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An experiment going up outside of Chicago will attempt to measure  
the intimate connections among information, matter and spacetime.  
If it works, it could rewrite the rules for 21st-century physics

By Michael Moyer 
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Craig Hogan (1), director 
of the Fermilab Center for 
Particle Astrophysics, paus-
es in his o!ce. Hogan and 
his team are building the 
Holometer at a site about a 
kilometer away. The experi-
ment will send laser beams 
down 40-meter-long beam 
tubes (2) under vacuum. 
One set of beam tubes is  
being housed in a bunker 
formerly used for particle 
beams; the other juts out 
into the countryside, end-
ing at a blue shed that  
houses a mirror and focus-
ing optics (3). Precise  
opti cal equipment (4)  
is used to focus and align  
the beams.
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The Jitter of Space
If space is frothy on the smallest scales, the 

beam splitter that separates the laser beams 

should bounce around. In the time it takes a photon 

to travel out from the laser, down the two arms and 

back again, the beam splitter will have moved a tiny 

bit in a random direction. This movement should be 

picked up by the interferometers as a small change in 

light output. Over time this changing output creates a 

signal that appears to be noise. If the second interfer-

ometer detects noise in the exact same pattern, the 

experimenters will conclude that the cause of the 

noise is the jitter of space.
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A Microscope  
to the Planck 
Length 
With his Holometer, Craig 
Hogan will try to measure  
a fundamental jitter in 
spacetime at the smallest 
scale. The device consists 
of two interferometers, 
instruments that amplify 
very small changes in 
distance (right). Detecting 
a jitter would indicate 
that spacetime is digital— 
divided into discrete 
packets (bottom).

The Holometer
Each of the two interferometers sends 

a laser beam down perpendicular arms 

with mirrors at the ends. If the arms are 

exactly the same length, the light waves in 

the laser beam will line up perfectly and create 

a bright signal ( a ). If one arm moves just a 

fraction of a wavelength, the light waves will 

destructively interfere, leading to a dimmer 

output ( b ). Two interferometers stacked on 

top of each other are used to ensure that the 

output remains consistent.
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THE DIRAC QU-AUTOMATON

Majorana fields, whose state is entangled. I will also provide analytical relations between
the “emergent” and the “time-interpolating” Hamiltonians, and devote an entire section
to the Quantum Random Walks of the LQCA, namely its first-quantization, providing
the first numerical evaluations for one and two particle states in the Planck regime. I will
conclude the paper with some open problems and a brief discussion about possible ways
out.

2. THE FIELD-LINEAR QUANTUM CELLULAR AUTOMATON

We will consider quantum fields on a one-dimensional lattice Z. We will use the follow-
ing notations for the field:

1. φn (n ∈ Z) denotes a generic scalar (Boson or Fermion) field;
2. φφφ n = {φ α

n }, α in a finite set, denotes the vector field whose component generate
the local algebra of the automaton at n;

3. for the specific case of Dirac field the letter φ is substituted by the letter ψ ;
4. ϕn denotes a generic scalar anticommuting field.

Later on we will also consider fields on a D-dimensional lattice with D> 1, e. g. ZD, and
will use the boldface notation n for the labeling on the lattice. We consider the special
case of quantum cellular automaton, whose algebra evolution is assigned by a linear
evolution of a quantum field on the lattice.4 We now focus on the case of D = 1, and
consider D > 1 in Subsect. 3.5 and in the concluding section.

In a linear quantum field cellular automaton (LQCA), the (formally unitary) operator
U of the evolution transforms the field as follows

φφφ(t + t) =U†φφφ(t)U = Uφφφ(t), (1)

where t is a multiple of the time t of each step of the automaton. Since the evolution must
preserve the (anti)commutation relations for the field, the unbounded matrix U := ‖Ui j‖
must be itself unitary. The inverse evolution thus is φφφ(t) =Uφφφ(t + t)U† = U†φφφ(t + t).

A LQCA evolves the operator algebra locally. This corresponds to having only a finite
number of nonvanishing elements in the rows and columns of the matrix U, namely U is
a band matrix. An example of LQCA is depicted in Fig. 1 with local algebra generated
by the Fermi-field vector

ψψψ :=





. . .
ψψψn

ψψψn+1
. . .



