\mathbf{x}(\tau) \equiv \mathbf{q}|_{r=0} \in \mathbb{R}^{2,1}$
- **Velocity**: matching condition at location of particle $\implies \dot{\mathbf{x}}(\tau) \equiv \mathbf{P}^{-1}\dot{\mathbf{x}}(\tau)\mathbf{P}$

momenta are proportional to the *projection* of $\mathbf{P} \in SL(2,\mathbb{R})$ on its Lie algebra $\mathfrak{sl}(2)$

$$\mathbf{P} = u\mathbb{1} + 4\pi G \vec{p} \cdot \vec{\gamma} \quad \text{with} \quad u^2 - 16\pi^2 G^2 \vec{p}^2 = 1$$

- In 3d Minkowski space *positions* and *momenta* given by points on $\mathbb{R}^{2,1}$ \Longrightarrow (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: associate positions and momenta to a conical defect (see Matschull and Welling 1998):
- **Position** of point particle given by $\mathbf{x}(\tau) \equiv \mathbf{q}|_{r=0} \in \mathbb{R}^{2,1}$
- **Velocity:** matching condition at location of particle $\implies \dot{\mathbf{x}}(\tau) \equiv \mathbf{P}^{-1}\dot{\mathbf{x}}(\tau)\mathbf{P}$

momenta are proportional to the *projection* of $\mathbf{P} \in SL(2,\mathbb{R})$ on its Lie algebra $\mathfrak{sl}(2)$

$$\mathbf{P} = u\mathbb{1} + 4\pi G \vec{p} \cdot \vec{\gamma}$$
 with $u^2 - 16\pi^2 G^2 \vec{p}^2 = 1$

The (extended) phase space manifold in the presence of "topological" gravitational backreaction becomes $\Upsilon_G = \mathbb{R}^3 \times SL(2,\mathbb{R})$

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

• Functions on the mass shell $\mathcal{C}^{\infty}(M_m) \underset{\text{Fourier trans.}}{\Longleftrightarrow} \mathcal{S}_{KG}$ solutions of Klein-Gordon eq.

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}(M_m) \iff \mathcal{S}_{KG}$ solutions of Klein-Gordon eq.
- Lorentz inv. measure on $\mathcal{C}^\infty(M_m)\Rightarrow invariant\ inner\ product\Rightarrow \mathsf{QFT}\ \mathsf{Hilbert}\ \mathsf{space}$

Phase space of a relativistic particle ⇒ (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}(M_m) \underset{\text{Fourier trans.}}{\Longleftrightarrow} \mathcal{S}_{KG}$ solutions of Klein-Gordon eq.
- Lorentz inv. measure on $\mathcal{C}^\infty(M_m)\Rightarrow$ invariant inner product \Rightarrow QFT Hilbert space

Particle coupled to 2+1 gravity naturally leads to **field theory on a group** $\phi(\mathbf{P}) \in \mathcal{C}^{\infty}(M_m^G) \subset \mathcal{C}^{\infty}(SL(2,\mathbb{R}))$

(**Deformed mass-shell** M_m^G given by holonomies which represent a rotation by $\alpha=8\pi\,Gm$)

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}(M_m) \underset{\text{Fourier trans.}}{\Longleftrightarrow} \mathcal{S}_{KG}$ solutions of Klein-Gordon eq.
- Lorentz inv. measure on $\mathcal{C}^{\infty}(M_m) \Rightarrow invariant inner product <math>\Rightarrow \overline{\mathsf{QFT}}$ Hilbert space

Particle coupled to 2+1 gravity naturally leads to **field theory on a group** $\phi(\mathbf{P}) \in \mathcal{C}^{\infty}(M_m^G) \subset \mathcal{C}^{\infty}(SL(2,\mathbb{R}))$

(**Deformed mass-shell** M_m^G given by holonomies which represent a rotation by $\alpha=8\pi\,Gm$)

Switch to Euclidean (our goal is to define *heat kernel*): $SL(2,\mathbb{R}) \longrightarrow SU(2)$

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}(M_m) \underset{\text{Fourier trans.}}{\Longleftrightarrow} \mathcal{S}_{KG}$ solutions of Klein-Gordon eq.
- Lorentz inv. measure on $\mathcal{C}^{\infty}(M_m)\Rightarrow invariant inner product <math>\Rightarrow$ QFT Hilbert space

Particle coupled to 2+1 gravity naturally leads to **field theory on a group** $\phi(\mathbf{P}) \in \mathcal{C}^{\infty}(M_m^G) \subset \mathcal{C}^{\infty}(SL(2,\mathbb{R}))$

