

Observation of Electron Anti-neutrino Disappearance at Daya Bay

Jun Cao

Institute of High Energy Physics, CAS

on behalf of the Daya Bay Collaboration

nuTURN2012 - Neutrino at the Turning Point, Gran Sasso, May 8-10, 2012

Neutrino Oscillation

Neutrino Mixing: PMNS Matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric, K2K, MINOS, T2K, etc. **Reactor** Accelerator $\theta_{13} < 12^{\circ}$

Solar KamLAND $\theta_{12} \sim 30^{\circ}$

Known: $|\Delta m^2_{32}|$, $\sin^2 2\theta_{23}$, Δm^2_{21} , $\sin^2 2\theta_{12}$ Unknown: $\sin^2 2\theta_{13}$, δ_{CP} , Sign of Δm^2_{32}

Daya Bay experiment is designed to measure $\sin^2 2\theta_{13}$ to 0.01 or better at 90% C.L. in a three-year run.

Direct Searches in the Past

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041(\text{stat}) \pm 0.030(\text{sys})$

Daya Bay Experiment: Layout

- Relative measurement to cancel Corr. Syst. Err.
 - ⇒ 2 near sites, 1 far site
- Multiple AD modules at each site to -
- verify Uncorr. syst. Err.
 reduce Uncorr. Syst. Err.
 - ⇒ Far: 4 modules, near: 2 modules
- Multiple muon detectors to reduce veto eff. uncertainties
 - ⇒ Water Cherenkov: 2 layers
 - ⇒ **RPC:** 4 layers at the top + telescopes

Underground Labs

Anti-neutrino Detector (AD)

Three zones modular structure:

 target: Gd-loaded scintillator
 γ-catcher: normal scintillator
 buffer shielding: oil
 192 8" PMTs/module

 Two optical reflectors at the top and the bottom, doubled the photocathode coverage.

Neutrino Detection: Gd-loaded Liquid Scintillator

$$\overline{v}_e + p \rightarrow e^+ + n$$

 $\tau \approx 28 \ \mu s(0.1\% \ \mathrm{Gd})$

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

 $n + Gd \rightarrow Gd^* + \gamma (8 \text{ MeV})$

Neutrino Event: coincidence in time, space and energy

Neutrino energy:

$$E_{\overline{v}} \cong (T_{e^+}) + T_n + (M_n - M_p) + m_{e^+}$$

10-40 keV 1.8 MeV: Threshold

7

Gd-loaded Liquid Scintillator

Home made liquid: ⇒ 185t Gd-LS, ~200t LS, ~320t oil LAB-based+PPO+BisMSB Gd(TMHA)₃

Stable over time

- \Rightarrow IHEP prototype (600L) since 2007
- \Rightarrow 4-ton dry run since Mar. 2009
- \Rightarrow 185t production completed in Jan. 2011

Liquid hall and mixing equipment

8

Automatic Calibration System

Three Z axis:

- ⇒ One at the center
 - ✓ For time evolution, energy scale, nonlinearity...
- \Rightarrow One at the edge
 - ✓ For efficiency, space response
- \Rightarrow One in the γ -catcher
 - ✓ For efficiency, space response
- **3 sources for each z axis:**
 - ⇒ LED
 - ✓ for T₀, gain and relative QE
 - $\Rightarrow \quad {}^{68}\text{Ge} \ (2 \times 0.511 \text{ MeV} \ \gamma's)$
 - ✓ for positron threshold & non-linearity...
 - $\Rightarrow 241 \text{Am-}{}^{13}\text{C} + {}^{60}\text{Co} (1.17 + 1.33 \text{ MeV} \gamma's)$
 - ✓ For neutron capture time, ...
 - ✓ For energy scale, response function, ...
- Once every week:
 - ⇒ 3 axis, 5 points in Z, 3 sources

Muon Veto Detector

Two active cosmic-muon veto's

Water Cerenkov: Eff.>99.7% (long track muon)

> RPC Muon tracker: Eff. > 88%

Water Pool

- ⇒ High purity de-ionized water in pools also for shielding (2.5m)
- ⇒ First stage water production in hall 4
- ⇒ Local water re-circulation & purification

Water Cerenkov detector

- ⇒ Two layers, separated by Tyvek/PE/Tyvek film
- 288 8" PMTs for near halls; 384
 8" PMTs for the far hall
- **RPCs**
 - → 4 layers/module
 - ⇒ 54 modules/near hall, 81 modules/far hall
 - ⇒ 2 telescope modules/hall