 , ψψψn :=
[

ψ+
n

ψ−
n

]
, [ψα

n ,ψβ
m

†
]+ = δαβ δnm. (2)

4 Considering boundary conditions on a bounded lattice does not affect derivations as long as we contem-
plate evolutions for finite numbers of time-steps of Fock states, namely states localized over a quiescent
“vacuum” (see the following), and we can take the evolution as formally unitary, even for unbounded
lattice.
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An = exp
[
−iθ

(
σ
−

2n−1σ
+
2n + σ

+
2n−1σ

−

2n
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Bn = exp
[
−i

π

2

(
σ
+
2nσ

−

2n+1 + σ
−

2nσ
+
2n+1

)]

only if we allow for a renormalization c → ζ c [7] (see also the following), namely

∂̂t

[
ψ+

n
ψ−

n

]
=

[
−ζ c ∂̂x −iω
−iω ζ c ∂̂x

][
ψ+

n
ψ−

n

]
, (5)

where ∂̂t = t−1∂̂ and ∂̂x = a−1∂̂ (with the shift ∂̂± in the appropriate discrete variable),
t denoting the execution time of the LQCA. The time-difference in the LQCA (5)
corresponds to the difference between the unitary matrices U and U†, given by

1
2(U−U†

) =

[
−s ∂̂ −ic
−ic s ∂̂

]
, U =

[
s ∂̂− −ic
−ic s ∂̂+

]
, U†

=

[
s ∂̂+ +ic
+ic s ∂̂−

]
. (6)

where
c = ω t = a/λ , s = ζ , (7)

and with unitarity implying the identity

c2
+s2

= 1. (8)

Using Eq. (7) and parameterizing c and s by an angle θ , one has

c = cosθ =
a

λ =
m
m
, s = sinθ = ζ =

√
1−
( m
m

)2
, m :=

h̄
a c

, (9)

which shows that ζ−1 is a mass-dependent vacuum refraction index which is strictly
greater than 1 for nonzero mass, monotonically increasing versus m, and becoming
infinite at m = m. For a the Planck length m is the Planck mass, and the automaton
becomes stationary (i. e. there is no propagation of information) at the Planck mass: this
interesting violation of dispersion relation has been presented in Ref. [7], and is due only
to discreteness in conjunction with the unitarity of the automaton (see Fig. 2).

3.1. Margolus scheme for the Dirac LQCA

The Dirac automaton (5) can be achieved with the Margolus scheme in Fig. 1.
The form of the gates A and B can be derived assuming, without loss of generality,

FIGURE 2. The inverse vacuum refraction index ζ versus the mass m of the Dirac field. The mass scale
is given by the Planck mass m =

h̄
a c , a denoting the period of the automaton (from Ref. [7]).
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will use the boldface notation n for the labeling on the lattice. We consider the special
case of quantum cellular automaton, whose algebra evolution is assigned by a linear
evolution of a quantum field on the lattice.4 We now focus on the case of D = 1, and
consider D > 1 in Subsect. 3.5 and in the concluding section.

In a linear quantum field cellular automaton (LQCA), the (formally unitary) operator
U of the evolution transforms the field as follows
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must be itself unitary. The inverse evolution thus is φφφ(t) =Uφφφ(t + t)U† = U†φφφ(t + t).

A LQCA evolves the operator algebra locally. This corresponds to having only a finite
number of nonvanishing elements in the rows and columns of the matrix U, namely U is
a band matrix. An example of LQCA is depicted in Fig. 1 with local algebra generated
by the Fermi-field vector
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THE DIRAC QU-AUTOMATON

Majorana fields, whose state is entangled. I will also provide analytical relations between
the “emergent” and the “time-interpolating” Hamiltonians, and devote an entire section
to the Quantum Random Walks of the LQCA, namely its first-quantization, providing
the first numerical evaluations for one and two particle states in the Planck regime. I will
conclude the paper with some open problems and a brief discussion about possible ways
out.

2. THE FIELD-LINEAR QUANTUM CELLULAR AUTOMATON

We will consider quantum fields on a one-dimensional lattice Z. We will use the follow-
ing notations for the field:

1. φn (n ∈ Z) denotes a generic scalar (Boson or Fermion) field;
2. φφφ n = {φ α

n }, α in a finite set, denotes the vector field whose component generate
the local algebra of the automaton at n;

3. for the specific case of Dirac field the letter φ is substituted by the letter ψ ;
4. ϕn denotes a generic scalar anticommuting field.

