Non-commutative fields in semiclassical gravity, anomalous diffusion and deformed Fock space

Michele Arzano

Dipartimento di Fisica
"Sapienza" University of Rome

MARIE CURIE ACTIONS

June 21, 2012

Beyond local QFT

vS.

Beyond local QFT

What's the difference in their phase space, in the associated field theories and what happens after quantization?

Outline

- "Bending" phase space in 3d gravity: group valued momenta and NC-fields
- NC heat kernel: running spectral dimension
- 4d case: κ-Poincaré, κ-Minkowski
- κ-Fock space: "hidden entanglement" at the Planck scale

Point particles as defects

Point particles as defects

- Gravitational field in $2+1$ dimensions admits no local d.o.f.!

Point particles as defects

- Gravitational field in $2+1$ dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiw, 't Hooft, 1984)

Point particles as defects

- Gravitational field in $2+1$ dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiv, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle $8 \pi \mathrm{Gm}$

Point particles as defects

- Gravitational field in $2+1$ dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiv, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle $8 \pi \mathrm{Gm}$

- For one particle the metric in cylindrical coordinates will be given by

$$
d s^{2}=-d \tau^{2}+d r^{2}+(1-4 G m) r^{2} d \varphi^{2}
$$

Point particles as defects

- Gravitational field in $2+1$ dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiv, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle $8 \pi \mathrm{Gm}$

- For one particle the metric in cylindrical coordinates will be given by

$$
d s^{2}=-d \tau^{2}+d r^{2}+(1-4 G m) r^{2} d \varphi^{2}
$$

- The length of a circular path centered at $r=0$ divided by its radius will be $<2 \pi$. The deficit angle $\alpha=8 \pi G m$ is proportional to the mass of the particle m

Point particles as defects

- Gravitational field in $2+1$ dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiv, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle $8 \pi \mathrm{Gm}$

- For one particle the metric in cylindrical coordinates will be given by

$$
d s^{2}=-d \tau^{2}+d r^{2}+(1-4 G m) r^{2} d \varphi^{2}
$$

- The length of a circular path centered at $r=0$ divided by its radius will be $<2 \pi$.

The deficit angle $\alpha=8 \pi G m$ is proportional to the mass of the particle m

- Next step: characterize the phase space of such topologically gravitating particle

Group valued momenta and conical space

- In 3d Minkowski space positions and momenta given by points on $\mathbb{R}^{2,1} \Longrightarrow$ (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$

Group valued momenta and conical space

- In 3d Minkowski space positions and momenta given by points on $\mathbb{R}^{2,1} \Longrightarrow$ (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: associate positions and momenta to a conical defect (see Matschull and Welling 1998):

Group valued momenta and conical space

- In 3d Minkowski space positions and momenta given by points on $\mathbb{R}^{2,1} \Longrightarrow$ (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: associate positions and momenta to a conical defect (see Matschull and Welling 1998):
- Position of point particle given by $\left.\mathbf{x}(\tau) \equiv \mathbf{q}\right|_{r=0} \in \mathbb{R}^{2,1}$

Group valued momenta and conical space

- In 3d Minkowski space positions and momenta given by points on $\mathbb{R}^{2,1} \Longrightarrow$ (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: associate positions and momenta to a conical defect (see Matschull and Welling 1998):
- Position of point particle given by $\left.\mathbf{x}(\tau) \equiv \mathbf{q}\right|_{r=0} \in \mathbb{R}^{2,1}$
- Velocity: matching condition at location of particle $\Longrightarrow \dot{\mathbf{x}}(\tau) \equiv \mathbf{P}^{-1} \dot{\mathbf{x}}(\tau) \mathbf{P}$
\Downarrow
momenta are proportional to the projection of $\mathbf{P} \in S L(2, \mathbb{R})$ on its Lie algebra $\mathfrak{s l}(2)$

$$
\mathbf{P}=u \mathbb{1}+4 \pi G \vec{p} \cdot \vec{\gamma} \text { with } u^{2}-16 \pi^{2} G^{2} \vec{p}^{2}=1
$$

Group valued momenta and conical space

- In 3d Minkowski space positions and momenta given by points on $\mathbb{R}^{2,1} \Longrightarrow$ (extended) phase space $\Upsilon \equiv \mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: associate positions and momenta to a conical defect (see Matschull and Welling 1998):
- Position of point particle given by $\left.\mathbf{x}(\tau) \equiv \mathbf{q}\right|_{r=0} \in \mathbb{R}^{2,1}$
- Velocity: matching condition at location of particle $\Longrightarrow \dot{\mathbf{x}}(\tau) \equiv \mathbf{P}^{-1} \dot{\mathbf{x}}(\tau) \mathbf{P}$
momenta are proportional to the projection of $\mathbf{P} \in S L(2, \mathbb{R})$ on its Lie algebra $\mathfrak{s l}(2)$

$$
\mathbf{P}=u \mathbb{1}+4 \pi G \vec{p} \cdot \vec{\gamma} \text { with } u^{2}-16 \pi^{2} G^{2} \vec{p}^{2}=1
$$

The (extended) phase space manifold in the presence of "topological" gravitational backreaction becomes $\Upsilon_{G}=\mathbb{R}^{3} \times S L(2, \mathbb{R})$

From particles to fields

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

From particles to fields

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}\left(M_{m}\right) \Longleftrightarrow \mathcal{S}_{K G}$ solutions of Klein-Gordon eq.

Fourier trans.

From particles to fields

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}\left(M_{m}\right) \Longleftrightarrow \mathcal{S}_{K G}$ solutions of Klein-Gordon eq.

Fourier trans.

