Results from T2K

Nick Hastings, University of Regina for the T2K Collaboration

nuTURN 2012

Nick Hastings (University of Regina)

http://t2k-experiment.org

Outline

Introduction

T2K experiment

T2K ν **Analysis** ν_{μ} disappearance analysis ν_{e} appearance analysis

T2K Current Status

Summary

Outline

Introduction

T2K experiment

T2K ν **Analysis** ν_{μ} disappearance analysis ν_{e} appearance analysis

T2K Current Status

Summary

Introduction

The Parameters

where $s_{ij} \equiv \sin \theta_{ij}$, $c_{ij} \equiv \cos \theta_{ij}$

- Recent results show $\sin^2 2\theta_{13} \simeq 0.1$
- Is $\sin^2 2\theta_{23}$ maximal?
- No information on *CP* phase δ

Introduction

Oscillations with a u_{μ} beam

• ν_{μ} disappearance:

$$egin{aligned} \mathcal{P}_{
u_{\mu}
ightarrow
u_{x
eq \mu}} &\simeq \cos^4 heta_{13} \sin^2 2 heta_{23} \sin^2 \Phi_{32} \ &\simeq \sin^2 2 heta_{23} \sin^2 \Phi_{32} \end{aligned}$$

• $\nu_{\mu} \rightarrow \nu_{e}$

$$P_{
u_{\mu}
ightarrow
u_{e}}\simeq\sin^{2}2 heta_{13}\sin^{2} heta_{23}\sin^{2}\Phi_{32}$$

Future possibilities

- Refine v_e appearance
- Since $\nu_{\mu} \rightarrow \nu_{e}$ is sufficiently large:
 - look for *CPV* with $\bar{\nu}_{\mu}$ beam

See Nakadaira's talk tomorrow

Where:

$$\Phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E} = \frac{1.27 (\Delta m_{ij}^2 / \text{eV}^2) (L/\text{km})}{E/\text{GeV}}$$

$$A_{\rm CP} = \frac{P_{\nu_{\mu} \to \nu_{e}} - P_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}}{P_{\nu_{\mu} \to \nu_{e}} + P_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}}$$
$$= \frac{\Delta m_{21}^{2}}{4E} \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \sin \delta$$

Outline

Introduction

T2K experiment

T2K ν **Analysis** ν_{μ} disappearance analysis ν_{e} appearance analysis

T2K Current Status

Summary

Tokai To Kamioka: "T2K"

Produce ν_{μ} beam at J-PARC and detect at Super-K

Primary Physics goals

• Precision measurement of ν_{μ} disappearance:

$$P_{\nu_{\mu} \to \nu_{x \neq \mu}} \simeq \sin^2 2\theta_{23} \sin^2 (1.27 \Delta m_{32}^2 L/E_{\nu})$$

• Discovery of $\nu_{\mu} \rightarrow \nu_{e}$ oscillation:

$$\mathcal{P}_{
u_{\mu}
ightarrow
u_{e}} \simeq \sin^2 2 heta_{13} \sin^2 heta_{23} \sin^2 (1.27 \Delta m_{32}^2 L/E_{
u})$$

T2K Collaboration

- 12 countries
- 59 institutes
- \simeq 500 collaborators

Nick Hastings (University of Regina)

Canada, France, Germany, Italy, Japan, Korea, Poland, Russia, Spain, Switzerland, UK, USA.

Tokai Site

Nick Hastings (University of Regina)

http://t2k-experiment.org

Tokai Site

11/35

Near Detectors

Off Axis

- "ND280"
- Flux in SK direction
- ν cross sections

On Axis

- "INGRID"
- ν_{μ} beam
 - profile
 - direction
 - intensity

On Axis Detector - INGRID

Design

- 14 modules in cross arrangement
- 10 m × 10 m
- Iron scintillator sandwich
- Provides
 - Beam parameters
 - Rate, direction and profile measurements

Note:

$$\Delta \theta \simeq 1 \text{ mrad} \Rightarrow \Delta E_{peak} \simeq 20 \text{ MeV}$$

Off Axis Detector - ND280

Design

- UA1 magnet, B=0.2 T
- Tracker
 - Time projection chambers (TPCs)
 - Fine Grained Detectors (FGDs): Tracking and target material (scintillator and water)
- π^0 detector (P0D)
- Electromagnetic calorimeter (ECAL)
- Side muon range detector (SMRD)
- Purpose (for today's presentation)
 - Tracker measuring CC ν_{μ} rate

