OBSERVATION OF REACTOR NEUTRINO DISAPPEARANCE AT RENO

Yeongduk Kim, Sejong University On behalf of RENO collaboration

2012. 5.8

NuTurn, Gran Sasso, INFN

Contents

- Θ_{13} measurement with reactor neutrinos
- RENO Sites
- Final Construction of RENO
- Data Taking and Data Reduction
- Calibration Data of RENO
- Background Reduction
- Chi2 Analysis
- Results of Θ_{13}
- Summary & Perspectives

Reactor Neutrino Experiment at a Glance

 $P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \sin^2(2\theta_{13}) \sin^2 \Delta_{31} - \cos^4 \theta_{13} \sin^2(2\theta_{12}) \sin^2 \Delta_{21}$

RENO Collaboration

Project of Only Korean Institutes

(12 institutions and 40 physicists)

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- Gyeongsang National University
- Kyungpook National University
- Pusan National University
- Sejong University
- Seokyeong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
 - Start of project : 2006
 - The first experiment running with both near & far detectors from Aug. 2011

실험팀, 30여년간 관측에 실패한 마지막 중성미자 변화상수를 밝히기 위해 프랑스

RENO Sites

Contributions of Reactors to Neutrino Flux

Reactor #	Far (%)	Near (%)
1	13.73	6.78
2	15.74	14.93
3	18.09	34.19
4	18.56	27.01
5	17.80	11.50
6	16.08	5.58

Accurate measurement of baseline distances to a precision of 10 cm using GPS and total station

Accurate determination of reduction in the reactor neutrino fluxes after a baseline distance, much better than 0.1%

RENO Detector

- 354 10" ID PMTs : 14% surface coverage
- 67 10" OD PMTs
- Both PMTs : HAMAMATSU, R7081
- Mu-metal shielding for each PMT. (-5cm)
- No special reflector for ID
- Tyvek reflector at OD

LAYER	D (cm)	H (cm)	vessel	Filled with	Mass (tons)
Target	280	320	Acrylic	Gd(0.1%) +LS	16.5
Gamma catcher	400	440	Acrylic	LS	30.0
Buffer	540	580	SUS	Mineral oil	64.4
Veto	840	880	Concrete	water	352.6

Summary of Milestones for RENO

- 2006. 03 : Start of the RENO project
- 2008. 06 ~ 2009. 03 : Civil construction including tunnel excavation
- 2008. 12 ~ 2009. 11 : Detector structure & buffer tanks complete.
- 2010. 06 : Acrylic containers installed
- 2010. 06 ~ 2010. 12 : PMT test & installation
- 2011. 01 : Detector closing/ Electronics hut & control room built
- 2011. 02 : Installation of DAQ electronics and HV & cabling
- 2011. 05 ~ 07 : Liquid scintillator production & filling
- 2011. 08 : Start data-taking.
- 2011. 11 : Double Chooz
- 2012. 3. 8 : Daya Bay
- 2012. 4. 3 : RENO results.

 $sin^{2}(2\theta_{13}) = 0.086 \pm 0.041(stat.) \pm 0.030(syst.)$

 $sin^{2}(2\theta_{13}) = 0.092 \pm 0.016(stat.) \pm 0.005(syst.)$

Detector Construction & Closing (Jan. 2011)

Completed RENO Detector (Feb. 2011)

10

Gd Loaded Liquid Scintillator

Recipe of Liquid Scintillator

 $C_n H_{2n+1}$ - $C_6 H_5$ (n=10~14)

Aromatic Solvent & Flour	WLS	Gd-compound	Linear Alkylbenzene
LAB	PPO + Bis-MSB	0.1% Gd+(TMHA) ³ (trimethylhexanoic acid)	

* Stable light yield over the time period : ~250 pe/MeV

Carboxylic acids

Electronics & Trigger

- QBEE : each channel digitized if over threshold.
- All the hits are sorted in time and grouped into an event if number of hits exceeds preset trigger condition. (ID:90, OD:10)
- Pedestal hits are collected realtime
- Intrinsic charge Injector into each channel for electronics calibration.
- Types of Trigger :