- Lorentz inv. measure on $\mathcal{C}^{\infty}\left(M_{m}\right) \Rightarrow$ invariant inner product \Rightarrow QFT Hilbert space

From particles to fields

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}\left(M_{m}\right) \Longleftrightarrow \mathcal{S}_{K G}$ solutions of Klein-Gordon eq. Fourier trans.
- Lorentz inv. measure on $\mathcal{C}^{\infty}\left(M_{m}\right) \Rightarrow$ invariant inner product \Rightarrow QFT Hilbert space

Particle coupled to $2+1$ gravity naturally leads to field theory on a group

$$
\phi(\mathbf{P}) \in \mathcal{C}^{\infty}\left(M_{m}^{G}\right) \subset \mathcal{C}^{\infty}(S L(2, \mathbb{R}))
$$

(Deformed mass-shell M_{m}^{G} given by holonomies which represent a rotation by $\alpha=8 \pi G m$)

From particles to fields

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}\left(M_{m}\right) \Longleftrightarrow \mathcal{S}_{K G}$ solutions of Klein-Gordon eq. Fourier trans.
- Lorentz inv. measure on $\mathcal{C}^{\infty}\left(M_{m}\right) \Rightarrow$ invariant inner product \Rightarrow QFT Hilbert space

Particle coupled to $2+1$ gravity naturally leads to field theory on a group

$$
\phi(\mathbf{P}) \in \mathcal{C}^{\infty}\left(M_{m}^{G}\right) \subset \mathcal{C}^{\infty}(S L(2, \mathbb{R}))
$$

(Deformed mass-shell M_{m}^{G} given by holonomies which represent a rotation by $\alpha=8 \pi \mathrm{Gm}$)
Switch to Euclidean (our goal is to define heat kernel): $\quad S L(2, \mathbb{R}) \longrightarrow S U(2)$

From particles to fields

Phase space of a relativistic particle \Longrightarrow (quantum) field theory?

- Functions on the mass shell $\mathcal{C}^{\infty}\left(M_{m}\right) \Longleftrightarrow \mathcal{S}_{K G}$ solutions of Klein-Gordon eq. Fourier trans.
- Lorentz inv. measure on $\mathcal{C}^{\infty}\left(M_{m}\right) \Rightarrow$ invariant inner product \Rightarrow QFT Hilbert space

Particle coupled to $2+1$ gravity naturally leads to field theory on a group

$$
\phi(\mathbf{P}) \in \mathcal{C}^{\infty}\left(M_{m}^{G}\right) \subset \mathcal{C}^{\infty}(S L(2, \mathbb{R}))
$$

(Deformed mass-shell M_{m}^{G} given by holonomies which represent a rotation by $\alpha=8 \pi \mathrm{Gm}$)
Switch to Euclidean (our goal is to define heat kernel): $\quad S L(2, \mathbb{R}) \longrightarrow S U(2)$
Fourier transform maps fields on the group manifold to fields on a dual "spacetime"

$$
\mathcal{F}(f)(x)=\int d \mu_{H}(\mathbf{P}) f(\mathbf{P}) e_{\mathbf{P}}(x)
$$

where: $e_{\mathbf{P}}(x)=e^{\frac{i}{2 \kappa} \operatorname{Tr}(\times \mathbf{P})}=e^{i \vec{p} \cdot \vec{x}}$ with $\vec{p}=\frac{\kappa}{2 i} \operatorname{Tr}(\mathbf{P} \vec{\sigma}), \mathbf{x}=x^{i} \sigma_{i}$ and $\kappa=(4 \pi G)^{-1}$

Group-valued plane waves and deformed symmetries

...the group structure induces a non-commutative \star-product for plane waves

$$
e_{\mathbf{P}_{1}}(x) \star e_{\mathbf{P}_{2}}(x)=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(x \mathbf{P}_{1}\right)} \star e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(x \mathbf{P}_{2}\right)}=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(\mathbf{x} \mathbf{P}_{1} \mathbf{P}_{2}\right)}
$$

Group-valued plane waves and deformed symmetries

...the group structure induces a non-commutative \star-product for plane waves

$$
e_{\mathbf{P}_{1}}(x) \star e_{\mathbf{P}_{2}}(x)=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(x \mathbf{P}_{1}\right)} \star e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(\mathbf{x} \mathbf{P}_{2}\right)}=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(x \mathbf{P}_{1} \mathbf{P}_{2}\right)}
$$

i) differentiating both sides w.r.t. $\mathbf{P}_{1}, \mathbf{P}_{2}$ and setting momenta to zero

$$
\left[x_{i}, x_{j}\right]_{\star}=i \kappa \epsilon_{i j k} x_{k}
$$

functions of the dual spacetime variables form a non-commutative algebra!

Group-valued plane waves and deformed symmetries

...the group structure induces a non-commutative \star-product for plane waves

$$
e_{\mathbf{P}_{1}}(x) \star e_{\mathbf{P}_{2}}(x)=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(x \mathbf{P}_{1}\right)} \star e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(\mathbf{x P}_{2}\right)}=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(x \mathbf{P}_{1} \mathbf{P}_{2}\right)}
$$

i) differentiating both sides w.r.t. $\mathbf{P}_{1}, \mathbf{P}_{2}$ and setting momenta to zero

$$
\left[x_{i}, x_{j}\right]_{\star}=i \kappa \epsilon_{i j k} x_{k}
$$

functions of the dual spacetime variables form a non-commutative algebra!
ii) momenta obey a non abelian composition rule indeed

$$
\vec{p}_{1} \oplus \vec{p}_{2}=p_{0}\left(\vec{p}_{2}\right) \vec{p}_{1}+p_{0}\left(\vec{p}_{2}\right) \vec{p}_{2}+\frac{1}{\kappa} \vec{p}_{1} \wedge \vec{p}_{2}=\vec{p}_{1}+\vec{p}_{2}+\frac{1}{\kappa} \vec{p}_{1} \wedge \vec{p}_{2}+\mathcal{O}\left(1 / \kappa^{2}\right) \neq \vec{p}_{2} \oplus \vec{p}_{1}
$$