Later on we will also consider fields on a D-dimensional lattice with D> 1, e. g. ZD, and
will use the boldface notation n for the labeling on the lattice. We consider the special
case of quantum cellular automaton, whose algebra evolution is assigned by a linear
evolution of a quantum field on the lattice.4 We now focus on the case of D = 1, and
consider D > 1 in Subsect. 3.5 and in the concluding section.

In a linear quantum field cellular automaton (LQCA), the (formally unitary) operator
U of the evolution transforms the field as follows

φφφ(t + t) =U†φφφ(t)U = Uφφφ(t), (1)

where t is a multiple of the time t of each step of the automaton. Since the evolution must
preserve the (anti)commutation relations for the field, the unbounded matrix U := ‖Ui j‖
must be itself unitary. The inverse evolution thus is φφφ(t) =Uφφφ(t + t)U† = U†φφφ(t + t).

A LQCA evolves the operator algebra locally. This corresponds to having only a finite
number of nonvanishing elements in the rows and columns of the matrix U, namely U is
a band matrix. An example of LQCA is depicted in Fig. 1 with local algebra generated
by the Fermi-field vector

ψψψ :=





. . .
ψψψn

ψψψn+1
. . .



 , ψψψn :=
[

ψ+
n

ψ−
n

]
, [ψα

n ,ψβ
m

†
]+ = δαβ δnm. (2)

4 Considering boundary conditions on a bounded lattice does not affect derivations as long as we contem-
plate evolutions for finite numbers of time-steps of Fock states, namely states localized over a quiescent
“vacuum” (see the following), and we can take the evolution as formally unitary, even for unbounded
lattice.
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which shows that ζ−1 is a mass-dependent vacuum refraction index which is strictly
greater than 1 for nonzero mass, monotonically increasing versus m, and becoming
infinite at m = m. For a the Planck length m is the Planck mass, and the automaton
becomes stationary (i. e. there is no propagation of information) at the Planck mass: this
interesting violation of dispersion relation has been presented in Ref. [7], and is due only
to discreteness in conjunction with the unitarity of the automaton (see Fig. 2).
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Majorana fields, whose state is entangled. I will also provide analytical relations between
the “emergent” and the “time-interpolating” Hamiltonians, and devote an entire section
to the Quantum Random Walks of the LQCA, namely its first-quantization, providing
the first numerical evaluations for one and two particle states in the Planck regime. I will
conclude the paper with some open problems and a brief discussion about possible ways
out.

2. THE FIELD-LINEAR QUANTUM CELLULAR AUTOMATON

We will consider quantum fields on a one-dimensional lattice Z. We will use the follow-
ing notations for the field:

1. φn (n ∈ Z) denotes a generic scalar (Boson or Fermion) field;
2. φφφ n = {φ α

n }, α in a finite set, denotes the vector field whose component generate
the local algebra of the automaton at n;

3. for the specific case of Dirac field the letter φ is substituted by the letter ψ ;
4. ϕn denotes a generic scalar anticommuting field.

Later on we will also consider fields on a D-dimensional lattice with D> 1, e. g. ZD, and
will use the boldface notation n for the labeling on the lattice. We consider the special
case of quantum cellular automaton, whose algebra evolution is assigned by a linear
evolution of a quantum field on the lattice.4 We now focus on the case of D = 1, and
consider D > 1 in Subsect. 3.5 and in the concluding section.

In a linear quantum field cellular automaton (LQCA), the (formally unitary) operator
U of the evolution transforms the field as follows

φφφ(t + t) =U†φφφ(t)U = Uφφφ(t), (1)

where t is a multiple of the time t of each step of the automaton. Since the evolution must
preserve the (anti)commutation relations for the field, the unbounded matrix U := ‖Ui j‖
must be itself unitary. The inverse evolution thus is φφφ(t) =Uφφφ(t + t)U† = U†φφφ(t + t).