ID

- **OD**
- LASER
- PEDESTAL
- Charge Injector

Data-Taking & Data Set

- Data taking began on Aug. 1, 2011 with both near and far detectors.
 - Data-taking efficiency > 90%.
- Trigger rate at the threshold energy of 0.5~0.6 MeV : 80 Hz
- Data-taking period : 229 days Aug. 11, 2011 ~ Mar. 26, 2012

Trigger Rates

	NEAR	FAR
Depth (mwe)	120	450
Distance from Reactor baseline(m)	294	1383
Flux weighted distance (m)	408.56	1443.99
Muon Rate (Simulation)(/m ² sec)#	5.5	0.85
Average Muon energy (GeV)#	34.3	65.2
Inner Detector (Hz) (N _{PMT} >90)*	~280	~110
Outer Detector (Hz) (N _{PMT} >10)*	~533	~66

• * N_{PMT} is counted within 50nsec.

• # Simulated for Near (70m), Far(200m) depths.

14

Energy Calibration w/ source

- ~ 250 pe/MeV (sources at center)
- Identical energy response (< 0.1%) of ND & FD</p>
- Slight non-linearity observed

Spectra w/ sources after calibration

Long-term Stabilities

Cuts for v Events

- 1. Reject flashers and external gamma rays : $Q_{max}/Q_{tot} < 0.03$
- 2. Muon veto cuts : reject events after the following muons
 - 1 ms DEAD time for
 - ✓ E(ID) > 70 MeV
 - ✓ 20MeV < E(ID) < 70 MeV & N_{PMT} (OD) > 50
 - 10 ms DEAD time for E(ID) > 1.5 GeV
- 3. Coincidence :
 - E_{prompt} : 0.7 ~ 12.0 MeV, $E_{delayed}$: 6.0 ~ 12.0 MeV
 - coincidence : $2 \ \mu s < \Delta t_{e+n} < 100 \ \mu s$
- 4. Multiplicity cut : reject pairs if there is an any trigger in the preceding 100 μ s window.

Spectra & capture time of neutrons

Backgrounds I - Accidentals

□ Calculation of accidental coincidence

$$N_{accidental} = N_{delayed} \times \left(1 - \exp^{\left[-R_{prompt}\left(Hz\right) \times \Delta T(s)\right]}\right)$$

- $\Delta T = 100 \ \mu s$ time window
- Near detector :

20

$$R_{\text{prompt}} = 8.8 \text{ Hz}, N_{\text{delay}} = 4884/\text{day} \rightarrow BG_{accidental}^{near} = 4.30 \pm 0.06 / day$$

• Far detector :

 $R_{\text{prompt}} = 10.6 \text{ Hz}, \ N_{\text{delay}} = 643/\text{day} \rightarrow BG_{accidental}^{far} = 0.68 \pm 0.03 / day$

Backgrounds II – ⁹Li/⁸Be

Find prompt-delay pairs after muons, and obtain their time interval distribution with respect to the preceding muon.

• Near detector : $BG_{Li/He}^{near} = 12.45 \pm 5.93/day$

Far detector :

$$BG_{Li/He}^{far} = 2.59 \pm 0.75 / day$$

21

We have tried to extend to lower energy muons, but limited by high rates.

We have extrapolated higher energy data to lower threshold data.

Backgrounds III – fast neutrons

Obtain a flat spectrum of fast neutron's scattering with proton, above that of the prompt signal.

• Near detector : $BG_{neutron}^{near} = 5.00 \pm 0.13$ / day

• Far detector : BG^{far}

 $\frac{Jar}{neutron} = 0.97 \pm 0.06 / day$

Summary of Final Counts

Detector	Near	Far
Selected events	154088	17102
Total background rate (per day)	$21.75 {\pm} 5.93$	$4.24{\pm}0.75$
IBD rate after background	779.05 ± 6.26	72.78 ± 0.95
subtraction (per day)		
DAQ Live time (days)	192.42	222.06
Detection efficiency (ϵ)	$0.647 {\pm} 0.014$	$0.745 {\pm} 0.014$
Accidental rate (per day)	$4.30{\pm}0.06$	$0.68 {\pm} 0.03$
⁹ Li/ ⁸ He rate (per day)	$12.45{\pm}5.93$	$2.59{\pm}0.75$
Fast neutron rate (per day)	$5.00{\pm}0.13$	$0.97 {\pm} 0.06$