Group-valued plane waves and deformed symmetries

...the group structure induces a non-commutative \star-product for plane waves

$$
e_{\mathbf{P}_{1}}(x) \star e_{\mathbf{P}_{2}}(x)=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(x \mathbf{P}_{1}\right)} \star e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(\mathbf{x} \mathbf{P}_{2}\right)}=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(\mathbf{x} \mathbf{P}_{1} \mathbf{P}_{2}\right)}
$$

i) differentiating both sides w.r.t. $\mathbf{P}_{1}, \mathbf{P}_{2}$ and setting momenta to zero

$$
\left[x_{i}, x_{j}\right]_{\star}=i \kappa \epsilon_{i j k} x_{k}
$$

functions of the dual spacetime variables form a non-commutative algebra!
ii) momenta obey a non abelian composition rule indeed

$$
\vec{p}_{1} \oplus \vec{p}_{2}=p_{0}\left(\vec{p}_{2}\right) \vec{p}_{1}+p_{0}\left(\vec{p}_{2}\right) \vec{p}_{2}+\frac{1}{\kappa} \vec{p}_{1} \wedge \vec{p}_{2}=\vec{p}_{1}+\vec{p}_{2}+\frac{1}{\kappa} \vec{p}_{1} \wedge \vec{p}_{2}+\mathcal{O}\left(1 / \kappa^{2}\right) \neq \vec{p}_{2} \oplus \vec{p}_{1}
$$

Plane waves $=$ eigenfunctions of translation generators P_{a} \Downarrow

Group-valued plane waves and deformed symmetries

...the group structure induces a non-commutative \star-product for plane waves

$$
e_{\mathbf{P}_{1}}(x) \star e_{\mathbf{P}_{2}}(x)=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(x \mathbf{P}_{1}\right)} \star e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(\mathbf{x} \mathbf{P}_{2}\right)}=e^{\frac{i}{2 \kappa} \operatorname{Tr}\left(\mathbf{x} \mathbf{P}_{1} \mathbf{P}_{2}\right)}
$$

i) differentiating both sides w.r.t. $\mathbf{P}_{1}, \mathbf{P}_{2}$ and setting momenta to zero

$$
\left[x_{i}, x_{j}\right]_{\star}=i \kappa \epsilon_{i j k} x_{k}
$$

functions of the dual spacetime variables form a non-commutative algebra!
ii) momenta obey a non abelian composition rule indeed
$\vec{p}_{1} \oplus \vec{p}_{2}=p_{0}\left(\vec{p}_{2}\right) \vec{p}_{1}+p_{0}\left(\vec{p}_{2}\right) \vec{p}_{2}+\frac{1}{\kappa} \vec{p}_{1} \wedge \vec{p}_{2}=\vec{p}_{1}+\vec{p}_{2}+\frac{1}{\kappa} \vec{p}_{1} \wedge \vec{p}_{2}+\mathcal{O}\left(1 / \kappa^{2}\right) \neq \vec{p}_{2} \oplus \vec{p}_{1}$
Plane waves $=$ eigenfunctions of translation generators P_{a} \Downarrow
non-abelian composition of momenta $=$ non-trivial coproduct

$$
\Delta P_{a}=P_{a} \otimes \mathbb{1}+\mathbb{1} \otimes P_{a}+\frac{1}{\kappa} \epsilon_{a b c} P_{b} \otimes P_{c}+\mathcal{O}\left(1 / \kappa^{2}\right)
$$

the smoking gun of symmetry deformation... P_{a} belong to a non-trivial Hopf algebra with κ as a deformation parameter!

An application: heath kernel and anomalous diffusion

An application: heath kernel and anomalous diffusion

- "Spin" NC space possesses Laplacian $\Delta_{G}: \Delta_{G} e_{P}(x)=C_{G}(P) e_{P}(x)=\vec{p}^{2} e_{P}(x)$

An application: heath kernel and anomalous diffusion

- "Spin" NC space possesses Laplacian $\Delta_{G}: \Delta_{G} e_{P}(x)=C_{G}(P) e_{P}(x)=\vec{p}^{2} e_{P}(x)$
- Define the Green function: $\left(\Delta_{G}+M^{2}\right) G\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)$

An application: heath kernel and anomalous diffusion

- "Spin" NC space possesses Laplacian $\Delta_{G}: \Delta_{G} e_{P}(x)=C_{G}(P) e_{P}(x)=\vec{p}^{2} e_{P}(x)$
- Define the Green function: $\left(\Delta_{G}+M^{2}\right) G\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)$
- Construct the NC heat kernel $(M=0)$ (MA and E. Alesci 1108.1507)

$$
\begin{gathered}
G\left(x, x^{\prime}\right)=\int_{0}^{\infty} d s K\left(x, x^{\prime} ; s\right) \\
\Downarrow \\
K_{G}\left(x, x^{\prime} ; s\right)=\int d \mu_{H}(\mathbf{P}) e^{-s C_{G}(\mathbf{P})} e_{P}(x) e_{P}\left(x^{\prime}\right)
\end{gathered}
$$

An application: heath kernel and anomalous diffusion

- "Spin" NC space possesses Laplacian $\Delta_{G}: \Delta_{G} e_{P}(x)=C_{G}(P) e_{P}(x)=\vec{p}^{2} e_{P}(x)$
- Define the Green function: $\left(\Delta_{G}+M^{2}\right) G\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)$
- Construct the NC heat kernel $(M=0)$ (MA and E. Alesci 1108.1507)

$$
\begin{gathered}
G\left(x, x^{\prime}\right)=\int_{0}^{\infty} d s K\left(x, x^{\prime} ; s\right) \\
\Downarrow \\
K_{G}\left(x, x^{\prime} ; s\right)=\int d \mu_{H}(\mathbf{P}) e^{-s C_{G}(\mathbf{P})} e_{P}(x) e_{P}\left(x^{\prime}\right)
\end{gathered}
$$

and calculate the spectral dimension $d_{s}=-2 \frac{\partial \log \tilde{\tau} r k}{\partial \log s} \ldots$ (plot for $G=1$)

4d: κ-Poincaré algebra

4d: κ-Poincaré algebra

- The momentum sector of κ-Poincaré \Rightarrow analogous structures to 3d case!