A LQCA evolves the operator algebra locally. This corresponds to having only a finite
number of nonvanishing elements in the rows and columns of the matrix U, namely U is
a band matrix. An example of LQCA is depicted in Fig. 1 with local algebra generated
by the Fermi-field vector
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only if we allow for a renormalization c → ζ c [7] (see also the following), namely
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]
=
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−ζ c ∂̂x −iω
−iω ζ c ∂̂x

][
ψ+

n
ψ−

n

]
, (5)

where ∂̂t = t−1∂̂ and ∂̂x = a−1∂̂ (with the shift ∂̂± in the appropriate discrete variable),
t denoting the execution time of the LQCA. The time-difference in the LQCA (5)
corresponds to the difference between the unitary matrices U and U†, given by

1
2(U−U†

) =

[
−s ∂̂ −ic
−ic s ∂̂

]
, U =

[
s ∂̂− −ic
−ic s ∂̂+

]
, U†

=

[
s ∂̂+ +ic
+ic s ∂̂−

]
. (6)

where
c = ω t = a/λ , s = ζ , (7)

and with unitarity implying the identity

c2
+s2

= 1. (8)

Using Eq. (7) and parameterizing c and s by an angle θ , one has

c = cosθ = ω t =
a

λ =
m
m
, s = sinθ = ζ =

√
1−
( m
m

)2
, m :=

h̄
a c

, (9)

which shows that ζ−1 is a mass-dependent vacuum refraction index which is strictly
greater than 1 for nonzero mass, monotonically increasing versus m, and becoming
infinite at m = m. For a the Planck length m is the Planck mass, and the automaton
becomes stationary (i. e. there is no propagation of information) at the Planck mass: this
interesting violation of dispersion relation has been presented in Ref. [7], and is due only
to discreteness in conjunction with the unitarity of the automaton (see Fig. 2).

3.1. Margolus scheme for the Dirac LQCA

The Dirac automaton (5) can be achieved with the Margolus scheme in Fig. 1.
The form of the gates A and B can be derived assuming, without loss of generality,

FIGURE 2. The inverse vacuum refraction index ζ versus the mass m of the Dirac field. The mass scale
is given by the Planck mass m =

h̄
a c , a denoting the period of the automaton (from Ref. [7]).
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1. Some single-particle states

a. Gaussian particle-antiparticle states.

|Ψ〉 = N− 1
2

∑

n∈Z
ei

2πn
k − (n−n0)2

2∆2 (|ψ+
n 〉± |ψ−

n 〉), (80)

where + is for the particle and − for antiparticle.
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FIG. 6: The evolution of a single-particle Gaussian packet
of the form in Eq. (80) with x0 = 0, ∆ = 2, k = 8, for
Nt = 180 time-steps (t = 2Nt) and a total dimension of 128,
corresponding to 128 qubits, half of them for left and half
of them for right particles. The red line is the typical path,
corresponding to the classical trajectory. The parameter c =
cos(θ) with θ = π/8 here corresponds to m ! .92mP .

b. Some invariant single-particle states. Consider
the following state

|ψ(t)〉 =
∑

n

(
un(t)(ψ

+
n )

† + vn(t)(ψ
−
n )

†) |Ω〉

=
∑

n

[
un(t) 0
0 vn(t)

]
|ψn〉

(81)

In components we write

ψn(t) = 〈ψn|ψ(t)〉 =
[
u
v

]

n

(82)

Using Eq. (70) we evaluate the unitary evolution

|ψ(t+ t )〉

=
∑

n

un(t)(sψ
+
n−1 − i cψ−

n )
†|Ω〉+

vn(t)(−i cψ+
n + sψ−

n+1)
†|Ω〉

=
∑

n

(sun+1(t) + i c vn(t))(ψ
+
n )

†|Ω〉+

+(i cun(t) + s vn−1(t))(ψ
−
n )

†|Ω〉,

(83)

FIG. 7: Details in 3D of the evolution of the single-particle
Gauss-packet in Fig. 6 limited to dimension 64 and for Nt =
20.
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FIG. 8: A “double-slit” state |Ψ〉 = 1√
2
(|ψ+

n 〉 + |ψ−
−n〉) for

n = 10, Nt = 80, θ = π/10.

and in components

ψn(t+ t ) = U†
[
u(t)
v(t)

]

n

=

[
s ∂̂+ i c

i c s ∂̂−

] [
u(t)
v(t)