Far Detector - Super-Kamiokande

- Cerenkov light from charged leptons from $\boldsymbol{\nu}$ interactions
- Use PMT pulse height & timing information
- Fit PMT hits to cone
 ⇒ momentum & direction
- Good e/μ separation
 - "Sharp" muon like rings
 - "Fuzzy" electron like rings

• OD 1185 PMTs: Veto

- ID 11129 PMTs
- FV 22.5 kt
 2 m from ID wall

Far Detector - Super-Kamiokande

- Cerenkov light from charged leptons from $\boldsymbol{\nu}$ interactions
- Use PMT pulse height & timing information
- Fit PMT hits to cone
 ⇒ momentum & direction
- Good e/μ separation
 - "Sharp" muon like rings
 - "Fuzzy" electron like rings

- OD 1185 PMTs: Veto
- ID 11129 PMTs
- FV 22.5 kt
 2 m from ID wall

Far Detector - Super-Kamiokande

- Cerenkov light from charged leptons from $\boldsymbol{\nu}$ interactions
- Use PMT pulse height & timing information
- Fit PMT hits to cone
 ⇒ momentum & direction
- Good e/μ separation
 - "Sharp" muon like rings
 - "Fuzzy" electron like rings

- OD 1185 PMTs: Veto
- ID 11129 PMTs
- FV 22.5 kt
 2 m from ID wall

Outline

Introduction

T2K experiment

T2K ν Analysis

 u_{μ} disappearance analysis u_{e} appearance analysis

T2K Current Status

Summary

T2K ν Analysis

T2K analysis approachFar DetectorDecay VolumeNear DetectorsPPTarget & Hornsμ Mon.0 m120 m280 m295 kmDetermine the number of events expected the at Far Detector (SK):

$$\mathcal{N}_{SK}^{exp}(E_{rec}) = rac{N_{ND}^{Data}}{N_{ND}^{MC}} \sum_{E_{true}} P_{
u_{\mu}
ightarrow
u_{x}}(E_{true}) \mathcal{N}_{SK}^{MC}(E_{rec}, E_{true})$$

• $N_{SK}^{MC}(E_{rec}, E_{true}) = \Phi \sigma \epsilon$ is MC prediction (w/o oscillations)

- Φ: Neutrino flux
- σ : Neutrino interaction cross sections
- ϵ : Detector efficiency terms
- $\frac{N_{ND}^{\text{MAD}}}{NMC}$ measured and simulated events at the near detector
- $P_{\nu_{\mu} \rightarrow \nu_{x}}(E_{true})$: oscillation probability

Compare/fit to number of observed events at T2K far detector (Super-K)

T2K ν Analysis

Data Set

T2K Run I

- 3.23×10^{19} pot
- Stable 50 kW operation

T2K Run II

- 11.08×10^{19} pot
- Achieved stable 145 kW operation
- Total of 14.31 \times 10 19 pot used for analysis
- Corresponds to 2% planned data

Nick Hastings (University of Regina)

http://t2k-experiment.org

Beam centre stability

MUMON

Stable to $< \pm 1$ mrad (dashed lines)

Nick Hastings (University of Regina)

nuTURN 2012 19/35 T2K ν Analysis

Event rate stability

On Axis: INGRID

integrated day(1 data point / 1day)

 ν event rate stable in both on and off axis detectors

T2K ν Analysis

Neutrino Flux

- Proton beam monitor measurements
- Hardon Production
 - NA61 experiment:
 - p on carbon target
 - π/k production
 - Phys. Rev. C 84, 034604 (2011)
 - Tuned to existing data
- Secondary hadronic interactions, particle decays, horns
 - GEANT3 simulation
 - Tuned to existing data

Neutrino Interactions

- Modelled with NEUT
 - Tuned by T2K using existing data from: SciBoone, MiniBoone, K2K
 - Cross checked w/ GENIE
- ν_μ CC constrained by ND280 measurements
 - 89% of Run I data
 - 1529 Events in FGD1
 - Good agreement w/ MC
 - Use measured ratio to further constrain interactions at FD

 $\frac{\textit{N}_{\textit{ND}}^{\nu_{\mu}\textit{CC,Data}}}{\textit{N}_{\textit{ND}}^{\nu_{\mu}\textit{CC,MC}}} = 1.036 \pm 0.028(\textit{stat})_{-0.037}^{+0.044}(\textit{det}) \pm 0.038(\textit{phys})$