24

Visible energy spectra of neutrinos

Estimation of v event rates

1. Neutrino flux

26

 $\Phi_i^r(E_v) = \frac{P_i^r}{\sum_{iso=1}^4 f_i^{iso} \cdot E_f^{iso}} \sum_{iso=1}^4 f_i^{iso} \cdot \varphi^{iso}(E_v)$ Flux of r reactor on ith day

 P_i^r : thermal power of reactor r in ith day from power plant f_i^{iso} : fission fraction of each isotope in ith day (Burn=up) E_{f}^{iso} : fission energy of each isotope V.Kopeikin et al., Phys. Atom.Nucl. 67, 1982 (2004) $\varphi^{iso}(E_{\nu})$: flux of each isotope for E_{ν} ²³⁵U, ²³⁹Pu, ²⁴¹Pu in P. Huber, Phys. Rev. C84, 024617 (2011) ²³⁸U in T. Mueller et al., Phys. Rev. C83, 054615 (2011)

Supplied by power plant Daily thermal power Last Fuel Exchange period Fission fractions

Isotopes	James	Kopeikin	
²³⁵ U	201.7±0.6	201.92 ± 0.46	
²³⁸ U	205.0 ± 0.9	205.52 ± 0.96	
²³⁹ Pu	210.0 ± 0.9	209.99 ± 0.60	
²⁴¹ Pu	212.4±1.0	213.60 ± 0.65	

Estimation of v event rates

2. Event rates

$$N_{\exp}^{d,r} = \sum_{d=n,f} \frac{n_d}{4\pi R_{dr}} \sum_{i=1}^{days} \int_{E_v=1.804}^{E_v=10} \sigma_{total}(E_v) \Phi_i^r(E_v) \Delta T_i P_{OSC}(E_v, r_{jk}) dE_v$$

- R_{dr} : distance between each detector and reactor
- n_d : # of protons in each detector
- $\sigma_{total}(E_{v})$: total cross section of IBD
 - P. Vogel, PRD60, 053003 (1999)
- ΔT_i : DAQ time
- P_{OSC} : Oscillation probability

Observed Daily Averaged v Rate

29

Efficiency & Systematic Uncertainties

30

	50 mm			
	Reactor			
		Uncorrelated	Correlated	
	Thermal power	0.5%	_	
	= Fission fraction	0.7%	_	
Prompt energy cut	– Fission reaction cross section	_	1.9%	
Flacker aut	Reference energy spectra	—	0.5%	
Cd contains frontier	Energy per fission		0.2%	
Deleved as even out	Combined	0.9%	2.0%	
Time coincidence cut	Detection			
Spill in		Uncorrelated	Correlated	
Common	- IBD cross section	_	0.2%	
	\pm Target protons	0.1%	0.5%	
	Prompt energy cut	0.01%	0.1%	
Muon veto loss $(\delta_{\mu-veto})$ (1)	1. Flasher cut	0.01%	0.1%	
Multiplicity cut loss (δ_{multi}) (4. Gd capture ratio	0.1%	0.7%	
Total	$\overline{(\ell)}$ Delayed energy cut	0.1%	0.5%	
	$\stackrel{\simeq}{=}$ Time coincidence cut	0.01%	0.5%	
	Spill-in	0.03%	1.0%	
	Muon veto cut	0.02%	0.02%	
	Multiplicity cut	0.04%	0.06%	
	Combined (total)	0.2%	1.5%	

Reactor Antineutrino Disappearance

 Consistent with neutrino oscillation in the spectral distortion.

E>6 MeV distortion is not understood yet.