4d: κ-Poincaré algebra

- The momentum sector of κ-Poincaré \Rightarrow analogous structures to 3d case!
- momenta: coordinates on a Lie group $\mathrm{B} \subset \mathrm{SO}(4,1)$ (sub-manifold of $d S_{4}$)

$$
-\eta_{0}^{2}+\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}+\eta_{4}^{2}=\kappa^{2} ; \quad \eta_{0}+\eta_{4}>0
$$

with $\kappa \sim E_{\text {Planck }}$

- dual Lie algebra "space-time" coordinates

$$
\left[x_{\mu}, x_{\nu}\right]=-\frac{i}{\kappa}\left(x_{\mu} \delta_{\nu}^{0}-x_{\nu} \delta_{\mu}^{0}\right)
$$

4d: κ-Poincaré algebra

- The momentum sector of κ-Poincaré \Rightarrow analogous structures to $3 d$ case!
- momenta: coordinates on a Lie group $\mathrm{B} \subset \mathrm{SO}(4,1)$ (sub-manifold of $d S_{4}$)

$$
-\eta_{0}^{2}+\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}+\eta_{4}^{2}=\kappa^{2} ; \quad \eta_{0}+\eta_{4}>0
$$

with $\kappa \sim E_{\text {Planck }}$

- dual Lie algebra "space-time" coordinates

$$
\left[x_{\mu}, x_{\nu}\right]=-\frac{i}{\kappa}\left(x_{\mu} \delta_{\nu}^{0}-x_{\nu} \delta_{\mu}^{0}\right)
$$

- consider a one-parameter group splitting of $\mathrm{B}, 0 \leq|\beta| \leq 1$

$$
e_{p} \equiv e^{-i \frac{1-\beta}{2} p^{0} x_{0}} e^{i p^{j} x_{j}} e^{-i \frac{1+\beta}{2} p^{0} x_{0}}
$$

with momentum composition rules and "antipodes"

$$
p \oplus_{\beta} q=\left(p^{0}+q^{0} ; p^{j} e^{\frac{1-\beta}{2 \kappa} q^{0}}+q^{j} e^{-\frac{1+\beta}{2 \kappa} p^{0}}\right), \quad \ominus_{\beta} p=\left(-p^{0} ;-e^{\frac{-\beta}{\kappa} p^{0}} p^{i}\right) .
$$

each choice of β corresponds to a choice of coordinates on the group manifold.

κ-Poincaré II

for $\beta=-1$ we have "flat slicing" coordinates

$$
\begin{aligned}
& \eta_{0}\left(p_{0}, \mathbf{p}\right)=\kappa \sinh p_{0} / \kappa+\frac{\mathbf{p}^{2}}{2 \kappa} e^{p_{0} / \kappa}, \\
& \eta_{i}\left(p_{0}, \mathbf{p}\right)=p_{i} e^{p_{0} / \kappa}, \\
& \eta_{4}\left(p_{0}, \mathbf{p}\right)=\kappa \cosh p_{0} / \kappa-\frac{\mathbf{p}^{2}}{2 \kappa} e^{p_{0} / \kappa} .
\end{aligned}
$$

non-abelian composition of momenta: $p \oplus q=\left(p^{0}+q^{0} ; p^{j} e^{-\frac{q^{0}}{\kappa}}+q^{j}\right)$

κ-Poincaré II

for $\beta=-1$ we have "flat slicing" coordinates

$$
\begin{aligned}
& \eta_{0}\left(p_{0}, \mathbf{p}\right)=\kappa \sinh p_{0} / \kappa+\frac{\mathbf{p}^{2}}{2 \kappa} e^{p_{0} / \kappa}, \\
& \eta_{i}\left(p_{0}, \mathbf{p}\right)=p_{i} e^{p_{0} / \kappa}, \\
& \eta_{4}\left(p_{0}, \mathbf{p}\right)=\kappa \cosh p_{0} / \kappa-\frac{\mathbf{p}^{2}}{2 \kappa} e^{p_{0} / \kappa} .
\end{aligned}
$$

non-abelian composition of momenta: $p \oplus q=\left(p^{0}+q^{0} ; p^{j} e^{-\frac{q^{0}}{\kappa}}+q^{j}\right)$

- deformed boost action

$$
\left[N_{j}, P_{l}\right]=i \delta_{l j}\left(\frac{\kappa}{2}\left(1-e^{-\frac{2 P_{0}}{\kappa}}\right)+\frac{1}{2 \kappa} \vec{P}^{2}\right)+\frac{i}{\kappa} P_{l} P_{j}
$$

κ-Poincaré II

for $\beta=-1$ we have "flat slicing" coordinates

$$
\begin{aligned}
& \eta_{0}\left(p_{0}, \mathbf{p}\right)=\kappa \sinh p_{0} / \kappa+\frac{\mathbf{p}^{2}}{2 \kappa} e^{p_{0} / \kappa} \\
& \eta_{i}\left(p_{0}, \mathbf{p}\right)=p_{i} e^{p_{0} / \kappa} \\
& \eta_{4}\left(p_{0}, \mathbf{p}\right)=\kappa \cosh p_{0} / \kappa-\frac{\mathbf{p}^{2}}{2 \kappa} e^{p_{0} / \kappa}
\end{aligned}
$$

non-abelian composition of momenta: $p \oplus q=\left(p^{0}+q^{0} ; p^{j} e^{-\frac{q^{0}}{\kappa}}+q^{j}\right)$

- deformed boost action

$$
\left[N_{j}, P_{l}\right]=i \delta_{l j}\left(\frac{\kappa}{2}\left(1-e^{-\frac{2 P_{0}}{\kappa}}\right)+\frac{1}{2 \kappa} \vec{P}^{2}\right)+\frac{i}{\kappa} P_{l} P_{j}
$$

