Hyper-Kamiokande project

Masato SHIOZAWA

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Mathematics and Physics of the Universe, U of Tokyo

nuTURN2012 workshop, May-9-2012

Outline

- Introduction
 - physics motivation for Hyper-K
- Hyper-K detector design
- Physics potentials of Hyper-K
 impact of large θ₁₃
- Summary

Introduction

Standard Model

- The paradigm of elementary particles and interactions -

Questions on the neutrinos

- why the mass so tiny?
 - an evidence of new physics (suggesting high E scale physics)
- why the family mixing so large? different from quarks?
- Did CP violation in neutrinos play an important role in creating the observed matter-antimatter asymmetry in the universe?

→ Physics beyond standard model is required.

Letter of Intent:

The Hyper-Kamiokande Experiment

— Detector Design and Physics Potential —

K. Abe,^{12,14} T. Abe,¹⁰ H. Aihara,^{10,14} Y. Fukuda,⁵ Y. Hayato,^{12,14} K. Huang,⁴

A. K. Ichikawa,⁴ M. Ikeda,⁴ K. Inoue,^{8,14} H. Ishino,⁷ Y. Itow,⁶ T. Kajita,^{13,14} J. Kameda,^{12,14}

Y. Kishimoto,^{12,14} M. Koga,^{8,14} Y. Koshio,^{12,14} K. P. Lee,¹³ A. Minamino,⁴ M. Miura,^{12,14}

S. Moriyama,^{12, 14} M. Nakahata,^{12, 14} K. Nakamura,^{2, 14} T. Nakaya,^{4, 14} S. Nakayama,^{12, 14}

K. Nishijima,⁹ Y. Nishimura,¹² Y. Obayashi,^{12,14} K. Okumura,¹³ M. Sakuda,⁷ H. Sekiya,^{12,14}

M. Shiozawa,^{12, 14, *} A. T. Suzuki,³ Y. Suzuki,^{12, 14} A. Takeda,^{12, 14} Y. Takeuchi,^{3, 14}

H. K. M. Tanaka,¹¹ S. Tasaka,¹ T. Tomura,¹² M. R. Vagins,¹⁴ J. Wang,¹⁰ and M. Yokoyama^{10,14}

(Hyper-Kamiokande working group)

¹Gifu University, Department of Physics, Gifu, Gifu 501-1193, Japan

²High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
 ³Kobe University, Department of Physics, Kobe, Hyogo 657-8501, Japan

⁴Kyoto University, Department of Physics, Kyoto, Kyoto 606-8502, Japan

⁵Miyagi University of Education, Department of Physics, Sendai, Miyagi 980-0845, Japan

Hyper-K WG, arXiv:1109.3262 [hep-ex]

Multi-purpose detector, Hyper-K

- Total (fiducial) volume is 1 (0.56) million ton – 25 × Super-K
- Explore full picture of neutrino oscillation parameters.
 - Discovery of leptonic CP violation (Dirac δ)
 - v mass hierarchy determination($\Delta m_{32}^2 > 0$ or <0)
 - θ_{23} octant determination (θ_{23} < π /4 or > π /4)
- Extend nucleon decay search sensitivity
 - $-\tau_{proton} = 10^{34} \sim 10^{35}$ years
- Neutrinos from astrophysical objects
 - 200 v's / day from Sun
 - 250,000 (50) V's from Supernova @Galacticcenter (Andromeda)
 - 830 v's / 10 years Supernova relic v
 - WIMP v, solar flare v, etc

6

Hyper-K detector

Schematic view of Hyper-K

One of 10 compartments

Hyper-Kamiokande candidate site

8km south from Super-K
same T2K beam off-axis angle (2.5 degree)
same baseline length (295km)
2.6km horizontal drive from entrance
under the peak of Nijuugo-yama
648m of rock or 1,750 m.w.e. overburden
13,000 m³/day or 1megaton/80days natural water

Cavern excavation

5793

50000

50000

ベンチ(1)

ベンチ(2)

ベンチ(3)

ベンチ(4)

ベンチ(5)

ベンチ(6)

ベンチ(7)

ベンチ(8)

ベンチ(9)

1.没目アプローチ坑道

geological survey, in-situ rock stress tests

1ベンチ

3ベンチ

4ベンチ

5ベンチ

6ベンチ

1ベンチ

8ベンチ

9ベンチ

 scheduling & costing ongoing

側壁部ベンチカット

EL483.000

11000

(13)

50000

On-going studies

- design optimization is going on to achieve concrete proposal, lower cost, shorter construction period.
 - -vertical straight wall possible? expecting cost &period reduction for liner construction
 - -further reduction by wire support of PMTs
- need to secure waste rock disposal. (feasibility, cost estimation)
- water purification system design, water quality control strategy underway.

More on developments

- sensors
 - -20 inch Hybrid PD
 - -New 20inch PMT
 - -prototype in a year
- proof test by 8inch HPD from this summer
- water-proof system for DAQ electronics
- detector calibration method -quick, easy way
- software
 - -HK simulation & reconstruction
 - -Physics sensitivity studies

assuming budget being approved from JPY2016

Physics Potentials

v physics targets of Hyper-K

Given $\sin^2\theta_{13}$ a few % Daya Bay: $\sin^22\theta_{13} = 0.092 \pm 0.016(\text{stat}) \pm 0.005(\text{syst}))$

Leptonic CP violation, Dirac phase δ
 ν mass hierarchy, Δm²₃₂>0 or Δm²₃₂<0
 θ₂₃ octant, θ₂₃<π/4 or θ₂₃>π/4

Aiming to explore full picture of neutrino oscillation parameters.

