A quantum cellular automaton

extension of quantum field theory

Giacomo Mauro D'Ariano
Università di Pavia

Open Problems in Quantum Mechanics Workshop 20-22 June 2012, Frascati

INFORMATION-THEORETICAL PRINCIPLES

Principles for Quantum Theory

Pi. Causality
P2. Local Readability

$$
\text { PRA } 84 \text { OI23II (2OI2) }
$$

P_{3}. Conservation of Information (Purification)
P4. Indivisibility of Composition
P_{5}. Discriminability of Specific Ini
P6. Lossless Compressibility

Algorithm

INFORMATIO

Principles for Qua
Pi. Causality
P2. Local Readability
P_{3}. Conservation of Inform
Topological Homogeneity

Physical law

Deutsch-Cburch-Turing principle Every finite physical protocol must be perfectly simulated by a quantum computer made with a finite number of qubits and a finite number of gates

- 2uantum-information density is bounded Locality of interactions

Algorithm

FINITE INFORMATION

Localized states over a locally quiescient state (vacuum)

 --
\qquad
$\rightarrow-$

E.

R-1 -

R-
 E
 E-

E-

E-A

.

-

Pa

E

\square

-

E

C.

PROGRAM:
 QCA-EXTENSION OF QFT

In this talk

THE DIRAC QU-AUTOMATON

$\boldsymbol{\psi}_{n}:=\left[\begin{array}{l}\psi_{n}^{+} \\ \psi_{n}^{n}\end{array}\right]$ $\psi_{n-1}^{t} \psi_{n-1}^{-1} \psi_{t}^{4} \psi_{n} \psi_{n+1}^{+1} \psi_{n+1} \cdots$

$$
\boldsymbol{\psi}(t+\mathfrak{t})=U^{\dagger} \boldsymbol{\psi}(t) U=\mathbf{U} \boldsymbol{\psi}(t)
$$

$$
c^{2}+s^{2}=1
$$

$$
\begin{aligned}
& A_{n}=\exp \left[-i \theta\left(\sigma_{2 n-1}^{-} \sigma_{2 n}^{+}+\sigma_{2 n-1}^{+} \sigma_{2 n}^{-}\right)\right] \\
& B_{n}=\exp \left[-i \frac{\pi}{2}\left(\sigma_{2 n}^{+} \sigma_{2 n+1}^{-}+\sigma_{2 n}^{-} \sigma_{2 n+1}^{+}\right)\right]
\end{aligned}
$$

$$
\mathbf{U}=\left[\begin{array}{cc}
\mathrm{S} \hat{\partial}_{-} & -i \mathrm{c} \\
-i \mathrm{c} & \mathrm{~s} \hat{\partial}_{+}
\end{array}\right]
$$

$c=\cos \theta=\omega t=\frac{\mathfrak{a}}{\lambda}=\frac{m}{\mathfrak{m}}, \quad s=\sin \theta=\zeta=\sqrt{1-\left(\frac{m}{m}\right)^{2}}$

$$
\mathfrak{m}:=\frac{\hbar}{\mathfrak{a} \mathfrak{c}}
$$

THE DIRAC QU-AUTOMATON

$$
c^{2}+s^{2}=1
$$

$$
A_{n}=\exp \left[-i \theta\left(\sigma_{2 n-1}^{-} \sigma_{2 n}^{+}+\sigma_{2 n-1}^{+} \sigma_{2 n}^{-}\right)\right]
$$

$$
B_{n}=\exp \left[-i \frac{\pi}{2}\left(\sigma_{2 n}^{+} \sigma_{2 n+1}^{-}+\sigma_{2 n}^{-} \sigma_{2}^{+}, \quad\right)\right]
$$

$$
\mathbf{U}=\left[\begin{array}{ll}
\mathrm{s} \widehat{\partial}_{-} & -i \mathrm{c} \\
-i \mathrm{c} & \mathrm{~s} \widehat{\partial}_{+}
\end{array}\right]
$$

Planck length
$\mathrm{c}=\cos \theta=\omega \mathfrak{t}=\frac{\mathfrak{a}}{\lambda}=\frac{m}{\mathfrak{m}}, \quad \mathrm{~s}=$
$\hbar:=\mathfrak{m a c}$

