University of Duisburg-Essen

Klaus Hornberger

Environmental distinction of pointer states

(joint work with M. Busse & J. Trost)

Classical world of our everyday experience

Quantum world of elementary particles

(Image: Spielzeug-Truhe.de)

(Image: Crommie, Lutz & Eigler; IBM)

"Into what mixture does the wave packet collapse?" (Zurek 1981)

"Predictability sieve" (Zurek, Habib, Paz 1993)

"Hilbert-Schmidt robustness" (Gisin, Rigo 1995, Diósi, Kiefer 2000)

Pointer states

Given a master equation $\partial_t \rho = \mathcal{L} \rho$ a set of projectors { $P_j(t)$ } may be called *pointer states* of \mathcal{L} provided there is a decoherence time scale t_{dec} such that for all ρ_0

$$e^{\mathcal{L}t}\rho_0 \cong \sum_j \operatorname{Tr}[P_j(0) \rho_0] P_j(t) \quad \text{for } t > t_{dec}$$

Pointer states

Given a master equation $\partial_t \rho = \mathcal{L} \rho$ a set of projectors { $P_j(t)$ } may be called *pointer states* of \mathcal{L} provided there is a decoherence time scale t_{dec} such that for all ρ_0

University of Duisburg-Essen

Klaus Hornberger Environmental distinction of pointer states

plan of the talk:

- Hund's paradox
 - super-selecting chiral molecular configuration states -
- Pointer states of motion
 - the pointer basis induced by collisional decoherence -

Friedrich Hund (1927)

Why are many molecules found in a chiral configuration? —in spite of the parity invariance of their hamiltonian?

Friedrich Hund (1927)

Why are many molecules found in a chiral configuration? —in spite of the parity invariance of their hamiltonian?

Effect of an *achiral* gas environment on the configuration & orientation state?

realistic master equation required !

Effect of an *achiral* gas environment

• $|L\rangle + e^{i\varphi}|R\rangle$ decay with decoherence rate

$$\gamma = n_{\text{gas}} \left\langle v \int \frac{\mathrm{d}\boldsymbol{n} \,\mathrm{d}\boldsymbol{n}_{0}}{8\pi} \left| f_{\alpha,\alpha_{0}}^{(L)}(v\,\boldsymbol{n},v\,\boldsymbol{n}_{0}) - f_{\alpha,\alpha_{0}}^{(R)}(v\,\boldsymbol{n},v\,\boldsymbol{n}_{0}) \right|^{2} \right\rangle_{v,\alpha,\alpha_{0}}$$

"decoherence cross section"

Effect of an *achiral* gas environment

• $|L\rangle + e^{i\varphi}|R\rangle$ decay with decoherence rate

$$\gamma = n_{\text{gas}} \left\langle v \int \frac{\mathrm{d}\boldsymbol{n} \,\mathrm{d}\boldsymbol{n}_0}{8\pi} \left| f_{\alpha,\alpha_0}^{(L)}(v\,\boldsymbol{n},v\,\boldsymbol{n}_0) - f_{\alpha,\alpha_0}^{(R)}(v\,\boldsymbol{n},v\,\boldsymbol{n}_0) \right|^2 \right\rangle_{v,\alpha,\alpha_0}$$

• only the chiral states $|L\rangle$ and $|R\rangle$ exhibit a quantum-Zeno-like stabilization $\sim \omega^2/\gamma\,$ against tunneling and decay if $\gamma\gg\omega$

Harris, Stodolsky (1978)

 D_2S_2 tunnels with 28 Hz in vacuum

The stabilization effect is dominated by a higher order contribution to the van der Waals interaction described by the EQED tensor $A_{j,k\ell}(i\omega)$

critical pressure in 300K He atmosphere:

 $p_c = 1.6 \times 10^{-5}$ mbar

... allows one to observe the chiral stabilization in an optical Stern-Gerlach type setup [e.g. Li, Bruder, Sun: PRL 2007]

University of Duisburg-Essen

Klaus Hornberger Environmental distinction of pointer states

plan of the talk:

- Hund's paradox
 - super-selecting chiral molecular configuration states -
- Pointer states of motion
 - the pointer basis induced by collisional decoherence -

reminder: definition of Pointer states

Given a master equation $\partial_t \rho = \mathcal{L} \rho$ a set of projectors $P_j(t)$ may be called *pointer states* of \mathcal{L} provided there is a decoherence time scale t_{dec} such that for all ρ_0

$$e^{\mathcal{L}t}\rho_0 \cong \sum_j \operatorname{Tr}[P_j(0) \rho_0] P_j(t) \quad \text{for } t > t_{dec}$$

Continuous variable version

$$e^{\mathcal{L}t}\rho_0 \cong \int d\alpha \operatorname{prob}(\alpha | \rho_0) P_{\alpha}(t) \quad \text{for } t > t_{\text{dec}}$$

with $\int d\alpha \operatorname{prob}(\alpha | \rho_0) = 1$

Nonlinear equation for candidate pointer states

Orthogonal unraveling $\rho = \mathbb{E}[|\psi\rangle\langle\psi|]$

piecewise deterministic evolution

$$\partial_t |\psi\rangle = \frac{1}{i\hbar} (H - \langle H \rangle_{\psi}) |\psi\rangle + \sum_k \left\{ \langle L_k^{\dagger} \rangle_{\psi} (L - \langle L_k \rangle_{\psi}) - \frac{1}{2} \left(L_k^{\dagger} L_k - \langle L_k^{\dagger} L_k \rangle_{\psi} \right) \right\} |\psi\rangle$$

interrupted by jumps to orthogonal states

 $|\psi\rangle \rightarrow \frac{1}{\sqrt{r_k}}(L_k - \langle L_k \rangle_{\psi})|\psi\rangle$ with rate $r_k = \langle L_k^{\dagger}L_k \rangle_{\psi} - \langle L_k^{\dagger} \rangle_{\psi} \langle L_k \rangle_{\psi}$