]

n

. (84)
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MECHANICS EMERGING FROM COMPUTATION
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U

unit determinants |A| = |B| = 1. Then, one has [7] B11 = B22 = 0, B12 = B21 = ±i,
A21 = A12 =∓is, and A22 = A11 =∓c. In the following, we will adopt the solution

A =

[
c is
is c

]
, B =

[
0 −i
−i 0

]
. (10)

3.2. Emergent Hamiltonian for the LQCA

The LQCA has no Hamiltonian: all unitary transformations are far from the identity.
The Hamiltonian, becomes an “emergent” notion: it can be written in terms of the LQCA
unitary matrix as follows (we remind the vector notation in Eq. (2))

H =
ih̄
2 t

ψψψ†
(U−U†

)ψψψ. (11)

It is easy to show that one has
ih̄∂̂tψψψ = [ψψψ,H] (12)

and in this sense H is an Hamiltonian associated to the LQCA. It is formally iden-
tical to the classical field Hamiltonian, which gives the field equation via Poisson
brackets. Notice that Eq. (11) would also hold using the non Hermitian Hamilto-
nian H = ih̄ t−1ψψψ†(U1 −U†

2)ψψψ satisfying Eq. (12) for a halved-time finite-difference
derivative, with U1 and U2 the unitary transformations associated to the two rows of
gates in the Margolus scheme. Eq. (12) provides a three-point automaton evolution-
rule ψψψ(t + t) = ψψψ(t − t)−2i t h̄−1

[ψψψ(t),H], which can be time-reversed as ψψψ(t − t) =
ψψψ(t + t)+2i t h̄−1

[ψψψ(t),H]. Thus the automaton invertibility is due to the existence of a
three-point updating rule, and not to Hermiticity of the Hamiltonian: the fact that Hamil-
tonian can be chosen Hermitian is a consequence only of time-homogeneity of evolution
(the association of reversibility of a cellular automaton with a three-time updating has
been first noticed in Ref. [18]).

The mapping between Hamiltonian and unitary evolution operator for the LQCA can
be considered the discrete version of the operator exponential mapping. One has

U = exp[−isin−1
(H t/h̄)] (13)

in terms of the matrix

H :=
ih̄
2 t

(U−U†
) = [[ψψψ,H],ψψψ†

]+, (14)

corresponding to
H = ψψψ†Hψψψ. (15)

This Hamiltonian is different from the time-interpolating Hamiltonian H̃ defined
through the identity

U =: exp(−iH̃ t/h̄), (16)
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MECHANICS EMERGING FROM COMPUTATION
• PATH-INTEGRAL 
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FIG. 5: Right: illustration of rule for evaluation of a path
contribution to the forward evolution of the field operator
z−1 (see text).

3) For any output wire k and any input wire l in its
causal past cone, consider all paths connecting k with l,
and denote them as follows (see Fig. 5)

ikl = (i1i2 . . . inin+1) with i1 = k, in+1 = l, (14)

4) The following linear expansion holds

φl(t) =
∑

ikl

U (1)
i1i2

U (2)
i2i3

. . . U (n)
inin+1

φk(0) (15)

where Uimim+1 is the matrix element of the m-th gate
crossed by the path, from the im-th output wire to the
im+1-th input wire.

Rule for evaluating the backward evolution:

1) For any input wire l and any output wire k in the
causal future cone of l, consider all paths passing through
gates connecting k with l (see Fig. 5)

ilk = (in+1in . . . i2i1) with in+1 = l, i1 = k. (16)

2) The following linear expansion holds

φl(−t) =
∑

ilk

U (n)†
in+1in

U (n−1)†
inin−1

. . . U (1)
i2i1

φk(0). (17)

III. DIRAC LQCA

The spin-less Dirac equation in 1 space dimension (cor-
responding to taking the spin operators σ → 1) in the
customary Dirac-Pauli representation is given by (see Ap-
pendix A2)

∂tψD = (−cσ1∂x − iσ3ω)ψD, (Dirac-Pauli) (18)

where ω = cλ−1, λ the Compton wavelength, and with
vector | ↑〉 (| ↓〉) representing states with positive (neg-
ative) energy, indeed particle (antiparticle) states as we

will see in the following. We change the representation
to the Weyl form ψD → ψW := TψD via the unitary
transformation