(**Deformed mass-shell** M_m^G given by holonomies which represent a rotation by $\alpha = 8\pi Gm$)

Switch to Euclidean (our goal is to define *heat kernel*): $SL(2,\mathbb{R}) \longrightarrow SU(2)$

Fourier transform maps fields on the group manifold to fields on a dual "spacetime"

$$\mathcal{F}(f)(x) = \int d\mu_H(\mathbf{P}) f(\mathbf{P}) e_{\mathbf{P}}(x),$$

where: $e_{\mathbf{P}}(\mathbf{x}) = e^{\frac{i}{2\kappa} \operatorname{Tr}(\mathbf{x}\mathbf{P})} = e^{i\vec{p}\cdot\vec{x}}$ with $\vec{p} = \frac{\kappa}{2i} \operatorname{Tr}(\mathbf{P}\vec{\sigma})$, $\mathbf{x} = \mathbf{x}^i \sigma_i$ and $\kappa = (4\pi G)^{-1}$

...the group structure induces a non-commutative $\star ext{-}\mathbf{product}$ for plane waves

$$\mathrm{e}_{\mathbf{P_1}}(\mathbf{x})\star\mathrm{e}_{\mathbf{P_2}}(\mathbf{x})=\mathrm{e}^{\frac{\mathrm{i}}{2\kappa}\mathrm{Tr}(\mathbf{x}\mathbf{P_1})}\star\mathrm{e}^{\frac{\mathrm{i}}{2\kappa}\mathrm{Tr}(\mathbf{x}\mathbf{P_2})}=\mathrm{e}^{\frac{\mathrm{i}}{2\kappa}\mathrm{Tr}(\mathbf{x}\mathbf{P_1}\mathbf{P_2})}$$

...the group structure induces a non-commutative ***-product** for plane waves

$$e_{P_1}(x)\star e_{P_2}(x)=e^{\frac{i}{2\kappa}\operatorname{Tr}(xP_1)}\star e^{\frac{i}{2\kappa}\operatorname{Tr}(xP_2)}=e^{\frac{i}{2\kappa}\operatorname{Tr}(xP_1P_2)}$$

i) differentiating both sides w.r.t. P_1 , P_2 and setting momenta to zero

$$[x_i, x_j]_{\star} = i\kappa \epsilon_{ijk} x_k$$

functions of the dual spacetime variables form a non-commutative algebra!

...the group structure induces a non-commutative ***-product** for plane waves

$$e_{\mathsf{P}_1}(x) \star e_{\mathsf{P}_2}(x) = e^{\frac{i}{2\kappa} \operatorname{Tr}(x\mathsf{P}_1)} \star e^{\frac{i}{2\kappa} \operatorname{Tr}(x\mathsf{P}_2)} = e^{\frac{i}{2\kappa} \operatorname{Tr}(x\mathsf{P}_1\mathsf{P}_2)}$$

i) differentiating both sides w.r.t. P_1 , P_2 and setting momenta to zero

$$[x_i, x_j]_{\star} = i\kappa \epsilon_{ijk} x_k$$

functions of the dual spacetime variables form a non-commutative algebra!

ii) momenta obey a non abelian composition rule indeed

$$\vec{p}_1 \oplus \vec{p}_2 = p_0(\vec{p}_2) \vec{p}_1 + p_0(\vec{p}_2) \vec{p}_2 + \frac{1}{\kappa} \vec{p}_1 \wedge \vec{p}_2 = \vec{p}_1 + \vec{p}_2 + \frac{1}{\kappa} \vec{p}_1 \wedge \vec{p}_2 + \mathcal{O}(1/\kappa^2) \neq \vec{p}_2 \oplus \vec{p}_1$$

...the group structure induces a non-commutative ***-product** for plane waves

$$e_{\mathsf{P}_1}(x) \star e_{\mathsf{P}_2}(x) = e^{\frac{i}{2\kappa} \operatorname{Tr}(\mathsf{x} \mathsf{P}_1)} \star e^{\frac{i}{2\kappa} \operatorname{Tr}(\mathsf{x} \mathsf{P}_2)} = e^{\frac{i}{2\kappa} \operatorname{Tr}(\mathsf{x} \mathsf{P}_1 \mathsf{P}_2)}$$

i) differentiating both sides w.r.t. \boldsymbol{P}_1 , \boldsymbol{P}_2 and setting momenta to zero

$$[x_i, x_j]_{\star} = i\kappa \epsilon_{ijk} x_k$$

functions of the dual spacetime variables form a non-commutative algebra!