ν interactions and E_{ν} reconstruction

$$P_{\nu_{\mu} \to \nu_{x}} = P_{\nu_{\mu} \to \nu_{x}} \left(E_{\nu} \right)$$

ν_{μ} CC cross sections

T2K ν Analysis

T2K ν event selection

Introduction

T2K experiment

T2K ν **Analysis** ν_{μ} disappearance analysis

 ν_e appearance analysis

T2K Current Status

Summary

T2K ν Analysis ν_{μ} disappearance analysis

ν_{μ} analysis and E_{ν} reconstruction

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27 \Delta m_{32}^2 L}{E_{\nu}} \right)$$

T2K far detector example distributions

- Distortion of *E_v* spectrum
- Reduction in number of events

T2K ν_{μ} event selection

u_{μ} disappearance results

Phys. Rev. D 85, 031103(R) (2012)

- Observe 31 events
- No osc. expectation: 104 ± 14
- Binned likelihood fit
- Best fit: $\sin^2 2\theta_{23} = 0.98$, $\Delta m_{32}^2 = 2.65 \times 10^{-3} \text{ eV}^2$

Introduction

T2K experiment

T2K ν **Analysis** ν_{μ} disappearance analysis ν_{e} appearance analysis

T2K Current Status

Summary

T2K ν Analysis ν_e appearance analysis

T2K ν_e event selection

T2K ν Analysis ν_e appearance anal

Phys. Rev. Lett. 107, 041801 (2011)

- Six events observed
- Expected background: 1.5 ± 0.3
- Prob. to observe 6 or more evts in null osc hyp is 0.007 (equiv 2.5σ)

For $\sin^2 \theta_{23}$ =1, $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{eV}^2$, $\delta_{CP} = 0$

- Best fit: $\sin^2 2\theta_{13} = 0.11$
- $0.03 < \sin^2 2\theta_{13} < 0.28$ @90% CL
- Consistent with earlier limits
- Recently confirmed by Daya Bay & RENO

Outline

Introduction

T2K experiment

T2K ν **Analysis** ν_{μ} disappearance analysis ν_{e} appearance analysis

T2K Current Status

Summary

Nick Hastings (University of Regina)

http://t2k-experiment.org

T2K Current Status

- Operation stopped by earthquake on 2011/03/11
- Beam w/o horns & 2011/12, 2012/01
- ν events seen in all detectors
- Now running steadily with all systems and up to 188 kW beam (c.f. 145 kW before earthquake)

Nick Hastings (University of Regina)

http://t2k-experiment.org

nuTURN 2012 33 / 35

Outline

Introduction

T2K experiment

T2K ν **Analysis** ν_{μ} disappearance analysis ν_{e} appearance analysis

T2K Current Status

Summary

Summary

- First ν_{μ} disappearance results from off-axis beam
 - Inconsistent with no-oscillation at 4.5σ
 - Consistent with Super-K, K2K, MINOS

Phys. Rev. D 85, 031103(R) (2012)

- First indication of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations
 - Six events observed over expected background 1.5 \pm 0.3
 - 0.007 probability of observing this if there are no oscillations (equivalent to 2.5σ indication)
 - Consistent with MINOS and Double Chooz

Phys. Rev. Lett. 107, 041801 (2011)

 T2K recovered from earthquake and has resumed operation with increased beam power.

Supplementary Material

Full $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta_{13}T_{1} + \alpha \sin 2\theta_{13} \underbrace{(T_{2} - T_{3})}_{+\alpha^{2}T_{4}} + \alpha^{2}T_{4}$$

 $T_{1} = \sin^{2} \theta_{23} \frac{\sin^{2}[(A-1)\Delta]}{(A-1)^{2}} \quad \leftarrow \text{Atmospheric}$ $T_{2} = \cos \delta_{\text{CP}} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(A\Delta)}{A} \frac{\sin[(A-1)\Delta]}{A-1}$ $T_{3} = \sin \delta_{\text{CP}} \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(A\Delta)}{A} \frac{\sin[(A-1)\Delta]}{A-1}$ $T_{2} - T_{3} = \sin 2\theta_{12} \sin 2\theta_{23} \cos(\Delta + \delta_{\text{CP}}) \frac{\sin(A\Delta)}{A} \frac{\sin[(A-1)\Delta]}{A-1}$ $T_{4} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(A\Delta)}{A^{2}} \quad \leftarrow \text{Solar}$

And:

Where:

$$A \equiv \frac{2EV}{\Delta m_{31}^2}, \quad \Delta \equiv \frac{\Delta m_{31}^2 L}{4E}, \quad \alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$$