Two ADs Installed in Hall 1

Hall 1 (2 ADs) Started the Operation on Aug.15, 2011

One AD insalled in Hall 2 Physics Data Taking Started on Nov.5, 2011

May 8,

Three ADs insalled in Hall 3 Physics Data Taking Started on Dec.24, 2011

Data Set

- Dec. 24, 2011- Feb. 17, 2012, 55 days
- Data volume: 15TB
- **DAQ eff.** ~ 97%
- Data taking for physics:
 ~ 89%

Flashers: Imperfect PMTs

Contamination: < 0.01%

Single Rate: Understood

- Design: ~50Hz above
 1 MeV
- Data: ~60Hz above
 0.7 MeV, ~40Hz
 above 1 MeV
- From sample purity and MC simulation, each of the following component contribute to singles
 - ⇒ ~ 5 Hz from SSV
 - → ~ 10 Hz from LS
 - ⇒ ~ 25 Hz from PMT
 - Solution ⇒ < 5 Hz from rock</p>

Neutron-like Singles

Sources	J	EH1 EH2		EH3		
	Rate (/day/AD)	Fraction	Rate (/day/AD)	Fraction	Rate (/day/AD)	Fraction
¹² B/ ¹² N	478+-13	46.4+-1.3%	354+-4	42.1+-0.5%	35+-2	12.7+-1.0%
⁸ Li/ ⁸ B	216+-18	21.0+-1.8%	155+-16	18.5+-1.9%	16+-5	5.8+-1.8%
°C	40+-16	3.8+-1.6%	24+-9	2.9+-1.1%	4+-4	1.4+-1.4%
⁹ Li/ ⁸ He	4+-2	0.4+-0.2%	3+-2	0.4+-0.2%	<1	< 0.4%
¹¹ Be	7+-4	0.7+-0.4%	5+-3	0.6+-0.4%	<1	< 0.4%
IBD e ⁺ (n captured on H)	14+-1	1.4+-0.1%	12+-1	1.4+-0.1%	2+-1	0.7+-0.4%
AmC neutron	271+-10	26.3+-1.0	277+-7	33.0+-0.8	205+-11	74.3+-5.5%
Sum	1030+-29	100.0+-2.9%	830+-20	98.8+-2.4%	262+-13	94.9+-6.7%
All singles	1030+-7		840+-3		276+-14	

Event Reconstruction: Energy Calibration

1.

2.

3.

1.3

1.2 1.1

0.9 0.8

Event Reconstruction: Energy Calibration

- Energy uncertainty among 6 ADs (uncorrelated):
 - ⇒ Relative difference in reconstructed energy among ADs is better than 0.5%
 - Systematic uncertainties from timevariation, non-linearity, nonuniformity... are also within 0.5%

An Alternative Method

- Using spallation neutrons in each space grid to calibrate the energy response
- Neutrons from neutrinos can then be reconstructed correctly
- Consistent with methods within 0.5%

Energy of spallation neutron

May 8, 2012

Event Signature and Backgrounds

• Signature: $\overline{\nu}_e + p \rightarrow e^+ + n$

- \Rightarrow **Prompt:** e⁺, **E:** 1-10 MeV,
- ⇒ Delayed: n, E: 2.2 MeV@H, 8 MeV @ Gd
- ⇒ Capture time: 28 µs in 0.1% Gd-LS

Five Backgrounds identified

- \Rightarrow Uncorrelated: random coincidence of $\gamma\gamma$, γ n & nn
 - γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...
 - ✓ n from α -n, μ -capture, μ -spallation in LS, water & rock
- ⇒ Correlated:
 - ✓ Fast neutrons: prompt—n scattering, delayed —n capture
 - ✓ 8He/9Li: prompt — β decay, delayed —n capture
 - Am-C source: prompt —γ rays, delayed —n capture
 - ✓ α-n: ${}^{13}C(α,n){}^{16}O$

Neutrino Event Selection

Pre-selection

- ⇒ Reject Flashers
- ⇒ Reject Triggers within (-2 μs, 200 μs) to a tagged water pool muon
- Neutrino event selection
 - ⇒ Multiplicity cut
 - \checkmark Prompt-delayed pairs within a time interval of 200 µs
 - ✓ No triggers(E > 0.7 MeV) before the prompt signal and after the delayed signal by 200 µs
 - ⇒ Muon veto
 - ✓ *Is* after an AD shower muon
 - ✓ *1ms* after an AD muon
 - ✓ *0.6ms* after an WP muon
 - \Rightarrow 0.7MeV < E_{prompt} < 12.0MeV
 - \Rightarrow 6.0MeV < E_{delayed} < 12.0MeV
 - $\Rightarrow \quad 1\mu s < \Delta t_{e^+-n} < 200\mu s$

Accidental Backgrounds

Fast Neutrons

- Extend the prompt energy spectrum to high energy by relax the prompt energy cut
- Fit the energy spectrum in the [12MeV, 100MeV] range, and estimate backgrounds in the [0.7MeV, 12MeV] region
- Take a zero-order or first order polynomial fit, and take their differences as systematics
- Cross checked by muon-tagged fast neutrons with projected muon eff.