ii) momenta obey a non abelian composition rule indeed

$$\vec{p}_1 \oplus \vec{p}_2 = p_0(\vec{p}_2) \vec{p}_1 + p_0(\vec{p}_2) \vec{p}_2 + \frac{1}{\kappa} \vec{p}_1 \wedge \vec{p}_2 = \vec{p}_1 + \vec{p}_2 + \frac{1}{\kappa} \vec{p}_1 \wedge \vec{p}_2 + \mathcal{O}(1/\kappa^2) \neq \vec{p}_2 \oplus \vec{p}_1$$
Plane waves = eigenfunctions of translation generators P_a

 \downarrow

...the group structure induces a non-commutative *-product for plane waves

$$e_{\mathsf{P}_1}(x) \star e_{\mathsf{P}_2}(x) = e^{\frac{i}{2\kappa} \operatorname{Tr}(\mathsf{x} \mathsf{P}_1)} \star e^{\frac{i}{2\kappa} \operatorname{Tr}(\mathsf{x} \mathsf{P}_2)} = e^{\frac{i}{2\kappa} \operatorname{Tr}(\mathsf{x} \mathsf{P}_1 \mathsf{P}_2)}$$

differentiating both sides w.r.t. P₁, P₂ and setting momenta to zero

$$[x_i, x_j]_* = i\kappa \epsilon_{ijk} x_k$$

functions of the dual spacetime variables form a non-commutative algebra!

momenta obey a non abelian composition rule indeed

$$\vec{p}_1 \oplus \vec{p}_2 = p_0(\vec{p}_2) \vec{p}_1 + p_0(\vec{p}_2) \vec{p}_2 + \frac{1}{\kappa} \vec{p}_1 \wedge \vec{p}_2 = \vec{p}_1 + \vec{p}_2 + \frac{1}{\kappa} \vec{p}_1 \wedge \vec{p}_2 + \mathcal{O}(1/\kappa^2) \neq \vec{p}_2 \oplus \vec{p}_1$$

Plane waves = eigenfunctions of translation generators P_a

non-abelian composition of momenta = non-trivial coproduct

$$\Delta P_a = P_a \otimes \mathbb{1} + \mathbb{1} \otimes P_a + \frac{1}{\kappa} \epsilon_{abc} P_b \otimes P_c + \mathcal{O}(1/\kappa^2)$$

the smoking gun of symmetry deformation...P_a belong to a non-trivial Hopf algebra with κ as a deformation parameter!

• "Spin" NC space possesses Laplacian Δ_G : $\Delta_G e_P(x) = C_G(P)e_P(x) = \vec{p}^2 e_P(x)$

- "Spin" NC space possesses Laplacian Δ_G : $\Delta_G \, e_P(x) = C_G(P) e_P(x) = \vec{p}^2 \, e_P(x)$
- Define the **Green function**: $(\Delta_G + M^2) G(x, x') = \delta(x x')$

- "Spin" NC space possesses Laplacian Δ_G : $\Delta_G \, e_P(x) = C_G(P) e_P(x) = \vec{p}^2 \, e_P(x)$
- Define the **Green function**: $(\Delta_G + M^2) G(x, x') = \delta(x x')$
- Construct the NC heat kernel (M=0) (MA and E. Alesci 1108.1507)

$$G(x,x') = \int_0^\infty ds \, K(x,x';s)$$

$$\Downarrow$$

$$K_G(x,x';s) = \int d\mu_H(\mathbf{P}) \, e^{-sC_G(\mathbf{P})} e_P(x) e_P(x')$$

- "Spin" NC space possesses Laplacian Δ_G : $\Delta_G e_P(x) = C_G(P)e_P(x) = \vec{p}^2 e_P(x)$
- Define the **Green function**: $(\Delta_G + M^2) G(x, x') = \delta(x x')$
- Construct the NC heat kernel (M=0) (MA and E. Alesci 1108.1507)

$$G(x,x') = \int_0^\infty ds \, K(x,x';s)$$

$$\Downarrow$$

$$K_G(x,x';s) = \int d\mu_H(\mathbf{P}) \, e^{-sC_G(\mathbf{P})} e_P(x) e_P(x')$$

and calculate the spectral dimension $d_s=-2rac{\partial \log \tilde{T}rK}{\partial \log s}...$ (plot for G=1)

• The **momentum sector** of κ -Poincaré \Rightarrow analogous structures to 3d case!