- and co-products

$$
\begin{aligned}
\Delta\left(N_{j}\right) & =N_{j} \otimes 1+e^{-P_{0} / \kappa} \otimes N_{j}+\epsilon_{j k l} / \kappa P_{k} \otimes M_{l} \\
\Delta\left(P_{0}\right) & =P_{0} \otimes 1+1 \otimes P_{0}, \quad \Delta\left(P_{i}\right)=P_{i} \otimes 1+\exp \left(-P_{0} / \kappa\right) \otimes P_{i} \\
\Delta\left(M_{i}\right) & =M_{i} \otimes 1+1 \otimes M_{i}
\end{aligned}
$$

- deformed mass Casimir \Rightarrow Lorentz invariant hyperboloid on B: $\eta_{4}=$ const.

$$
C_{\kappa}(P)=\left(2 \kappa \sinh \left(\frac{P_{0}}{2 \kappa}\right)\right)^{2}-P_{i} P^{i} e^{P_{0} / \kappa}
$$

κ-Poincaré II

for $\beta=-1$ we have "flat slicing" coordinates

$$
\begin{aligned}
& \eta_{0}\left(p_{0}, \mathbf{p}\right)=\kappa \sinh p_{0} / \kappa+\frac{\mathbf{p}^{2}}{2 \kappa} e^{p_{0} / \kappa} \\
& \eta_{i}\left(p_{0}, \mathbf{p}\right)=p_{i} e^{p_{0} / \kappa} \\
& \eta_{4}\left(p_{0}, \mathbf{p}\right)=\kappa \cosh p_{0} / \kappa-\frac{\mathbf{p}^{2}}{2 \kappa} e^{p_{0} / \kappa}
\end{aligned}
$$

non-abelian composition of momenta: $p \oplus q=\left(p^{0}+q^{0} ; p^{j} e^{-\frac{q^{0}}{\kappa}}+q^{j}\right)$

- deformed boost action

$$
\left[N_{j}, P_{l}\right]=i \delta_{l j}\left(\frac{\kappa}{2}\left(1-e^{-\frac{2 P_{0}}{\kappa}}\right)+\frac{1}{2 \kappa} \vec{P}^{2}\right)+\frac{i}{\kappa} P_{l} P_{j}
$$

- and co-products

$$
\begin{aligned}
\Delta\left(N_{j}\right) & =N_{j} \otimes 1+e^{-P_{0} / \kappa} \otimes N_{j}+\epsilon_{j k l} / \kappa P_{k} \otimes M_{l} \\
\Delta\left(P_{0}\right) & =P_{0} \otimes 1+1 \otimes P_{0}, \quad \Delta\left(P_{i}\right)=P_{i} \otimes 1+\exp \left(-P_{0} / \kappa\right) \otimes P_{i} \\
\Delta\left(M_{i}\right) & =M_{i} \otimes 1+1 \otimes M_{i}
\end{aligned}
$$

- deformed mass Casimir \Rightarrow Lorentz invariant hyperboloid on B: $\eta_{4}=$ const.

$$
C_{\kappa}(P)=\left(2 \kappa \sinh \left(\frac{P_{0}}{2 \kappa}\right)\right)^{2}-P_{i} P^{i} e^{P_{0} / \kappa}
$$

in the limit $\kappa \longrightarrow \infty$ recover ordinary Poincaré algebra

Fractal properties of κ-space I

Anomalous diffusion in κ-Minkowski space? (D. Benedetti PRL 102111303 (2009))

Fractal properties of κ-space I

Anomalous diffusion in κ-Minkowski space? (D. Benedetti PRL 102111303 (2009))

- starts from the ansatz

$$
\operatorname{Tr} K=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-s C(p)} \Longrightarrow \operatorname{Tr} K_{\kappa}=\int \frac{d \mu(\mathbf{P})}{(2 \pi)^{4}} e^{-s M^{2}(\mathbf{P})}
$$

with $M^{2}(\mathbf{P})=C_{\kappa}(\mathbf{P})\left(1+\frac{C_{\kappa}(\mathbf{P})}{4 \kappa^{2}}\right)$ and $d \mu(\mathbf{P})$ the left invariant Haar measure on $A N(3)$

Fractal properties of κ-space I

Anomalous diffusion in κ-Minkowski space? (D. Benedetti PRL 102111303 (2009))

- starts from the ansatz

$$
\operatorname{Tr} K=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-s C(p)} \Longrightarrow \operatorname{Tr} K_{\kappa}=\int \frac{d \mu(\mathbf{P})}{(2 \pi)^{4}} e^{-s M^{2}(\mathbf{P})}
$$

with $M^{2}(\mathbf{P})=C_{\kappa}(\mathbf{P})\left(1+\frac{C_{\kappa}(\mathbf{P})}{4 \kappa^{2}}\right)$ and $d \mu(\mathbf{P})$ the left invariant Haar measure on $A N(3)$

- calculate the spectral dimension $d_{s}=-2 \frac{\partial \log \tilde{T} r K}{\partial \log s} \ldots$ (plot for $G=1$)

κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H}

κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H} In the κ-deformed case try to proceed in an analogous way BUT...

κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H} In the κ-deformed case try to proceed in an analogous way BUT...

$$
1 / \sqrt{2}\left(\left|\mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\mathbf{k}_{2}\right\rangle+\left|\mathbf{k}_{\mathbf{2}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{1}}\right\rangle\right)
$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$
\Delta\left(P_{i}\right)=P_{i} \otimes 1+e^{-P_{0} / \kappa} \otimes P_{i}
$$

κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H} In the κ-deformed case try to proceed in an analogous way BUT...

$$
1 / \sqrt{2}\left(\left|\mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{2}}\right\rangle+\left|\mathbf{k}_{\mathbf{2}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{1}}\right\rangle\right)
$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$
\Delta\left(P_{i}\right)=P_{i} \otimes 1+e^{-P_{0} / \kappa} \otimes P_{i}
$$

Multi-particle states of κ-Fock-space are built via a "momentum dependent" symmetrization

κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H} In the κ-deformed case try to proceed in an analogous way BUT...