<u>Backgrounds –⁸He/⁹Li</u>

Cosmic µ produced ⁹Li/⁸He in LS Cosmic μ produced ⁹Li/⁸He in LS β -decay + neutron emitter $\tau(^{8}\text{He}/^{9}\text{Li}) = 171.7\text{ms}/257.2\text{ms}$ ⁸He/⁹Li, Br(n) = 12%/48%, ⁹Li dominant Production rate follow F ^{0.74} power law

- \Rightarrow β -decay + neutron emitter
- $\tau(^{8}\text{He}/^{9}\text{Li}) = 171.7\text{ms}/257.2\text{ms}$
- **Production rate follow E**^{0.74} **power law**

Measurement:

⇒ Time-since-last-muon fit

$$f(t) = B/\lambda \cdot e^{-t/\lambda} + S/T \cdot e^{-t/T}$$

- Improve the precision by reducing the muon rate:
 - Select only muons with an energy deposit >1.8MeV within a [10us, 200us] window
 - Issue: possible inefficiency of ⁹Li
- **Results w/ and w/o the reduction is** studied

$$\sigma_b = \frac{1}{N} \cdot \sqrt{(1 + \tau R_\mu)^2 - 1}$$

NIM A564 (2006)471

Measurement in EH1+EH2 & Prediction in EH3

- Measurement in EH1/EH2 with good precision, but EH3 suffers from poor statistics
- Results w/ and w/o the muon reduction consistent within 10%
- Correlated ⁹Li production (E_μ^{0.74} power law) allow us to further constraint ⁹Li yield in EH3
- Energy spectrum consistent with expectation.

²⁴¹Am-¹³C Backgrounds

Uncorrelated backgrounds:

$R = 50 \text{ Hz} \times 200 \text{ } \mu s \times R_{n-like} \text{ (events/day/AD)}$

- ➡ R_{n-like} Measured to be ~230/day/AD, in consistent with MC Simulation
- $\Rightarrow R is not a negligible amount, particularly at the far site (B/S ~ 3%) (will remove ACU-B/C)$
- Measured together with all the other uncorrelated backgrounds

Correlated backgrounds:

- Neutron inelastic scattering with ⁵⁶Fe + neutron capture on ⁵⁷Fe
- Simulation shows that correlated background is 0.2 events/day/AD, corresponding to a B/S ratio of 0.03% at near site, 0.3% at far site

Uncertainty: 100%

Background ¹³C(α,n)¹⁶O

 Potential α sources: ²³⁸U, ²³²Th, ²²⁷Ac, ²¹⁰Po
 Alpha rate determined from cascade decays
 Neutron yield calculated from α rate and (α,n) cross sections

	Components	Total α rate	BG rate
Region A	Acc. Coincidence of ²¹⁰ Po & ²¹⁰ Po	²¹⁰ Po:	
Region B	Acc. Coincidence of ²¹⁰ Po & ⁴⁰ K	10Hz at EH1	0.02/day at EH1
Region C	Acc. Coincidence of ⁴⁰ K & ²¹⁰ Po	8Hz at EH2	0.015/day at EH2
Region D	Acc. Coincidence of ²⁰⁸ Tl & ²¹⁰ Po	6HZ at EH3	0.01/day at EH3
Region E	Cascade decay in ²²⁷ Ac chain	1.4 Bq	0.01/day
Region F	Cascade decay in ²³⁸ U chain	0.07Bq	0.001/day
Region G	Cascade decay in ²³² Th chain	1.2Bq	0.01/day