- The momentum sector of κ -Poincaré \Rightarrow analogous structures to 3d case!
 - \blacktriangleright momenta: coordinates on a $\mbox{\bf Lie}$ group ${\rm B}\subset {\rm SO}(4,1)$ (sub-manifold of $\mbox{\it dS}_4)$

$$-\eta_0^2 + \eta_1^2 + \eta_2^2 + \eta_3^2 + \eta_4^2 = \kappa^2; \quad \eta_0 + \eta_4 > 0$$

with $\kappa \sim E_{Planck}$

dual Lie algebra "space-time" coordinates

$$[x_{\mu},x_{\nu}]=-\frac{i}{\kappa}(x_{\mu}\delta_{\nu}^{0}-x_{\nu}\delta_{\mu}^{0}).$$

- The **momentum sector** of κ -Poincaré \Rightarrow analogous structures to 3d case!
 - \blacktriangleright momenta: coordinates on a $\mbox{\bf Lie}$ group ${\rm B}\subset {\rm SO}(4,1)$ (sub-manifold of $\mbox{\it dS}_4)$

$$-\eta_0^2 + \eta_1^2 + \eta_2^2 + \eta_3^2 + \eta_4^2 = \kappa^2; \quad \eta_0 + \eta_4 > 0$$

with $\kappa \sim E_{Planck}$

dual Lie algebra "space-time" coordinates

$$[x_{\mu},x_{\nu}]=-\frac{i}{\kappa}(x_{\mu}\delta_{\nu}^{0}-x_{\nu}\delta_{\mu}^{0}).$$

• consider a one-parameter group splitting of B, $0 \le |\beta| \le 1$

$$e_p \equiv e^{-i\frac{1-\beta}{2}p^0x_0}e^{ip^jx_j}e^{-i\frac{1+\beta}{2}p^0x_0}$$
.

with momentum composition rules and "antipodes"

$$p \oplus_{\beta} q = (p^0 + q^0; p^j e^{\frac{1-\beta}{2\kappa}q^0} + q^j e^{-\frac{1+\beta}{2\kappa}p^0}), \qquad \ominus_{\beta} p = (-p^0; -e^{\frac{-\beta}{\kappa}p^0}p^i).$$

each choice of β corresponds to a *choice of coordinates* on the group manifold.

for $\beta=-1$ we have "flat slicing" coordinates

$$\eta_0(\rho_0, \mathbf{p}) = \kappa \sinh \rho_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{\rho_0/\kappa},
\eta_i(\rho_0, \mathbf{p}) = \rho_i e^{\rho_0/\kappa},
\eta_4(\rho_0, \mathbf{p}) = \kappa \cosh \rho_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{\rho_0/\kappa}.$$

non-abelian composition of momenta: $p\oplus q=(p^0+q^0;\ p^j\ e^{-rac{q^0}{\kappa}}+q^j)$

for $\beta = -1$ we have "flat slicing" coordinates

$$\eta_0(p_0, \mathbf{p}) = \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa},
\eta_i(p_0, \mathbf{p}) = p_i e^{p_0/\kappa},
\eta_4(p_0, \mathbf{p}) = \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}.$$

non-abelian composition of momenta: $p\oplus q=(p^0+q^0;\ p^j\ e^{-rac{q^0}{\kappa}}+q^j)$

deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}} \right) + \frac{1}{2\kappa} \vec{P}^2 \right) + \frac{i}{\kappa} P_l P_j$$

for $\beta = -1$ we have "flat slicing" coordinates

$$\eta_0(p_0, \mathbf{p}) = \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa},
\eta_i(p_0, \mathbf{p}) = p_i e^{p_0/\kappa},
\eta_4(p_0, \mathbf{p}) = \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}.$$

non-abelian composition of momenta: $p \oplus q = (p^0 + q^0; p^j e^{-\frac{q^0}{\kappa}} + q^j)$

deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}} \right) + \frac{1}{2\kappa} \vec{P}^2 \right) + \frac{i}{\kappa} P_l P_j$$

and co-products

$$\begin{array}{lll} \Delta(N_j) & = & N_j \otimes 1 + \mathrm{e}^{-P_0/\kappa} \otimes N_j + \epsilon_{jkl}/\kappa \, P_k \otimes M_l \\ \Delta(P_0) & = & P_0 \otimes 1 + 1 \otimes P_0 \,, \qquad \Delta(P_i) = P_i \otimes 1 + \exp(-P_0/\kappa) \otimes P_i \\ \Delta(M_i) & = & M_i \otimes 1 + 1 \otimes M_i \end{array}$$