$$
1 / \sqrt{2}\left(\left|\mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{2}}\right\rangle+\left|\mathbf{k}_{\mathbf{2}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{1}}\right\rangle\right)
$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$
\Delta\left(P_{i}\right)=P_{i} \otimes 1+e^{-P_{0} / \kappa} \otimes P_{i}
$$

Multi-particle states of κ-Fock-space are built via a "momentum dependent" symmetrization

$$
\sigma^{\kappa}\left(\left|\mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\mathbf{k}_{2}\right\rangle\right)=\left|\left(1-\epsilon_{1}\right) \mathbf{k}_{\mathbf{2}}\right\rangle \otimes\left|\left(1-\epsilon_{2}\right)^{-1} \mathbf{k}_{\mathbf{1}}\right\rangle, \quad \epsilon_{i}=\frac{\left|\mathbf{k}_{i}\right|}{\kappa}
$$

κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H} In the κ-deformed case try to proceed in an analogous way BUT...

$$
1 / \sqrt{2}\left(\left|\mathbf{k}_{1}\right\rangle \otimes\left|\mathbf{k}_{2}\right\rangle+\left|\mathbf{k}_{2}\right\rangle \otimes\left|\mathbf{k}_{1}\right\rangle\right)
$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$
\Delta\left(P_{i}\right)=P_{i} \otimes 1+e^{-P_{0} / \kappa} \otimes P_{i}
$$

Multi-particle states of κ-Fock-space are built via a "momentum dependent" symmetrization

$$
\sigma^{\kappa}\left(\left|\mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{2}}\right\rangle\right)=\left|\left(1-\epsilon_{1}\right) \mathbf{k}_{\mathbf{2}}\right\rangle \otimes\left|\left(1-\epsilon_{2}\right)^{-1} \mathbf{k}_{\mathbf{1}}\right\rangle, \quad \epsilon_{i}=\frac{\left|\mathbf{k}_{i}\right|}{\kappa}
$$

E.g. there will be two 2-particle states

$$
\begin{aligned}
& \left|\mathbf{k}_{\mathbf{1}} \mathbf{k}_{2}\right\rangle_{\kappa}=\frac{1}{\sqrt{2}}\left[\left|\mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{2}}\right\rangle+\left|\left(1-\epsilon_{1}\right) \mathbf{k}_{\mathbf{2}}\right\rangle \otimes\left|\left(1-\epsilon_{2}\right)^{-1} \mathbf{k}_{\mathbf{1}}\right\rangle\right] \\
& \left|\mathbf{k}_{\mathbf{2}} \mathbf{k}_{1}\right\rangle_{\kappa}=\frac{1}{\sqrt{2}}\left[\left|\mathbf{k}_{2}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{1}}\right\rangle+\left|\left(1-\epsilon_{2}\right) \mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\left(1-\epsilon_{1}\right)^{-1} \mathbf{k}_{\mathbf{2}}\right\rangle\right]
\end{aligned}
$$

with same energy and different linear momentum

$$
\begin{array}{ll}
\mathbf{K}_{12}=\mathbf{k}_{\mathbf{1}} \oplus \mathbf{k}_{\mathbf{2}}=\mathbf{k}_{\mathbf{1}}+\left(1-\epsilon_{1}\right) \mathbf{k}_{\mathbf{2}} \\
\mathbf{K}_{\mathbf{2 1}}=\mathbf{k}_{\mathbf{2}} \oplus \mathbf{k}_{\mathbf{1}}=\mathbf{k}_{\mathbf{2}}+\left(1-\epsilon_{2}\right) \mathbf{k}_{\mathbf{1}}
\end{array}
$$

κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H} In the κ-deformed case try to proceed in an analogous way BUT...

$$
1 / \sqrt{2}\left(\left|\mathbf{k}_{1}\right\rangle \otimes\left|\mathbf{k}_{2}\right\rangle+\left|\mathbf{k}_{2}\right\rangle \otimes\left|\mathbf{k}_{1}\right\rangle\right)
$$

is NOT an eigenstate of P_{μ} due to the non-trivial coproduct of spatial translation generators!!

$$
\Delta\left(P_{i}\right)=P_{i} \otimes 1+e^{-P_{0} / \kappa} \otimes P_{i}
$$

Multi-particle states of κ-Fock-space are built via a "momentum dependent" symmetrization

$$
\sigma^{\kappa}\left(\left|\mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{2}}\right\rangle\right)=\left|\left(1-\epsilon_{1}\right) \mathbf{k}_{\mathbf{2}}\right\rangle \otimes\left|\left(1-\epsilon_{2}\right)^{-1} \mathbf{k}_{\mathbf{1}}\right\rangle, \quad \epsilon_{i}=\frac{\left|\mathbf{k}_{i}\right|}{\kappa}
$$

E.g. there will be two 2-particle states

$$
\begin{aligned}
& \left|\mathbf{k}_{\mathbf{1}} \mathbf{k}_{2}\right\rangle_{\kappa}=\frac{1}{\sqrt{2}}\left[\left|\mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{2}}\right\rangle+\left|\left(1-\epsilon_{1}\right) \mathbf{k}_{\mathbf{2}}\right\rangle \otimes\left|\left(1-\epsilon_{2}\right)^{-1} \mathbf{k}_{\mathbf{1}}\right\rangle\right] \\
& \left|\mathbf{k}_{\mathbf{2}} \mathbf{k}_{1}\right\rangle_{\kappa}=\frac{1}{\sqrt{2}}\left[\left|\mathbf{k}_{2}\right\rangle \otimes\left|\mathbf{k}_{\mathbf{1}}\right\rangle+\left|\left(1-\epsilon_{2}\right) \mathbf{k}_{\mathbf{1}}\right\rangle \otimes\left|\left(1-\epsilon_{1}\right)^{-1} \mathbf{k}_{\mathbf{2}}\right\rangle\right]
\end{aligned}
$$

with same energy and different linear momentum

$$
\begin{array}{ll}
\mathbf{K}_{12}=\mathbf{k}_{\mathbf{1}} \oplus \mathbf{k}_{\mathbf{2}}=\mathbf{k}_{\mathbf{1}}+\left(1-\epsilon_{1}\right) \mathbf{k}_{\mathbf{2}} \\
\mathbf{K}_{21}=\mathbf{k}_{\mathbf{2}} \oplus \mathbf{k}_{\mathbf{1}}=\mathbf{k}_{\mathbf{2}}+\left(1-\epsilon_{2}\right) \mathbf{k}_{\mathbf{1}}
\end{array}
$$

given n-different modes one has n ! different n-particle states, one for each permutation of the n modes $\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}} \ldots \mathbf{k}_{\mathbf{n}}$