U.6

0.8

1.2

1

1.4

Uncertainty: 50%

10²

10

1

1.8

Prompt energy

1.6

Signals and Backgrounds

	AD1	AD2	AD3	AD4	AD5	AD6
Neutrino candidates	28935	28975	22466	3528	3436	3452
DAQ live time (day)	49.	5530	49.4971		48.9473	
Veto time (day)	8.7418	8.9109	7.0389	0.8785	0. 8800	0.8952
Efficiency	0.8019	0.7989	0.8363	0.9547	0.9543	0.9538
Accidentals (/day)	9.82±0.06	9.88±0.06	7.67±0.05	3.29±0.03	3.33±0.03	3.12±0.03
Fast neutron (/day)	0.84±0.28	0.84±0.28	0.74±0.44	0.04±0.04	0.04 ± 0.04	0.04 ± 0.04
⁸ He/ ⁹ Li (/day)	3.1:	±1.6	1.8±1.1	0.16±0.11		
Am-C corr. (/day)	0.2±0.2					
¹³ C(α, n) ¹⁶ O (/day)	0.04±0.02	0.04±0.02	0.035±0.02	0.03±0.02	0.03±0.02	0.03±0.02
Neutrino rate (/day)	714.17 ±4.58	717.86 ±4.60	532.29 ±3.82	71.78 ±1.29	69.80 ±1.28	70.39 ±1.28

Signal+Backgound Spectrum

Muon Veto and Multiplicity Cut

- The only eff. that correct for each AD.
- All other differences between the functionally identical ADs were not corrected, but taken as uncorrelated uncertainties.
- Muon veto
 - ⇒ Total veto time is sum of individual veto time window of each muon
 - → Temporal overlap is taken into account, to avoid repetitive calculation
- Multiplicity cut
 - ⇒ Live time is segmented into isolated live windows by muon veto
 - $\Rightarrow \quad \textbf{Efficiency in each live window} \Rightarrow \varepsilon_1 \times \varepsilon_2 \times \varepsilon_3$

	Eff.	Corr.	Un-corr.
Multiplicity cut		0.02%	< 0.01%

Energy Cuts Efficiency and Systematics

Delayed energy cut $E_n > 6$ **MeV**

3000

2500

- Data, DYB-AD1

Gd Capture Fraction: H/Gd and Systematics

Uncertainties :

- ⇒ Relative Gd content variation
 0.1% → evaluated from neutron capture time
- ⇒ Geometry effect on spill-in/out 0.02% → relative differences in acrylic vessel thickness and density and liquid density are modeled in MC

Neutron capture time from Am-C

Alternative Analysis

- Using an alternative energy calibration algorithm based on spallation neutron peak
- Different neutrino selection criteria
 - ➡ Muon cut: 0.4s after an AD shower muon (different shower muon threshold), 1.4ms after an AD muon, 0.6ms after a WP muon
 - → A different multiplicity cut
- Results: consistent within statistical errors

Side-by-side Comparison

Expected ratio of neutrino events from AD1 and AD2: 0.981
 Measured ratio: 0.987 ± 0.008(stat) ± 0.003

- The ratio is not 1
 because of baseline
- This final check shows that systematic errors are under control

Predictions

- Baseline
- Target mass
- Reactor neutrino flux
- Others

 The reactor neutrino flux, baseline and target mass are blinded before we fix our analysis cut and procedure.

Baseline

- Various measurements: GPS, Total Station, laser tracker, level instruments, ...
- **Compared with design values, and NPP coordinates**
- **Data processing by three independent software**
- **Final baseline uncertainty is 28 mm**
- **Uncertainty of the fission center from reactor simulation:**
 - ⇒ 2 cm horizontally
 - ⇒ 20 cm vertically
- The combined baseline
- error is 35mm,
- corresponding to a
- negligible reactor flux
- uncertainty (<0.02%)

Target Mass & No. of Protons

- **Target mass during the filling measured by bellows** the load cell, precision ~ $3 \text{kg} \rightarrow 0.015\%$
- **Checked by Coriolis flow meters, precision** ~ 0.1%
- **Actually target mass:**

 $\mathbf{M}_{\text{target}} = \mathbf{M}_{\text{fill}} - \mathbf{M}_{\text{overflow}} - \mathbf{M}_{\text{bellow}}$

- $\mathbf{M}_{\text{overflow}}$ and $\mathbf{M}_{\text{bellows}}$ are determined by geometry
- **M**_{overflow} is monitored by sensors

Quantity	Relative	Absolute
Free protons/Kg	neg.	0.47%
density	neg.	0.0002%
Total mass	0.015%	0.015%
Bellows	0.0025%	0.0025
Overflow tank	0.02%	0.02%
Total	0.03%	0.47%

One batch LAB

Reactor Neutrinos

Reactor neutrino spectrum

$$S(E_{\nu}) = \frac{W_{th}}{\sum_{i} (f_i/F)e_i} \sum_{i}^{istopes} (f_i/F)S_i(E_{\nu})$$

- Thermal power, W_{th}, measured by KIT system, calibrated by KME method
- Fission fraction, f_i, determined by reactor core simulation
- Neutrino spectrum of fission isotopes
 S_i(E_v) from measurements
- Energy released per fission e_i