χ^2 Pull Analysis for Rate Only data $\chi^2 = \sum \left[N_{obs}^d + b_d - (1 + a + \xi_d) \sum_{r=1}^6 (1 + f_r) N_{exp}^{d,r} \right]^2$

$$\chi^{2} = \sum_{d=N,F} \frac{\left[N_{obs}^{d} + b_{d}^{d} - (1 + a + \xi_{d}^{c}) \sum_{r=1}^{6} (1 + f_{r}^{c}) N_{exp}^{d,r} \right]^{2}}{N_{obs}^{d}} + \sum_{d=N,F} \left(\frac{\xi_{d}^{2}}{\sigma_{d}^{\xi^{2}}} + \frac{b_{d}^{2}}{\sigma_{d}^{b^{2}}} \right) + \sum_{r=1}^{6} \left(\frac{f_{r}^{c}}{\sigma_{r}^{c}} \right)^{2}$$

 $N_{exp}^{d,r}$: expected # of events in d detector from r reactor parameters to fit :

a : absolute normalization parameter ξ_d : efficiency of detector d f_r : reactor core fluctuation b_d : backgrounds of detector d

32

 $\sigma_{N,F}^{\xi} = 0.002$ $\sigma_{r} = 0.009$ $\sigma_{N}^{b} = 5.93 / day$ $\sigma_{F}^{b} = 0.76 / day$

Definitive Measurement of θ_{13}

Accepted by PRL, will be on-line May 11th.

Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment

J. K. Ahn,⁷ S. Chebotaryov,⁶ J. H. Choi,⁴ S. Choi,¹⁰ W. Choi,¹⁰ Y. Choi,¹² H. I. Jang,¹¹ J. S. Jang,² E. J. Jeon,⁸ I. S. Jeong,² K. K. Joo,² B. R. Kim,² B. C. Kim,² H. S. Kim,¹ J. Y. Kim,² S. B. Kim,¹⁰ S. H. Kim,⁷ S. Y. Kim,⁷ W. Kim,⁶ Y. D. Kim,⁸ J. Lee,¹⁰ J. K. Lee,⁷ I. T. Lim,² K. J. Ma,⁸ M. Y. Pac,⁴ I. G. Park,⁵ J. S. Park,¹⁰ K. S. Park,⁹ J. W. Shin,¹⁰ K. Siyeon,³ B. S. Yang,¹⁰ I. S. Yeo,² S. H. Yi,¹² and I. Yu¹² (RENO Collaboration)

¹Department of Physics, Chonbuk National University, Jeonju 561-756, Korea
²Department of Physics, Chonnam National University, Gwangju, 500-757, Korea
³Department of Physics, Chung Ang University, Seoul 156-756, Korea
⁴Department of Radiology, Dongshin University, Naju, 520-714, Korea
⁵Department of Physics, Gyeongsang National University, Jinju, 660-701, Korea
⁶Department of Physics, Kyungpook National University, Daegu, 702-701, Korea
⁶Department of Physics, Pusan National University, Busan, 609-735, Korea
⁸Department of Physics, Sejong University, Seoul 143-747, Korea
⁹Division of General Education, Seokyeong University, Seoul, 136-704, Korea
¹⁰Department of Fire Safety, Seoyeong University, Gwangju, 500-742, Korea
¹²Department of Physics, Sungkyunkwan University, Suwon, 440-746, Korea

Future Efforts for θ_{13} at RENO

Contributions of the systematic errors :

35

- Background uncertainties : 0.0165 (far : 5.5%×17.7% = 0.97%, near : 2.7%×27.3% = 0.74%)
- Reactor uncertainty (0.9%) : 0.0100
- Detection efficiency uncertainty (0.2%) : 0.0103
- Absolute normalization uncertainty (2.5%) : 0.0104

Summary

- RENO was the first experiment to take data with both near and far detectors, from August 1, 2011.
- RENO observed a clear disappearance of reactor antineutrinos. $R = 0.920 \pm 0.009(stat.) \pm 0.014(syst.)$
- RENO measured the last, smallest mixing angle θ₁₃ unambiguously that was the most elusive puzzle of neutrino oscillations

 $\sin^2 2\theta_{13} = 0.113 \pm 0.013(stat.) \pm 0.019(syst.)$

Perspectives

A large value of θ_{13} :

- Need to update the designs for the future neutrino experiments.
- Three reactor measurement will strongly promote the next round of neutrino experiments to find the CP phase.
- May open a bright window of understanding why there is much more matter than antimatter in the Universe today.

A prospective future for neutrino physics due to a large value of θ_{13} !!!

Grazie !