Hidden entanglement at the Planck scale

The non-trivial algebraic structure of κ-translations endows the Fock space with a "fine structure"

Hidden entanglement at the Planck scale

The non-trivial algebraic structure of κ-translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $\left|\Delta \mathbf{K}_{12}\right| \equiv\left|\mathbf{K}_{12}-\mathbf{K}_{21}\right|=\frac{1}{\kappa}\left|\mathbf{k}_{1}\right| \mathbf{k}_{\mathbf{2}}\left|-\mathbf{k}_{\mathbf{2}}\right| \mathbf{k}_{1}| | \leq \frac{2}{\kappa}\left|\mathbf{k}_{\mathbf{1}}\right|\left|\mathbf{k}_{\mathbf{2}}\right|$ of order $\left|\mathbf{k}_{\mathbf{i}}\right|^{2} / \kappa$

Hidden entanglement at the Planck scale

The non-trivial algebraic structure of κ-translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $\left|\Delta \mathbf{K}_{\mathbf{1 2}}\right| \equiv\left|\mathbf{K}_{12}-\mathbf{K}_{21}\right|=\frac{1}{\kappa}\left|\mathbf{k}_{1}\right| \mathbf{k}_{\mathbf{2}}\left|-\mathbf{k}_{\mathbf{2}}\right| \mathbf{k}_{\mathbf{1}}| | \leq \frac{2}{\kappa}\left|\mathbf{k}_{\mathbf{1}}\right|\left|\mathbf{k}_{\mathbf{2}}\right|$ of order $\left|\mathbf{k}_{\mathbf{i}}\right|^{2} / \kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}_{\kappa}^{2} \cong \mathcal{S}_{2} \mathcal{H}^{2} \otimes \mathbb{C}^{2}$, where $\mathcal{S}_{2} \mathcal{H}^{2}$ is the ordinary symmetrized 2 -mode Hilbert space and our states can be written as

$$
\begin{aligned}
|\epsilon\rangle \otimes|\uparrow\rangle & =\left|\mathbf{k}_{1} \mathbf{k}_{\mathbf{2}}\right\rangle_{\kappa} \\
|\epsilon\rangle \otimes|\downarrow\rangle & =\left|\mathbf{k}_{2} \mathbf{k}_{\mathbf{1}}\right\rangle_{\kappa}
\end{aligned}
$$

with $\epsilon=\epsilon\left(\mathbf{k}_{1}\right)+\epsilon\left(\mathbf{k}_{\mathbf{2}}\right)$

Hidden entanglement at the Planck scale

The non-trivial algebraic structure of κ-translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $\left|\Delta \mathbf{K}_{\mathbf{1 2}}\right| \equiv\left|\mathbf{K}_{12}-\mathbf{K}_{21}\right|=\frac{1}{\kappa}\left|\mathbf{k}_{1}\right| \mathbf{k}_{\mathbf{2}}\left|-\mathbf{k}_{\mathbf{2}}\right| \mathbf{k}_{\mathbf{1}}| | \leq \frac{2}{\kappa}\left|\mathbf{k}_{\mathbf{1}}\right|\left|\mathbf{k}_{\mathbf{2}}\right|$ of order $\left|\mathbf{k}_{\mathbf{i}}\right|^{2} / \kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}_{\kappa}^{2} \cong \mathcal{S}_{2} \mathcal{H}^{2} \otimes \mathbb{C}^{2}$, where $\mathcal{S}_{2} \mathcal{H}^{2}$ is the ordinary symmetrized 2 -mode Hilbert space and our states can be written as

$$
\begin{aligned}
|\epsilon\rangle \otimes|\uparrow\rangle & =\left|\mathbf{k}_{1} \mathbf{k}_{\mathbf{2}}\right\rangle_{\kappa} \\
|\epsilon\rangle \otimes|\downarrow\rangle & =\left|\mathbf{k}_{2} \mathbf{k}_{\mathbf{1}}\right\rangle_{\kappa}
\end{aligned}
$$

with $\epsilon=\epsilon\left(\mathbf{k}_{1}\right)+\epsilon\left(\mathbf{k}_{2}\right)$

Planckian mode entanglement becomes possible!

Hidden entanglement at the Planck scale

The non-trivial algebraic structure of κ-translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $\left|\Delta \mathbf{K}_{\mathbf{1 2}}\right| \equiv\left|\mathbf{K}_{12}-\mathbf{K}_{21}\right|=\frac{1}{\kappa}\left|\mathbf{k}_{1}\right| \mathbf{k}_{\mathbf{2}}\left|-\mathbf{k}_{\mathbf{2}}\right| \mathbf{k}_{\mathbf{1}}| | \leq \frac{2}{\kappa}\left|\mathbf{k}_{\mathbf{1}}\right|\left|\mathbf{k}_{\mathbf{2}}\right|$ of order $\left|\mathbf{k}_{\mathbf{i}}\right|^{2} / \kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}_{\kappa}^{2} \cong \mathcal{S}_{2} \mathcal{H}^{2} \otimes \mathbb{C}^{2}$, where $\mathcal{S}_{2} \mathcal{H}^{2}$ is the ordinary symmetrized 2 -mode Hilbert space and our states can be written as

$$
\begin{aligned}
|\epsilon\rangle \otimes|\uparrow\rangle & =\left|\mathbf{k}_{1} \mathbf{k}_{\mathbf{2}}\right\rangle_{\kappa} \\
|\epsilon\rangle \otimes|\downarrow\rangle & =\left|\mathbf{k}_{2} \mathbf{k}_{\mathbf{1}}\right\rangle_{\kappa}
\end{aligned}
$$

with $\epsilon=\epsilon\left(\mathbf{k}_{1}\right)+\epsilon\left(\mathbf{k}_{\mathbf{2}}\right)$

Planckian mode entanglement becomes possible!

