Learning from current facilities: mass ordering and CPV

NuTURN2012, 9 May 2012, LNGS, Italy

Thomas Schwetz

θ_{13} is large!

with SBL data: $\sin^2 \theta_{13} = 0.022^{+0.0033}_{-0.0030}$ $\sin^2 2\theta_{13} = 0.086 \pm 0.012$ $\theta_{13} = (8.5^{+0.62}_{-0.61})^{\circ}$ 6.9σ significance without SBL data using 2011 flux pred.: $\sin^2\theta_{13} = 0.026^{+0.0034}_{-0.0032}$ $\sin^2 2\theta_{13} = 0.101^{+0.013}_{-0.012}$ $\theta_{13} = (9.3 \pm 0.59)^{\circ}$ 8.0 σ significance

Gonzalez-Garcia, Maltoni, Salvado, TS, in prep.

 θ_{13} is large!

"Be careful what you wish for, because it may become true!"

Konfuzius

 θ_{13} is large!

- What can we do with "current facilities"?
- Are there ways to say something within ~10 years?

What can be done with T2K+NOvA+reactors?

T. Schwetz

Global fit ~2020?

Setup	$t_{ u}$ [yr]	$t_{ar{ u}}~[{ m yr}]$	P_{Th} or P_{Target}	$L [\mathrm{km}]$	Detector technology	$m_{ m Det}$
Double Chooz	-	3	$8.6~\mathrm{GW}$	1.05	Liquid scintillator	$8.3 \mathrm{t}$
Daya Bay	-	3	$17.4 \mathrm{GW}$	1.7	Liquid scintillator	80 t
RENO	-	3	$16.4 \mathrm{GW}$	1.4	Liquid scintillator	$15.4 \mathrm{t}$
T2K	5	-	$0.75 \ \mathrm{MW}$	295	Water Cerenkov	$22.5 \ \mathrm{kt}$
$NO\nu A$	3	3	$0.7 \ \mathrm{MW}$	810	TASD	$15 \mathrm{~kt}$

Global fit ~2020

Global fit ~2020

Global fit ~2020

BUT: 90% CL note scale on y axis

Global fit ~2020

BUT: 90% CL note scale on y axis

at 3σ those plots are empty!

How well can we do in θ_{23} ?

$$\begin{split} P_{\mu e} &\simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2 (1-A)\Delta}{(1-A)^2} \\ &+ \sin 2\theta_{13} \hat{\alpha} \, \sin 2\theta_{23} \, \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \, \cos(\Delta + \delta_{\rm CP}) \\ &+ \hat{\alpha}^2 \, \cos^2 \theta_{23} \, \frac{\sin^2 A\Delta}{A^2} \end{split}$$
with
$$\Delta &\equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}} \,, \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sin 2\theta_{12} \,, \quad A \equiv \frac{2E_{\nu} V}{\Delta m_{31}^2} \end{split}$$

- for large θ_{13} the leading term depends on octant
- beam+reactor combination may be sensitive to octant
 Minakata et al. hep-ph/021111; McConnel, Shaevitz, hep-ex/0409028; see also talk by G. Fogli

Global fit ~2020 - θ_{23} octant

T2K + NOvA upgrades

- T2K: proton driver, increase power from
 0.57 to 1.66 MW linearly from 2015 to 2016
- NOvA: project X, increase power from
 0.2 to 2.3 MW linearly from 2018 to 2019
- continue running till 2025
- use mutually optimized neutrino/antineutrino running times in NOvA and T2K

T2K + NOvA upgrades

T2K + NOvA upgrades

Atmospheric neutrino data

Atmospheric neutrino data

Akhmedov, Maltoni, Smirnov, hep-ph/0612285

Which atmospheric neutrino detector?

• Water Cerenkov?

no charge-ID \rightarrow dilution of effect \rightarrow huge detectors (> Mt yr) statistical neutrino/antineutrino separation?

• Liquid Argon?

same as above - magnetize it?

- Magnetized iron calorimeter? no electrons
- Ice? no charge ID, E-reconstruction hard, no electrons (maybe sum of e, τ, NC), but VERY BIG

3-flavor effects in atmospheric neutrinos

excess in electron-like events:

$$\begin{array}{ll} \frac{N_e}{N_e^0} - 1 \simeq & (r \, s_{23}^2 - 1) \, P_{2\nu}(\Delta m_{31}^2, \theta_{13}) & \theta_{13} \text{-effects} \\ & + & (r \, c_{23}^2 - 1) \, P_{2\nu}(\Delta m_{21}^2, \theta_{12}) & \Delta m_{21}^2 \text{-effects} \\ & - & 2s_{13}s_{23}c_{23} \, r \, \text{Re}(A_{ee}^* A_{\mu e}) & \text{interference: } \delta_{\text{CP}} \end{array}$$

$$r=r(E_{
u})\equiv rac{F_{\mu}^0(E_{
u})}{F_e^0(E_{
u})} \qquad rpprox 2 \quad (ext{sub-GeV}) rpprox 2.6-4.5 \quad (ext{multi-GeV})$$