Quest for CP Violation in lepton sector

∙0.6GeV vµ 295km

Super-K

higher intensity V by upgraded J-PARC

Google

高度 188.55 キロメートル

© 2010 ZENRIN Data © 2010 MIRC/JHA © 2010 Cnes/Spot Image © 2010 Mapabc.com

JPARC

<u>36°24'46.66" N 139°18'01.27" E 標高 214 メートル</u>

$\nu_{\mu} \rightarrow \nu_{e}$ probability

Normal hierarchy

• CPV test by comparing $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ • sensitive to exotic CPV (non MNS matrix origin)

Selected v_e CC candidates

 V_e signal efficiency ⇔ remaining BG 64% V_μ +anti V_μ CC <0.1%, NC $π^0$ <5% (0.1<E^{rec}_v < 1.25 GeV)

Expected v_e CC candidates

Numbers and shape for CP measurement

Contours

7.5MW · years

δ resolution $\sin^2 2\theta_{13} = 0.1$ Normal mass hierarchy (known) 60 δ**=90**° 1σ error of δ (degree) $\delta = 0^{\circ}$ 3.75 MW · yrs 40 (750kW×5yrs) 7.5 MW · yrs (750kW×10yrs/ I.5MW×5yrs) 20 0 3 2 5 6 8 9 10 7 0 4 Integrated beam power (MW-year) \bullet δ precision < 20° (δ=90°) < 10° ($\delta = 0^{\circ}$) • modest dependence on θ_{13} value

mass hierarchy determination

discrimination power of mass hierarchy

T2K90%CL DayaBay I o $\delta [\pi] 0$ 1σ 2σ 3σ -1 0.05 0.1 0.15 0 $sin^2 2\theta_{13}$

Chance to determine MH by HK-JPARC experiment !

Fraction of δ (%) for CPV discovery

Fraction of δ in % for which expected CPV (sin $\delta \neq 0$) significance is >3 σ

• Effect of unknown mass hierarchy is limited

• Input from atm v and other experiments also expected for MH

Atmospheric V_e flux

 $\sin^2\theta_{23}$ =0.5, $\sin^2\theta_{13}$ =0.04, solar on 0 1.5 Oscillated V_e flux 1.4 Non-oscillation 1.3 -0.2 1.2 1.1 -0.4 COSBV -0.6 0.9 0.8 -0.8 0.7 0.6 0.5 -1 10 10 Ev (GeV)

NuclPhysB669,255(2003) NuclPhysB680,479(2004) $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ in matter}$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } v_{e} \Rightarrow v_{\mu\tau} \text{ transi$

- happens in v in the case of normal mass hierarchy

- in anti-V in inverted mass hierarchy

Large θ_{13} value gives us a good chance to discriminate mass hierarchy.

Mass hierarchy discrimination power

> expect to discriminate normal from inverted hierarchy w/ 3σ significance by ~5years data.

Large θ_{13} values are encouraging.

If $\sin^2 2\theta_{23} < 0.99$, θ_{23} octant can be determined.

Experimental Limits

Super-K gives most stringent limits for many decay modes.

 $T(p \rightarrow e^{+}\pi^{0})$ >1.3×10³⁴years (90%C.L. by 220kton · yrs data)

► $T(p \rightarrow \nu K^+) > 4.0 \times 10^{33}$ years (90%C.L. by 220kton · yrs)

No signal evidence has been found giving constraints on models (GUTs)
 Constraints on SUSY models (ex: R-parity conservation)
 Exclude minimal SU(5) and minimal SUSY SU(5) models.

$p \rightarrow e^+ + \pi^0$ searches

Super-K cut

- 2 or 3 Cherenkov rings
- All rings are showering
- $85 < M_{\pi 0} < 185 MeV/c^2$ (3-ring)
- No decay electron
- 800 < M_{proton} < 1050 MeV/c² P_{total} < 250 MeV/c

- $\tau_{\text{proton}}/\text{Br} > 1.3 \times 10^{34} \text{ years } @ 90\%\text{CL}$

▶ BG measurement by accelerator ∨ (K2K)
 ▶BG=1.63+0.42/-0.33(stat.)+0.45/-0.51(syst.) (Mt×yrs)⁻¹ (Ev<3GeV)
 ▶Consistent w/ simulation 1.8±0.3(stat.)

Quality of next generation search is guaranteed.

Search for nucleon decays

- many models predicts branching ratio of $p \rightarrow e^+\eta$, $e^+\rho$, $e^+\omega$ are 10~20%
- Flipped SU(5) (Ellis) predicts $Br(p \rightarrow e^+\pi^0) \sim Br(p \rightarrow \mu^+\pi^0)$
- (B-L) violated mode, e.g. $|\Delta B|=2$.

Other topics

- v burst from Supernova
 - up to distance of ~Mpc
- relic SN ν (with Gd?)
- precise measurement of solar V
- v from WIMP, GRB, solar flare..
- Geophysics (V tomography of Earth)

Hyper-K WG, arXiv:1109.3262 [hep-ex]

Summary

- Hyper-Kamiokande will cover rich physics topics.
 - discovery reach for leptonic CP violation.
 - good chance to discriminate hierarchy and θ_{23} octant.
 - ~10 times better sensitivity for nucleon decays.
 - various astrophysical objects.
- Effect of large $\sin^2 2\theta_{13}$ (~0.1)
 - -JPARC-HK
 - -small effect on CPV test if mass hierarchy is known.
 - -(δ , sign(Δm^2_{23})) degeneracy may happen.
 - -Chance to determine the mass hierarchy.
 - -Atmospheric v
 - -Good chance to determine the mass hierarchy and θ_{23} octant