- e.g. the state superposition of two total "classical" energies $\epsilon_{A}=\epsilon\left(\mathbf{k}_{1 A}\right)+\epsilon\left(\mathbf{k}_{\mathbf{2}}\right)$ and $\epsilon_{B}=\epsilon\left(\mathbf{k}_{1_{B}}\right)+\epsilon\left(\mathbf{k}_{2_{B}}\right)$ can be entangled with the additional hidden modes e.g.

$$
|\Psi\rangle=1 / \sqrt{2}\left(\left|\epsilon_{A}\right\rangle \otimes|\uparrow\rangle+\left|\epsilon_{B}\right\rangle \otimes|\downarrow\rangle\right)
$$

(MA., D. Benedetti, [arXiv:0809.0889 [hep-th]]. MA., A. Marciano, [arXiv:0707.1329 [hep-th]]. MA, A. Hamma, S. Severini, [arXiv:0806.2145 [hep-th]].)

Planckian degrees of freedom and decoherence

- consider a quantum system evolving unitarily

$$
\rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

Planckian degrees of freedom and decoherence

- consider a quantum system evolving unitarily

$$
\rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong \mathcal{S}_{n} \mathcal{H}^{n} \otimes \mathbb{C}^{n}$

Planckian degrees of freedom and decoherence

- consider a quantum system evolving unitarily

$$
\rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong \mathcal{S}_{n} \mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If $U(t)$ acts as an "entangling gate", the state $\rho(t)$ will be entangled

Planckian degrees of freedom and decoherence

- consider a quantum system evolving unitarily

$$
\rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong \mathcal{S}_{n} \mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If $U(t)$ acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$
\rho_{o b s}(0)=\operatorname{Tr}_{P I} \rho(0)
$$

Planckian degrees of freedom and decoherence

- consider a quantum system evolving unitarily

$$
\rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong \mathcal{S}_{n} \mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If $U(t)$ acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$
\rho_{o b s}(0)=\operatorname{Tr}_{P I} \rho(0)
$$

- As the system evolves she will see the mixed state

$$
\rho_{o b s}(t)=\operatorname{Tr}_{P I} \rho(t)=\operatorname{Tr}_{P I}\left[U(t) \rho(0) U^{\dagger}(t)\right] .
$$

Planckian degrees of freedom and decoherence

- consider a quantum system evolving unitarily

$$
\rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong \mathcal{S}_{n} \mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If $U(t)$ acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$
\rho_{o b s}(0)=\operatorname{Tr}_{P I} \rho(0)
$$

- As the system evolves she will see the mixed state

$$
\rho_{o b s}(t)=\operatorname{Tr}_{P I} \rho(t)=\operatorname{Tr}_{P I}\left[U(t) \rho(0) U^{\dagger}(t)\right]
$$

For the macroscopic observer, the evolution is not unitary!

Planckian degrees of freedom and decoherence

- consider a quantum system evolving unitarily

$$
\rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong \mathcal{S}_{n} \mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If $U(t)$ acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$
\rho_{o b s}(0)=\operatorname{Tr}_{P I} \rho(0)
$$

- As the system evolves she will see the mixed state

$$
\rho_{o b s}(t)=\operatorname{Tr}_{P I} \rho(t)=\operatorname{Tr}_{P I}\left[U(t) \rho(0) U^{\dagger}(t)\right]
$$

For the macroscopic observer, the evolution is not unitary!

A simple model which exhibits decoherence due to presence of planckian d.o.f...

Planckian degrees of freedom and decoherence

- consider a quantum system evolving unitarily

$$
\rho(t)=U(t) \rho(0) U^{\dagger}(t)
$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong \mathcal{S}_{n} \mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If $U(t)$ acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$
\rho_{o b s}(0)=\operatorname{Tr}_{P I} \rho(0)
$$

- As the system evolves she will see the mixed state

$$
\rho_{o b s}(t)=\operatorname{Tr}_{P I} \rho(t)=\operatorname{Tr}_{P I}\left[U(t) \rho(0) U^{\dagger}(t)\right]
$$

For the macroscopic observer, the evolution is not unitary!

A simple model which exhibits decoherence due to presence of planckian d.o.f...
a new window to phenomenological effects??

Conclusions

- Relativistic phase spaces and symmetries can be deformed to allow momentum spaces which are non-abelian group manifolds
- Strong motivations to look at such deformations from $\mathbf{2 + 1}$ gravity coupled to relativistic particles...application: appearance of running spectral dimension
- In 3+1 dimensions the only known example of symmetry deformation with group valued momenta is κ-Poincaré: field theory exhibits similar features to the $2+1$ case
- At the multiparticle level the non-trivial behaviour of field modes leads to a fine structure of Fock space: interesting entanglement phenomena can take place
- What role of these UV deformed theories for "trans-planckian" issues in semiclassical gravity (BH evaporation, Inflation)??

Conclusions

- Relativistic phase spaces and symmetries can be deformed to allow momentum spaces which are non-abelian group manifolds
- Strong motivations to look at such deformations from $\mathbf{2 + 1}$ gravity coupled to relativistic particles...application: appearance of running spectral dimension
- In 3+1 dimensions the only known example of symmetry deformation with group valued momenta is κ-Poincaré: field theory exhibits similar features to the $2+1$ case
- At the multiparticle level the non-trivial behaviour of field modes leads to a fine structure of Fock space: interesting entanglement phenomena can take place
- What role of these UV deformed theories for "trans-planckian" issues in semiclassical gravity (BH evaporation, Inflation)??

Thank you!