• **deformed mass Casimir** \Rightarrow Lorentz invariant hyperboloid on B: $\eta_4 = \mathrm{const.}$

$$C_{\kappa}(P) = \left(2\kappa \sinh\left(\frac{P_0}{2\kappa}\right)\right)^2 - P_i P^i e^{P_0/\kappa}$$

for $\beta = -1$ we have "flat slicing" coordinates

$$\eta_0(p_0, \mathbf{p}) = \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa},
\eta_i(p_0, \mathbf{p}) = p_i e^{p_0/\kappa},
\eta_4(p_0, \mathbf{p}) = \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}.$$

non-abelian composition of momenta: $p \oplus q = (p^0 + q^0; p^j e^{-\frac{q^0}{\kappa}} + q^j)$

deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}} \right) + \frac{1}{2\kappa} \vec{P}^2 \right) + \frac{i}{\kappa} P_l P_j$$

and co-products

$$\begin{array}{lll} \Delta(N_j) & = & N_j \otimes 1 + \mathrm{e}^{-P_0/\kappa} \otimes N_j + \epsilon_{jkl}/\kappa \, P_k \otimes M_l \\ \Delta(P_0) & = & P_0 \otimes 1 + 1 \otimes P_0 \,, \qquad \Delta(P_i) = P_i \otimes 1 + \exp(-P_0/\kappa) \otimes P_i \\ \Delta(M_i) & = & M_i \otimes 1 + 1 \otimes M_i \end{array}$$

• **deformed mass Casimir** \Rightarrow Lorentz invariant hyperboloid on B: $\eta_4 = \mathrm{const.}$

$$C_{\kappa}(P) = \left(2\kappa \sinh\left(\frac{P_0}{2\kappa}\right)\right)^2 - P_i P^i e^{P_0/\kappa}$$

in the limit $\kappa \longrightarrow \infty$ recover ordinary Poincaré algebra

Fractal properties of κ -space I

Anomalous diffusion in κ -Minkowski space? (D. Benedetti PRL 102 111303 (2009))

Fractal properties of κ -space I

Anomalous diffusion in κ -Minkowski space? (D. Benedetti PRL 102 111303 (2009))

• starts from the ansatz

$$\operatorname{Tr} K = \int \frac{d^4 p}{(2\pi)^4} \ e^{-sC(p)} \ \Longrightarrow \ \operatorname{Tr} K_{\kappa} = \int \frac{d\mu(\textbf{P})}{(2\pi)^4} \ e^{-sM^2(\textbf{P})}$$

with $M^2(\mathbf{P}) = C_{\kappa}(\mathbf{P}) \left(1 + \frac{C_{\kappa}(\mathbf{P})}{4\kappa^2}\right)$ and $d\mu(\mathbf{P})$ the left invariant Haar measure on AN(3)

Fractal properties of κ -space I

Anomalous diffusion in κ -Minkowski space? (D. Benedetti PRL 102 111303 (2009))

• starts from the ansatz

$$\operatorname{Tr} K = \int \frac{d^4 p}{(2\pi)^4} \ e^{-sC(p)} \ \Longrightarrow \ \operatorname{Tr} K_{\kappa} = \int \frac{d\mu(\textbf{P})}{(2\pi)^4} \ e^{-sM^2(\textbf{P})}$$

with $M^2(\mathbf{P}) = C_{\kappa}(\mathbf{P}) \left(1 + \frac{C_{\kappa}(\mathbf{P})}{4\kappa^2}\right)$ and $d\mu(\mathbf{P})$ the left invariant Haar measure on AN(3)

• calculate the spectral dimension $d_s=-2rac{\partial \log ilde{T}r K}{\partial \log s}...$ (plot for G=1)

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of ${\cal H}$

In ordinary QFT the full (bosonic) **Fock space** is obtained from <u>symmetrized</u> tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

In ordinary QFT the full (bosonic) **Fock space** is obtained from <u>symmetrized</u> tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

$$1/\sqrt{2}\left(\left|\textbf{k}_{1}\right\rangle \otimes\left|\textbf{k}_{2}\right\rangle +\left|\textbf{k}_{2}\right\rangle \otimes\left|\textbf{k}_{1}\right\rangle \right)$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$\Delta(P_i) = P_i \otimes 1 + e^{-P_0/\kappa} \otimes P_i$$