Nick Hastings (University of Regina)

http://t2k-experiment.org

ν_e vertex distributions

- Clustering at large R
- Kolmogorov-Smirnov test of R² distribution has p-value of 0.03
- No excess observed outside FV or in OD
- Eagerly waiting for more data

ν_e systematic error contributions

		$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$	
Error source	N_{ND}	N_{SK}	N_{SK}/N_{ND}	N_{SK}	N_{SK}/N_{ND}
SK Efficiency	± 0.0	\pm 14.7	\pm 14.7	\pm 9.4	\pm 9.4
Cross section	\pm 8.3	\pm 13.5	\pm 14.0	\pm 9.8	$\pm \ 10.5$
Beam Flux	\pm 15.4	\pm 16.1	\pm 8.5	\pm 14.9	\pm 8.5
ND Efficiency	$+5.6 \\ -5.2$	$\pm \ 0.0$	$^{+5.6}_{-5.2}$	± 0.0	$^{+5.6}_{-5.2}$
Overall Norm.	\pm 0.0	$\pm \ 0.0$	\pm 2.7	$\pm \ 0.0$	\pm 2.7
Total	\pm 18.4	\pm 25.6	$^{+22.8}_{-22.7}$	\pm 20.2	$^{+17.6}_{-17.5}$

- Contributions to # of expected events from each systematic error group
- N_{SK} , N_{ND} are # of the expected events for far and near detectors
- Both signal and background events are included in N_{SK}
- N_{SK}/N_{ND} shows the SK expected events with ND normalization
- Per parameter breakdown on next slide

ν_e sys error contributions to # expected events

			sin^2	$22\theta_{13}=0$	\sin^2	$2\theta_{13} = 0.1$
Error source		N_{ND}	N_{SK}	N_{SK}/N_{ND}	N_{SK}	N_{SK}/N_{ND}
SK Norm.	f^{SKnorm}	± 0.0	± 1.4	± 1.4	± 1.4	± 1.4
SK Energy Scale	f^{Energy}	$\pm \ 0.0$	\pm 1.1	± 1.1	$\pm \ 0.6$	$\pm ~ 0.6$
SK Ring Counting	$f^{N_{ring}}$	± 0.0	\pm 8.1	\pm 8.1	\pm 5.0	\pm 5.0
SK PID Muon	$f^{PID\mu}$	± 0.0	± 0.9	± 0.9	± 0.3	± 0.3
SK PID Electron	f^{PIDe}	± 0.0	\pm 7.8	\pm 7.8	\pm 4.9	\pm 4.9
SK POLfit Mass	f^{POLfit}	$\pm \ 0.0$	\pm 8.5	\pm 8.5	\pm 6.0	$\pm~6.0$
SK Decay Electron	$f^{N_{dey}}$	± 0.0	± 0.3	± 0.3	± 0.2	± 0.2
SK π^0 Efficiency	$f^{\pi^0 eff}$	± 0.0	\pm 3.4	\pm 3.4	± 0.9	$\pm \ 0.9$
CC QE shape	$f^{CCQEshape}$	± 0.0	\pm 3.1	\pm 3.1	\pm 4.3	\pm 4.3
$CC \ 1\pi$	$f^{CC1\pi}$	\pm 5.9	\pm 3.7	$\pm~2.2$	\pm 4.2	± 1.8
CC Coherent π	f^{CCcoh}	\pm 3.3	± 0.2	\pm 3.1	± 0.3	\pm 3.0
CC Other	$f^{CCother}$	\pm 4.7	± 0.3	\pm 4.4	± 0.1	\pm 4.5
NC $1\pi^0$	$f^{NC1\pi^0}$	± 0.1	\pm 5.4	\pm 5.3	± 1.5	± 1.4
NC Coherent π	f^{NCcoh}	< 0.1	\pm 2.3	\pm 2.3	± 0.6	$\pm ~ 0.6$
NC Other	$f^{NCother}$	± 1.1	\pm 3.5	\pm 2.3	± 1.0	± 0.2
$\sigma(u_e)$	$f^{\sigma(u_e)}$	< 0.1	\pm 3.4	\pm 3.4	\pm 5.3	\pm 5.3
FSI	f^{FSI}	± 0.0	\pm 10.1	\pm 10.1	\pm 5.4	\pm 5.4
Beam Norm.	$f^{\phi}_{SK/ND}$	\pm 15.4	\pm 16.1	\pm 8.5	\pm 14.9	\pm 8.5
ND Efficiency	$f^{\epsilon_{ND}}$	$^{+5.6}_{-5.2}$	± 0.0	$^{+5.6}_{-5.2}$	± 0.0	$^{+5.6}_{-5.2}$
Overall Norm.	f^{norm}	± 0.0	$\pm \ 0.0$	\pm 2.7	$\pm \ 0.0$	$\pm~2.7$
Total		\pm 18.4	\pm 25.6	$^{+22.8}_{-22.7}$	$\pm~20.2$	$^{+17.6}_{-17.5}$