If there are "points of attraction" with vanishing jump rate, an ensemble of (candidate) pointer states is naturally generated

Orthogonal unraveling – sample trajectory

If there are "points of attraction" with vanishing jump rate, an ensemble of (candidate) pointer states is naturally generated

Collisional decoherence master equation

... describes particle "localization" by gas collisions

$$\mathcal{L}\rho = \frac{1}{i\hbar}[H,\rho] + \gamma \int dq G(q) \left(e^{ixq}\rho e^{-ixq} - \rho\right)$$

G(q) : momentum exchange distribution

Nonlinear e.o.m. for collisional decoherence

$$\partial_t \psi(x) = -\frac{\hbar}{2m i} \partial_x^2 \psi(x) + \gamma \psi(x) \left(\left| \psi \right|^2 * \tilde{G}(x) - \int dy \left| \psi(y) \right|^2 \left(\left| \psi \right|^2 * \tilde{G} \right)(y) \right)$$

Nonlinear e.o.m. for collisional decoherence

$$\partial_t \psi(x) = -\frac{\hbar}{2m i} \partial_x^2 \psi(x) + \gamma \psi(x) \left(\left| \psi \right|^2 * \tilde{G}(x) - \int dy \left| \psi(y) \right|^2 \left(\left| \psi \right|^2 * \tilde{G} \right)(y) \right)$$

...exhibits *soliton-like solutions*, our candidate pointer states

Properties of the (candidate) pointer states

provide an overcomplete basis

$$\int \mathrm{d}\Gamma \, I(\Gamma) \, \boldsymbol{P}_{\Gamma} = \boldsymbol{I}$$

(follows with covariance properties of master the master equation)

move on the classical Newtonian trajectories

Properties of the (candidate) pointer states

phase space dynamics in a quartic potential V

$$V(x) = a x^4 + b x^2$$

The statistical weights

Superposing N spatially non-overlapping wave packtes,

$$|\psi_0\rangle = \sum_{i=1}^N c_i |\phi_i\rangle \qquad \phi_i(x)\phi_{j\neq i}^*(x) = 0$$

the stochastic process can be mapped to the coefficients c_1, \ldots, c_N

deterministic evolution:

$$\frac{\mathrm{d}}{\mathrm{d}t}c_{i} = -\left(\sum_{j=1}^{N} F_{ij} |c_{j}|^{2} - \sum_{j,k=1}^{N} F_{jk} |c_{j}|^{2} |c_{k}|^{2}\right)c_{i}$$

with localization rates
$$F_{ij} = \gamma \left\{ 1 - \tilde{G} \left(\langle x \rangle_{\phi_i} - \langle x \rangle_{\phi_j} \right) \right\}$$

The statistical weights

Superposing N spatially non-overlapping wave packtes,

$$|\psi_0\rangle = \sum_{i=1}^N c_i |\phi_i\rangle \qquad \phi_i(x)\phi_{j\neq i}^*(x) = 0$$

the stochastic process can be mapped to the coefficients c_1, \ldots, c_N

deterministic evolution:

$$\frac{\mathrm{d}}{\mathrm{d}t}c_{i} = -\left(\sum_{j=1}^{N} F_{ij} |c_{j}|^{2} - \sum_{j,k=1}^{N} F_{jk} |c_{j}|^{2} |c_{k}|^{2}\right)c_{i}$$

jumps:

$$\begin{split} c_i^{(q)} &\to \mathcal{N}_q \Bigg(e^{iq\langle x \rangle_{\phi_i}/\hbar} - \sum_{j=1}^N |c_j|^2 e^{iq\langle x \rangle_{\phi_j}/\hbar} \Bigg) c_i \\ \text{with localization rates } F_{ij} &= \gamma \Big\{ 1 - \tilde{G} \big(\langle x \rangle_{\phi_i} - \langle x \rangle_{\phi_j} \big) \Big\} \\ \text{and jump rates } r^{(q)} &= \gamma G \big(q \big) \Bigg(1 - \sum_{i,j=1}^N |c_i|^2 |c_j|^2 e^{iq \big(\langle x \rangle_{\phi_i} - \langle x \rangle_{\phi_j} \big)/\hbar} \Bigg) \end{split}$$

The statistical weights, N=2

deterministic evolution

The statistical weights, N=2

stochastic process analytically tractable

The statistical weights, N>2

numerical analysis confirms $\operatorname{Prob}(c_j(\infty) = 1) = |c_j(0)|^2$

the end is nigh

Summary

- Hund's paradox
 - super-selecting chiral molecular configuration states –
- Pointer states of motion
 - the pointer basis induced by collisional decoherence –

theory

<u>Marc Busse</u>, Timo Fischer, Clemens Gneiting, Andreas Jacob, Stefan Nimmrichter, Felix Platzer, Álvaro Tejero, <u>Johannes Trost</u>

experiments

Markus Arndt Stefan Gerlich, Lucia Hackermüller, Phillip Haslinger, et al UVienna

UNIVERSITÄT UISBURG