PARTICLES

Dirac QCA- hlist Quanlration

Dirac QCA: First Quantization

A	$\left[\begin{array}{ll}\mathrm{s} & \\ & -i \mathrm{c}\end{array}\right]$
B	$\mathbf{U}=\left[\begin{array}{ll}\mathrm{s} \hat{\partial}_{-} & \\ -i \mathrm{c} & \mathrm{s} \widehat{\partial}_{+}\end{array}\right]$

Planckian Particles

(Foldy-Wouthuysen) $\mathbf{U}=\left(\begin{array}{cc}\mathrm{s} \widehat{\partial}_{-} & -i \mathrm{c} \\ -i \mathrm{c} & \mathrm{s} \widehat{\partial}_{+}\end{array}\right)=\left(\begin{array}{cc}\mathrm{s} e^{i k} & -i \mathrm{c} \\ -i \mathrm{c} & \mathrm{s} e^{-i k}\end{array}\right)$
$\frac{1}{2 N^{(\pm)}(k)}\left(\left.\begin{array}{c}i \mathrm{c} \\ \left.\mathrm{s} e^{i k}-e^{ \pm i \omega(k)}\right) \\ \text { igenenvectors } k \text {-space }\end{array} \right\rvert\,\right.$

Dispersion relation
$\omega(k)=\cos ^{-1}(\mathrm{~s} \cos \mathrm{k})$

Alessandro Bisio
 Alessandro Tosini

Planckian Particles

$$
i \partial_{t} A(x, t)=\left[-i d \partial_{x}-\frac{D}{2} \partial_{x}^{2}\right] A(x, t)
$$

$$
A(x, t)=\frac{1}{\sqrt[4]{2 \pi \Delta^{2}(t)}} \exp \left[-\frac{(x-x(t))_{2}^{2}}{4 \Delta^{2}(t)}\right]
$$

$$
x(t)=d \quad \Delta(t)=\Delta \sqrt{1+i \frac{D}{2 \Delta^{2}} t}
$$

$$
d^{(\pm)}(\mathrm{k})
$$

π

MECHANICS EMERGING FROM COMPUTATION

$i \hbar \hat{\partial}_{t} \boldsymbol{\psi}=[\boldsymbol{\psi}, H]$

$$
H=\frac{i \hbar}{2 t} \boldsymbol{\psi}^{\dagger}\left(\mathbf{U}-\mathbf{U}^{\dagger}\right) \boldsymbol{\psi}
$$

MECHANICS EMERGING FROM COMPUTATION

- PATH-INTEGRAL

Are we able to simulate our theory (even with a quantum computer)?

Simulating Physics with Computers Richard P. Feynman

The question is, if we wrote a Hamiltonian which involved only these operators, locally coupled to corresponding operators on the other space-time points, could we imitate every quantum mechanical system which is discrete and has a finite number of degrees of freedom? I know, almost certainly, that we could do that for any quantum mechanical system which involves Bose particles. I'm not sure whether Fermi particles could be described by such a system. So I leave that open. Well, that's an example of what I meant by a general quantum mechanical simulator. I'm not sure that it's sufficient, because I'm not sure that it takes care of Fermi particles.

$$
\text { Int. J. of Th. Phys. } 21467 \text { (1982) }
$$

SPACE-TIME AT PLANCK SCALE

FOLIATION: TIME AS A COMPUTER CLOCK

SPACE-TIME AT PLANCK SCALE

THE COMPUTATIONAL TOMONAGA-SCHWINGER

SPACE-TIME AT PLANCK SCALE TIME-DILATION AND SPACE-CONTRACTION

Why information is quantum?

Should we consider a network-axiom for QT?

- "Direction" of information imprinted in the state using minimal informational resources.
- A थuantum-Digital World: restoration of the isotropy of information flow.

Why information is quantum?

Should we consider a network-axiom for QT?

- "Direction" of information imprinted in the state using minimal informational resources.
- A 2uantum-Digital World: restoration of the isotropy of information flow.

Why information is quantum?

Should we consider a network-axiom for QT?

- "Direction" of information imprinted in the state using minimal informational resources.
- A थuantum-Digital World: restoration of the isotropy of information flow.

First Quantization two particle states

First Quantization particle antiparticle

First Quantization particle antiparticle

First Quantization two particle states

THANK YOU!