In ordinary QFT the full (bosonic) **Fock space** is obtained from symmetrized tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

$$1/\sqrt{2}\left(\ket{\mathsf{k_1}}\otimes\ket{\mathsf{k_2}}+\ket{\mathsf{k_2}}\otimes\ket{\mathsf{k_1}}
ight)$$

is NOT an eigenstate of P_μ due to the non-trivial coproduct of spatial translation generators!!

$$\Delta(P_i) = P_i \otimes 1 + e^{-P_0/\kappa} \otimes P_i$$

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

In ordinary QFT the full (bosonic) **Fock space** is obtained from <u>symmetrized</u> tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

$$1/\sqrt{2}\left(\left|\mathbf{k_{1}}
ight
angle\otimes\left|\mathbf{k_{2}}
ight
angle+\left|\mathbf{k_{2}}
ight
angle\otimes\left|\mathbf{k_{1}}
ight
angle
ight)$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$\Delta(P_i) = P_i \otimes 1 + e^{-P_0/\kappa} \otimes P_i$$

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

$$\sigma^{\kappa}(\ket{\mathsf{k_1}}\otimes\ket{\mathsf{k_2}}) = \ket{(1-\epsilon_1)\,\mathsf{k_2}}\otimes\ket{(1-\epsilon_2)^{-1}\,\mathsf{k_1}}, \quad \ \ \epsilon_i = \frac{\ket{\mathsf{k_i}}}{\kappa}$$

In ordinary QFT the full (bosonic) **Fock space** is obtained from <u>symmetrized</u> tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

$$1/\sqrt{2}\left(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle\right)$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$\Delta(P_i) = P_i \otimes 1 + e^{-P_0/\kappa} \otimes P_i$$

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

$$\sigma^{\kappa}(\ket{\mathbf{k_1}}\otimes\ket{\mathbf{k_2}}) = \ket{(1-\epsilon_1)\mathbf{k_2}}\otimes\ket{(1-\epsilon_2)^{-1}\mathbf{k_1}}, \quad \epsilon_i = \frac{\ket{\mathbf{k_i}}}{\kappa}$$

E.g. there will be two 2-particle states

$$\begin{split} |\mathbf{k}_1\mathbf{k}_2\rangle_\kappa &= & \frac{1}{\sqrt{2}}\left[|\,\mathbf{k}_1\rangle\otimes\,|\,\mathbf{k}_2\rangle + |\,(1-\epsilon_1)\mathbf{k}_2\rangle\otimes\,|\,(1-\epsilon_2)^{-1}\mathbf{k}_1\rangle\right] \\ |\mathbf{k}_2\mathbf{k}_1\rangle_\kappa &= & \frac{1}{\sqrt{2}}\left[|\,\mathbf{k}_2\rangle\otimes\,|\,\mathbf{k}_1\rangle + |\,(1-\epsilon_2)\mathbf{k}_1\rangle\otimes\,|\,(1-\epsilon_1)^{-1}\mathbf{k}_2\rangle\right] \end{split}$$

with same energy and different linear momentum

$$K_{12} = k_1 \oplus k_2 = k_1 + (1 - \epsilon_1)k_2$$

 $K_{21} = k_2 \oplus k_1 = k_2 + (1 - \epsilon_2)k_1$

In ordinary QFT the full (bosonic) **Fock space** is obtained from <u>symmetrized</u> tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

$$1/\sqrt{2}\left(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle\right)$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$\Delta(P_i) = P_i \otimes 1 + e^{-P_0/\kappa} \otimes P_i$$

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

$$\sigma^{\kappa}(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle) = |(1-\epsilon_1)\,\mathbf{k_2}\rangle\otimes|(1-\epsilon_2)^{-1}\,\mathbf{k_1}\rangle\,, \qquad \epsilon_i = \frac{|\mathbf{k_i}|}{\kappa}$$