CIT /

u_{μ} systematic error contributions

	$N_{exp.}^{SK}$ error table	
Error source	$\sin^2 2\theta = 1.0, \Delta m^2 = 2.4$	Null Oscillation
SK		
Efficiency	+10.3% 10.3%	+5.1% $-5.1%$
Cross section		
and FSI	+8.3% $-8.1%$	+7.8% $-7.3%$
Beam		
Flux	+4.8% $-4.8%$	+6.9% $-5.9%$
ND Efficiency		
and Overall Norm.	+6.2% $-5.9%$	+6.2% $-5.9%$
Total	+15.4% $-15.1%$	+13.2% $-12.7%$

u_{μ} systematic error contributions

	change of N_{\exp}^{SK}	change of N_{\exp}^{SK}	change of N_{\exp}^{SK}
Source of systematic errors	$(\sin^2 2\theta = 1.0, \Delta m^2 = 2.4)$	$(\sin^2 2\theta = 1.0, \Delta m^2 = 2.32)$	(Null Osc.)
f_{CCQE0}^{SK}	+1.0% $-1.0%$	+1.0% $-1.0%$	+1.4% -1.4%
f^{SK}_{CCQE1}			
f^{SK}_{CCQE2}	+3.2% $-3.2%$	+3.2% $-3.2%$	+3.1% $-3.1%$
f^{SK}_{CCQE3}			
f_{CnCQE}^{SK}	+6.5% $-6.5%$	+6.5% $-6.5%$	+3.3% $-3.3%$
f_{NC}^{SK}	+7.2% $-7.2%$	+7.0% -7.0%	+2.0% $-2.0%$
$f^{SK}_{CC\nu_e}$	+0.0% $-0.0%$	+0.0% $-0.0%$	+0.0% $-0.0%$
$f_{E-scale}^{SK}$	+0.0% $-0.0%$	+0.0% $-0.0%$	+0.0% -0.0%
f^{ND}	+6.2% $-5.9%$	+6.2% $-5.9%$	+6.2% $-5.9%$
f_{CCQE}^{Xsec}	+2.5% $-2.5%$	+2.4% -2.4%	+4.1% -4.1%
$f_{CC1\pi}^{Xsec}$	+0.4% $-0.5%$	+0.5% $-0.6%$	+2.2% -1.9%
$f_{CCothers}^{Xsec}$	+4.1% $-3.6%$	+4.1% $-3.7%$	+5.3% $-4.7%$
f_{NC}^{Xsec}	+0.9% $-0.9%$	+0.8% $-0.8%$	+0.8% - $0.8%$
f_{ν_e/ν_u}^{Xsec}	+0.0% $-0.0%$	+0.0% $-0.0%$	+0.0% -0.0%
f^{FSI}	+6.7% $-6.7%$	+6.6% $-6.6%$	+3.2% $-3.2%$
$f_{SK/ND}^{Flux}$	+4.8% $-4.8%$	+4.7% $-4.7%$	+6.9% $-6.9%$
Total	+15.4% $-15.1%$	+15.2% -14.9%	+13.2% $-12.7%$

NA61 experiment

- Thin 0.04 λ
- T2K replica
- π^{\pm} , K^{\pm} , K^{0} production

Backgrounds

CC-nQE

• Incorrect $E_{\nu}^{\rm rec}$ determination

- Intrinsic ν_e content in beam
- Muon/Electron separation

- π^0 can look like electron
- Hampers $\nu_{\mu} \rightarrow \nu_{e}$ search

Full data set of 8×10^{21} pot (30 GeV)

- $\sin^2 2\theta_{23} = 1.0$
- $\delta m_{21}^2 = 7.6 \times 10^{-5} \text{ eV}^2$
- $\delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

 ν_{μ} disappearance

 $\delta(\sin^2 2 heta_{23}) < 0.01$ $\delta(\Delta m_{32}^2) < 10^{-4} \mathrm{eV}^2$