T =
1√
2

(
1 1
1 −1

)
, (19)

thus obtaining

∂tψW = (−cσ3∂x − iσ1ω)ψW , (Weyl). (20)

In the Weyl representation the vector | ↑〉 (| ↓〉) repre-
sent right-handed (left-handed) states, whereas the par-
ticle (antiparticle) states correspond to vector |+〉 (|−〉).
In the following we will omit the subscript denoting the
representation, and work only in the Weyl representation.
In matrix form we have

∂t

[
ψ+(x)
ψ−(x)

]
=

[
−c∂x −iω
−iω c∂x

] [
ψ+(x)
ψ−(x)

]
, (21)

where we omit the time dependence. The field ψ satisfies
the Fermi-Dirac anti-commutation relations

[ψα(x),ψβ(y)]+ = δαβδ(x− y). (22)

We now want to derive a LQCA corresponding to the dis-
cretized version of the Dirac equation. We label the field
ψn with a discrete index n ∈ Z corresponding to discrete
positions n a with a the periodicity of the LQCA. The
LQCA version of the Weyl equation is the same as Eq.
(20), with the partial derivatives substituted by finite dif-
ferences. It is convenient to consider finite differences in
the symmetric form

∂̂ = 1
2 (∂̂+ − ∂̂−), (23)

with ∂±f(n) := f(n± 1). We have

∂̂t

[
ψ+
n

ψ−
n

]
=

[
−ζc∂̂x −iω

−iω ζc∂̂x

] [
ψ+
n

ψ−
n

]
, (24)

where ∂̂t = t−1∂̂ and ∂̂t = a−1∂̂ (the shift in the appro-
priate discrete variable), t denoting the execution time
of the LQCA. In the following we will take for the speed
of light the causal speed c = a / t (namely the maximal
speed of propagation in the automata), and allow for a
renormalization c → ζc (ζ > 0) of the speed of light in
the Dirac equation. The schematic evolution of the cel-
lular automata in Eq. (24) is illustrated in Fig. 1. The
time-derivative in the LQCA (24) corresponds to the dif-
ference of local unitary matrices of the form

1
2 (U−U†) =

[
− s ∂̂ −i c

−i c s ∂̂

]
, (25)

where

c = ω t = a /λ, s = ζ. (26)

The automata can be achieved with the Margolus scheme
in Fig. 3 [] [CITA WERNER]
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The question is, if we wrote a Hamiltonian which involved 
only these operators, locally coupled to corresponding 
operators on the other space-time points, could we imitate 
every quantum mechanical system which is discrete and 
has a finite number of degrees of freedom? I know, almost 
certainly, that we could do that for any quantum 
mechanical system which involves Bose particles. I'm not 
sure whether Fermi particles could be described by such a 
system. So I leave that open. Well, that's an example of 
what I meant by a general quantum mechanical simulator. 
I'm not sure that it's sufficient, because I'm not sure that it 
takes care of Fermi particles.

Are we able to simulate our theory 
(even with a quantum computer)?

Int. J. of Th. Phys. 21 467 (1982)

Simulating Physics with Computers
Richard P. Feynman

venerdì 22 giugno 12



FOLIATION: TIME AS A COMPUTER CLOCK

Time is a computer clock for 
synchronizing the calls to subroutines 

in a distributed parallel calculus

 SPACE-TIME  AT  PLANCK  SCALE
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THE COMPUTATIONAL TOMONAGA-SCHWINGER

Time is a computer clock for 
synchronizing the calls to subroutines 

in a distributed parallel calculus
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REST FRAME

TIME-DILATION AND SPACE-CONTRACTION

16

1

8

2

 SPACE-TIME  AT  PLANCK  SCALE

BOOSTED 
FRAME

venerdì 22 giugno 12



Weyl tiling problem of 
discrete geometry

• “Direction” of information 
imprinted in the state using 
minimal informational 
resources.

• A Quantum-Digital World: 
restoration of the isotropy 
of information flow.

Why information is quantum?
Should we consider a network-axiom for QT?
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First Quantization: two-particle states
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First Quantization: particle-antiparticle
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First Quantization: particle-antiparticle
singlet triplet

venerdì 22 giugno 12



First Quantization: two-particle states
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THANK YOU!
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