E.g. there will be two 2-particle states

$$\begin{aligned} |\mathbf{k}_{1}\mathbf{k}_{2}\rangle_{\kappa} &= & \frac{1}{\sqrt{2}}\left[|\mathbf{k}_{1}\rangle\otimes|\mathbf{k}_{2}\rangle + |(1-\epsilon_{1})\mathbf{k}_{2}\rangle\otimes|(1-\epsilon_{2})^{-1}\mathbf{k}_{1}\rangle\right] \\ |\mathbf{k}_{2}\mathbf{k}_{1}\rangle_{\kappa} &= & \frac{1}{\sqrt{2}}\left[|\mathbf{k}_{2}\rangle\otimes|\mathbf{k}_{1}\rangle + |(1-\epsilon_{2})\mathbf{k}_{1}\rangle\otimes|(1-\epsilon_{1})^{-1}\mathbf{k}_{2}\rangle\right] \end{aligned}$$

with same energy and different linear momentum

$$K_{12} = k_1 \oplus k_2 = k_1 + (1 - \epsilon_1)k_2$$

 $K_{21} = k_2 \oplus k_1 = k_2 + (1 - \epsilon_2)k_1$

given n-different modes one has n! different n-particle states, one for each permutation of the n modes $\mathbf{k_1}$, $\mathbf{k_2}$... $\mathbf{k_n}$

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

• the different states can be distinguished measuring their momentum splitting e.g. $|\Delta \mathsf{K}_{12}| \equiv |\mathsf{K}_{12} - \mathsf{K}_{21}| = \frac{1}{\kappa} |\mathsf{k}_1| \mathsf{k}_2| - \mathsf{k}_2 |\mathsf{k}_1|| \leq \frac{2}{\kappa} |\mathsf{k}_1||\mathsf{k}_2|$ of order $|\mathsf{k}_i|^2/\kappa$

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta \mathsf{K}_{12}| \equiv |\mathsf{K}_{12} \mathsf{K}_{21}| = \frac{1}{\kappa} |\mathsf{k}_1| \mathsf{k}_2| \mathsf{k}_2 |\mathsf{k}_1|| \leq \frac{2}{\kappa} |\mathsf{k}_1| |\mathsf{k}_2|$ of order $|\mathsf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_{\kappa} \cong \mathcal{S}_2\mathcal{H}^2 \otimes \mathbb{C}^2$, where $\mathcal{S}_2\mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$|\epsilon\rangle\otimes|\uparrow\rangle = |\mathbf{k_1k_2}\rangle_{\kappa}$$

$$|\epsilon\rangle\otimes|\downarrow\rangle = |\mathbf{k}_2\mathbf{k}_1\rangle_{\kappa}$$

with
$$\epsilon = \epsilon(\mathbf{k}_1) + \epsilon(\mathbf{k}_2)$$

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta \mathsf{K}_{12}| \equiv |\mathsf{K}_{12} \mathsf{K}_{21}| = \frac{1}{\kappa} |\mathsf{k}_1| \mathsf{k}_2| \mathsf{k}_2 |\mathsf{k}_1|| \leq \frac{2}{\kappa} |\mathsf{k}_1||\mathsf{k}_2|$ of order $|\mathsf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_{\kappa} \cong \mathcal{S}_2\mathcal{H}^2 \otimes \mathbb{C}^2$, where $\mathcal{S}_2\mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$|\epsilon\rangle \otimes |\uparrow\rangle = |\mathbf{k_1}\mathbf{k_2}\rangle_{\kappa} |\epsilon\rangle \otimes |\downarrow\rangle = |\mathbf{k_2}\mathbf{k_1}\rangle_{\kappa}$$

with
$$\epsilon = \epsilon(\mathbf{k_1}) + \epsilon(\mathbf{k_2})$$

Planckian mode entanglement becomes possible!

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta \mathsf{K}_{12}| \equiv |\mathsf{K}_{12} \mathsf{K}_{21}| = \frac{1}{\kappa} |\mathsf{k}_1| \mathsf{k}_2| \mathsf{k}_2 |\mathsf{k}_1|| \leq \frac{2}{\kappa} |\mathsf{k}_1| |\mathsf{k}_2|$ of order $|\mathsf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_{\kappa} \cong \mathcal{S}_2\mathcal{H}^2 \otimes \mathbb{C}^2$, where $\mathcal{S}_2\mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$|\epsilon\rangle \otimes |\uparrow\rangle = |\mathbf{k_1}\mathbf{k_2}\rangle_{\kappa}$$

 $|\epsilon\rangle \otimes |\downarrow\rangle = |\mathbf{k_2}\mathbf{k_1}\rangle_{\kappa}$

with
$$\epsilon = \epsilon(\mathbf{k_1}) + \epsilon(\mathbf{k_2})$$

Planckian mode entanglement becomes possible!