3-flavor effects in atmospheric neutrinos

excess in electron-like events:

$$\frac{N_e}{N_e^0} - 1 \simeq (r \, s_{23}^2 - 1) \, P_{2\nu}(\Delta m_{31}^2, \theta_{13}) \qquad \theta_{13} \text{-effects} \\ + \, (r \, c_{23}^2 - 1) \, P_{2\nu}(\Delta m_{21}^2, \theta_{12}) \qquad \Delta m_{21}^2 \text{-effects} \\ - \, 2s_{13}s_{23}c_{23}r \, \text{Re}(A_{ee}^*A_{\mu e}) \qquad \text{interference: } \delta_{\text{CP}}$$

$$r=r(E_
u)\equiv rac{F_\mu^0(E_
u)}{F_e^0(E_
u)} \qquad rpprox 2 \quad (ext{sub-GeV}) \ rpprox 2.6-4.5 \quad (ext{multi-GeV})$$

Hierarchy with a 400kt WC detector

For $\sin^2 2\theta_{13} = 0.1$, it is quite likely that with $\sim Mt$ yr atm neutrino data from a WC or LAr detector we will determine the hierarchy

Hierarchy with a 400kt WC detector

For $\sin^2 2\theta_{13} = 0.1$, it is quite likely that with $\sim Mt$ yr atm neutrino data from a WC or LAr detector we will determine the hierarchy

Can we do something before that?

Hierarchy with a magn. iron calorimeter

difference of the μ -like event spectra for NH and IH

Hierarchy with a magn. iron calorimeter

Ability to reconstruct neutrino energy and direction is crucial

Petcov, TS, hep-ph/0511277; Indumathi, Murthy, hep-ph/0407336

How does the global situation improve if atmospheric data from the India-based Neutrino Observatory (INO) is combined with NOvA+T2K+reactors? Blennow,TS, 1203.3388

How does the global situation improve if atmospheric data from the India-based Neutrino Observatory (INO) is combined with NOvA+T2K+reactors? Blennow,TS, 1203.3388

- INO starts 2017 with 50kt or 100kt
- muon threshold of 2 GeV
- zenith angle region -1 < $\cos\theta$ < -0.1
- ~230 (neutrino+antineutrino) events per 50 kt yr (no osc)
- for energy and direction reconstruction consider "low" (15%, 15°) and "high" (10%, 10°) resolution scenario
- assume $\sin^2 2\theta_{13} = 0.09 \pm 0.017$

Blennow, TS, 1203.3388

Blennow, TS, 1203.3388

Can INO improve the sensitivity to CPV?

Blennow, TS, preliminary

exclusion of CP conservation as function of true CP phase T2K (5y v+5y anti-v) + NOvA (6y v+6y anti-v) + 1 Mt yr INO (high res.)

Can INO improve the sensitivity to CPV?

Blennow, TS, preliminary

T2K (5y \vee +5y anti- \vee) + NOvA (6y \vee +6y anti- \vee) + 1 Mt yr INO (high res.)

The mass hierarchy from the ice?

IceCube → DeepCore → **PINGU**

- ~20 additional strings within DeepCore
- lower threshold to few GeV
- ~I0 Mt effective volume
- construction within 1 yr, ~\$25 M

Doug Cowen, NuSky, ICTP, June 2011

Atmospheric neutrinos (muons) in PINGU

many events

Akhmedov, Razzaque, Smirnov, in prep.

Mass hierarchy from PINGU

Akhmedov, Razzaque, Smirnov, in prep.

Mass hierarchy from PINGU

Akhmedov, Razzaque, Smirnov, in prep.

Very promising! Reconstruction abilities still to be studied

Hierarchy from a reactor experiment

Petcov, Piai, hep-ph/0112074

 \overline{v}_e disappearance at intermediate baseline (40~60 km) interference term between solar and atmospheric oscillations

Hierarchy from a reactor experiment

Learned, Dye, Pakvasa, Svoboda, 06 Zhan, Wang, Cao, Wen, 08

- there are two large frequencies: Δm^2_{31} and Δm^2_{32}
- θ_{12} is non-maximal and we know the sign of Δm^2_{21}
- for NH (IH) the larger (smaller) frequency dominates

Hierarchy from a reactor experiment

$(\chi^2)_{stat}^{min}$	$\sin^2 2\theta_{13}^{ m true} = 0.07$			$\sin^2 2\theta_{13}^{\rm true} = 0.1$		
Detector exposure, kT GW yr	Energy resolution					
	2%	3%	4%	2%	3%	4%
200	6.21	4.99	3.81	12.91	10.41	7.90
400	12.40	9.98	7.60	25.80	20.80	15.78
600	18.61	14.95	11.71	38.70	31.20	23.50

Ghoshal, Petcov, 1011.1646

Conclusions

- With a global fit of T2K+NOvA+reactor around 2020 it will be very hard to obtain information on MO and CPV (low significance hints - if lucky)
- also with beam power/detector upgrades it will be hard (but we could be lucky: CP-fraction around 30%)
- Adding atmospheric neutrino data from INO may help with MO (and indirectly for CPV) BUT: reconstruction abilities, schedule, and detector mass is crucial
- atmospheric data in PINGU is very promising for MO fast reconstruction abilities to be studied
- MO from a reactor experiment at ~60 km: requires huge exposure (LENA-type) with good energy resolution

T2K/NOvA neutrino/antineutrino optimization

Huber, Lindner, TS, Winter, 0907.1896

blue: nominal green: optimized

INO - θ_{13} and θ_{23} dependence

