

A new Experimental upper limit on the λ parameter

Alessandro Rizzo, LNF-INFN and University of Rome "Tor Vergata"

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

- Introduction to the Collapse theories and the Spontaneous Emission Phenomenon
- present λ upper limits
- The pioneering work of Q. Fu
- The reliability of the earlier analysis
- The new analysis on data published by the IGEX collaboration
- Results and outlook
- Dedicated experiment

Collapse theories and Spontaneous X-ray emission

An introduction

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

Upper bounds on the λ parameter

Present Status

CSL parameters upper bounds

In ref [4] Adler present different upper bounds for CSL parameters:

The pioneering work of Q Fu

About the analysis done

Fu analysis

To get an experimental upper bound Fu used data taken (in 1990) by two twin Ge diodes at Homestake mine (looking for ⁷⁶Ge $\beta\beta$ 2v: E^{theo}max = 700÷800 KeV [5]):

The reconstruction of the experimental history is a crucial point to understand the analysis results, as we'll point out!

Basics of the analysis

Energy (keV)	Expt. upper be (counts/keV/kg	ound ;/day) (cou	Theory (counts/keV/kg/day)	
11	0.049	ANOMALY	0.071	
101	0.031		0.0073	
201	0.030		0.0037	
301	0.024		0.0028	
401	0.017		0.0019	
501	0.014		0.0015	

Evaluation of R_{theory}(k) at six different energies, then a simple comparison with the observed data

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

Detector Performances

Experimental lack

- Highly hydrogenated material to slow down the neutrons maximising the capture in Cd plates
- Control on Radon contamination

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

I) Experimental Setup Configuration

Not an highly radiopure apparatus, but could be used to set the upper bound

Detector Performances

- Used-spectrum for the analysis in [6] ($\beta\beta2\nu$), starts from 300 KeV
- This lower limit is due to the type of analysis presented in [6]

resolution at lowest energy lack of a detector efficiency

 lack of a detector efficiency study in the very low energy region of the spectrum (quite far from the Q value - the anomaly could be originated by an inefficiency of the detector at very low energy)

2) Characterization of the Ge diodes at low

energies

lack of an evaluation of the detector

Detector Performances

- <u>The Homestake data were affected</u> by gain stability problem
- A systematic in Fu's work seems to be reliable...

3) reconstruction of the experimental history

- Without other informations, any claim about a systematic error is only an inference
- But, we reconstructed the experimental history of these two Ge diodes:
- They were two Ge diodes of the IGEX experiment!

Analysis done

A biased analysis to estimate an order of magnitude, not a real upper limit

Energy (keV)	Expt. upper bound (counts/keV/kg/day)	Theory (counts/keV/kg/day)
11	0.049	0.071
101	0.031	0.0073
201	0.030	0.0037
301	0.024	0.0028
401	0.017	0.0019
501	0.014	0.0015

The "punctual" evaluation of the rate at six different energies brings a bias:

choice as the only reliable experimental observable the counts at 11 keV

Lack of information: evaluation of a free parameter using a single bin (d.o.f.=0)

In case of a systematic error in an energy region (or a bin) of the spectrum, it will affect the results of such analysis in a strong way (we have seen that this systematic could be present)

Lack of an error estimation (CL on the limit)

Fu's result: not a reliable limit, and not a limit!

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

The new analysis

Using data published by the IGEX collaboration

Looking for DM with the IGEX experiment

- Data published by the IGEX collaboration used in this work are related to the experimental search of DM using the IGEX apparatus
- A big Improvement in the shielding and in general in the low-background techniques is achieved
- No gain stability problem

Improvements

- I Ge diode with an active mass of about 2 Kg and its cryostat fabricated following the state-of-the-art ultralow background techniques, with selection of the radiopure material
- The detector is fitted in a precision-machined chamber minimizing the empty spaces available for the radon
- Nitrogen gas flushed into the chamber creating a positive pressure minimizing the radon contamination
- Innermost shielding: 2.5 tons of 2000-year-old archeological lead (roman), surrounded by 20 cms of lead brick made from 70-year-old-activity (about 10 tons)
- 2mm thick Cd sheets surrounded by a plastic scintillator (muon veto) surrounded by polyethylene bricks and borated water thanks ends the shielding

- FWHM = 800 eV @75keV (Pb line) [9]
- Energy threshold = 4 keV [9]

Published data

Low-energy data from the IGEX RG-II detector (Mt = 80 kg day)							
E (keV)	Counts	E (keV)	Counts	E (keV)	Counts		
4.5	18	19.5	4	34.5	4		
5.5	25	20.5	5	35.5	4		
6.5	16	21.5	1	36.5	6		
7.5	11	22.5	4	37.5	3		
8.5	23	23.5	4	38.5	3		
9.5	9	24.5	4	39.5	3		
10.5	12	25.5	4	40.5	5		
11.5	17	26.5	4	41.5	4		
12.5	12	27.5	9	42.5	0		
13.5	7	28.5	4	43.5	2		
14.5	6	29.5	3	44.5	3		
15.5	6	30.5	2	45.5	5		
16.5	8	31.5	2	46.5	2		
17.5	6	32.5	1	47.5	3		
18.5	1	33.5	1	48.5	4		

Exposure: 80 Kg day

It is possible to reconstruct the histogram to analyze

The Histogram

A Simple fit

Exposure

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

A Plot in the (λ,a) space

000

X Calibration

<u>F</u>ile <u>E</u>dit <u>V</u>iew <u>O</u>ptions <u>T</u>ools

20-22 June 2011, Frascati

He

Conclusion

- The result of this work on the upper limit of λ parameter is going to fill the gap present up to now in scientific literature about the experimental search of Spontaneous Collapse Theories in Ge-based experiment (only I article)
- Our critical analysis of the pioneering work of Q. Fu ruled out the previous result, recognising it as a rough estimation of the order of magnitude of λ parameter
- This result is the first real upper limit on the lambda parameter coming from Ge-based experiment
- Today this result sets the strongest upper bound on the lambda parameter

Limitations of this work

Main limitation of this work: the use of a published data

- We cannot perform analysis to characterize the detector and use the results to obtain a more precise result
- We cannot evaluate in the analysis the known background sources

But this work shows that this search is feasible nowadays

So we have started to think about a future dedicated experiment...

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

Available Technology

p-type point contact (PPC) germanium detectors.

mass~500g [10] (used by CoGent experiment)

Energy resolution (σ)~140 eV @59.5keV (²⁴¹Am) [10] [11]

[11] - C. E. Aalseth et al., PRL 106, 131301 (2011)

[10] - P. S. Barbeau et al., J. Cosmol. Astropart. Phys. 09 (2007) 009

CoGent Spectrum

Studies about the CoGent detector and spectrum are started

Alessandro Rizzo, LNF - INFN and University of Rome "Tor Vergata"

Thank you for your attention