• e.g. the state superposition of two total "classical" energies $\epsilon_A = \epsilon(\mathbf{k}_{1A}) + \epsilon(\mathbf{k}_{2A})$ and $\epsilon_B = \epsilon(\mathbf{k}_{1B}) + \epsilon(\mathbf{k}_{2B})$ can be entangled with the additional hidden modes e.g.

$$|\Psi\rangle = 1/\sqrt{2}(|\epsilon_A\rangle\otimes|\uparrow\rangle + |\epsilon_B\rangle\otimes|\downarrow\rangle)$$

(MA., D. Benedetti, [arXiv:0809.0889 [hep-th]]. MA., A. Marciano, [arXiv:0707.1329 [hep-th]]. MA, A. Hamma, S. Severini, [arXiv:0806.2145 [hep-th]].)

consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

• start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}^n_\kappa \cong \mathcal{S}_n \mathcal{H}^n \otimes \mathbb{C}^n$

consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}^n_\kappa \cong \mathcal{S}_n \mathcal{H}^n \otimes \mathbb{C}^n$
- If U(t) acts as an "entangling gate", the state ho(t) will be entangled

consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^n \cong \mathcal{S}_n \mathcal{H}^n \otimes \mathbb{C}^n$
- ullet If U(t) acts as an "entangling gate", the state ho(t) will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{PI}\rho(0)$$

consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^n \cong \mathcal{S}_n \mathcal{H}^n \otimes \mathbb{C}^n$
- ullet If U(t) acts as an "entangling gate", the state ho(t) will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{PI}\rho(0)$$

• As the system evolves she will see the mixed state

$$ho_{obs}(t) = \mathsf{Tr}_{PI}
ho(t) = \mathsf{Tr}_{PI} \left[U(t)
ho(0) U^{\dagger}(t)
ight].$$

consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^n \cong \mathcal{S}_n \mathcal{H}^n \otimes \mathbb{C}^n$
- If U(t) acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{PI}\rho(0)$$

• As the system evolves she will see the mixed state

$$ho_{obs}(t) = \mathsf{Tr}_{PI}
ho(t) = \mathsf{Tr}_{PI} \left[U(t)
ho(0) U^{\dagger}(t)
ight].$$

For the macroscopic observer, the evolution is not unitary!

consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^n \cong \mathcal{S}_n \mathcal{H}^n \otimes \mathbb{C}^n$
- If U(t) acts as an "entangling gate", the state ho(t) will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{PI}\rho(0)$$

As the system evolves she will see the <u>mixed state</u>

$$ho_{obs}(t) = \mathsf{Tr}_{PI}
ho(t) = \mathsf{Tr}_{PI} \left[U(t)
ho(0) U^{\dagger}(t)
ight].$$

For the *macroscopic* observer, the evolution is not unitary!

A simple model which exhibits decoherence due to presence of planckian d.o.f...

consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^n \cong \mathcal{S}_n \mathcal{H}^n \otimes \mathbb{C}^n$
- ullet If U(t) acts as an "entangling gate", the state ho(t) will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{PI}\rho(0)$$

As the system evolves she will see the <u>mixed state</u>

$$ho_{obs}(t) = \mathsf{Tr}_{PI}
ho(t) = \mathsf{Tr}_{PI} \left[U(t)
ho(0) U^{\dagger}(t)
ight].$$

For the *macroscopic* observer, the evolution is not unitary!

A simple model which exhibits decoherence due to presence of planckian d.o.f...

a new window to phenomenological effects??

Conclusions

- Relativistic phase spaces and symmetries can be deformed to allow momentum spaces which are non-abelian group manifolds
- Strong motivations to look at such deformations from 2+1 gravity coupled to relativistic particles...application: appearance of running spectral dimension
- In 3+1 dimensions the only known example of symmetry deformation with group valued momenta is κ -Poincaré: field theory exhibits similar features to the 2+1 case
- At the multiparticle level the non-trivial behaviour of field modes leads to a fine structure of Fock space: interesting entanglement phenomena can take place
- What role of these UV deformed theories for "trans-planckian" issues in semiclassical gravity (BH evaporation, Inflation)??

Conclusions

- Relativistic phase spaces and symmetries can be deformed to allow momentum spaces which are non-abelian group manifolds
- Strong motivations to look at such deformations from 2+1 gravity coupled to relativistic particles...application: appearance of running spectral dimension
- In 3+1 dimensions the only known example of symmetry deformation with group valued momenta is κ -Poincaré: field theory exhibits similar features to the 2+1 case
- At the multiparticle level the non-trivial behaviour of field modes leads to a fine structure of Fock space: interesting entanglement phenomena can take place
- What role of these UV deformed theories for "trans-planckian" issues in semiclassical gravity (BH evaporation, Inflation)??

Thank you!