Isotope	E_{fi} , MeV/fission
$^{235}\mathrm{U}$	201.92 ± 0.46
$^{238}\mathrm{U}$	205.52 ± 0.96
239 Pu	209.99 ± 0.60
$^{241}\mathrm{Pu}$	213.60 ± 0.65

Kopeikin et al, Physics of Atomic Nuclei, Vol. 67, No. 10, 1892 (2004)

Reactor				
Correla	ted	Unco	orrelated	
Energy/fission	0.2%	Power	0.5%	
$\overline{\nu}_e$ /fission	3%	Fission fraction	on 0.6%	
		Spent fuel	0.3%	
Combined	3%	Combined	0.8%	

Relative measurement → independent from the neutrino spectrum prediction

Daily Rate

- Three halls taking data synchronously allows near-far cancellation of reactor related uncertainties
- Rate changes reflect the reactor on/off.

Prediction is relative plus a normalization correction.

Complete Efficiency and Systematics

	Detector				
		Efficiency	Correlated	Uncorrelated	
	Target Protons		0.47%	0.03%	
Uncorrelated	Flasher cut	99.98%	0.01%	0.01%	
detector uncertainty	Delayed energy cut	90.9%	0.6%	0.12%	
0.2%	Prompt energy cut	99.88%	0.10%	0.01%	
	Multiplicity cut		0.02%	${<}0.01\%$	
Total correlated	Capture time cut	98.6%	0.12%	0.01%	
uncertainty 3.6%	Gd capture ratio	83.8%	0.8%	$<\!0.1\%$	
	Spill-in	105.0%	1.5%	0.02%	
	Livetime	100.0%	0.002%	$<\!0.01\%$	
Uncorrelated	Combined	78.8%	1.9%	0.2%	
reactor uncertainty	Reactor				
0.8%	Correlated		Uncorrelated		
	Energy/fission	0.2%	Power	0.5%	
	$\overline{\nu}_{e}$ /fission	3%	Fission fraction	on 0.6%	
			Spent fuel	0.3%	
	Combined	3%	Combined	0.8%	

٨

Electron Anti-neutrino Disappearence

Using near to predict far

$$R = \frac{Far_{measured}}{Far_{expected}} = \frac{M_4 + M_5 + M_6}{\sum_{i=4}^{6} (\alpha_i (M_1 + M_2) + \beta_i M_3)}$$

$$M_{i} = \frac{IBD_{i} - B_{i}^{Acc} - B_{i}^{FNeutron} - B_{i}^{9Li/8He} - B_{i}^{AmC} - B_{i}^{\alpha-n}}{\epsilon_{i}^{muon}\epsilon_{i}^{multi}TMass_{i}}$$

Determination of α , β :

- 1) Set R=1 if no oscillation
- 2) Minimize the residual reactor uncertainty

Spectral distortion Consistent with oscillation

<u>χ² Analysis</u>

May 8, 2012

The Daya Bay Collaboration

Political Map of the World, June 1999

Europe (2) JINR, Dubna, Russia Charles University, Czech Republic

North America (16)

BNL, Caltech, LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI,
UC-Berkeley, UCLA, Univ. of Cincinnati,
Univ. of Houston, Univ. of Wisconsin,
William & Mary, Virginia Tech.,
Univ. of Illinois-Urbana-Champaign, Siena

~250 Collaborators

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ.,

Asia (20)

Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Daya Bay Future plan

- ⇒ Assembly of AD7 and AD8, to be completed before summer
- ➡ Continue the data taking until summer
- Update result for *Neutrino* and *ICHEP* conferences with
 2.5 times more statistics.
 - ⇒ Installation of AD7 & AD8 in summer
 - ➡ Detector calibration
 - → Re-start data taking after summer
- Full 6-AD data set with shape analysis.

Three years' operation, reducing uncertainty from 20% to (4-5)%.

Daya Bay-II

A 60km-baseline Reactor Experiment and Beyond

Jun Cao

Institute of High Energy Physics, CAS

nuTURN2012 - Neutrino at the Turning Point, Gran Sasso, May 8-10, 2012

Daya Bay-II Experiment

Giant Detector located at 60 km from Daya Bay reactors, the 1st maximum of θ_{12} oscillation.

20 kton detector

- **3% energy resolution**
- Rich physics possibilities
 - ⇒ Mass hierarchy
 - Precision measurement of 4 mixing parameters
 - ⇒ Supernovae neutrino
 - ⇒ Geoneutrino
 - ⇒ Sterile neutrino
 - ⇒ Abnormal magnetic moment
 - ⇒ Possible CPV

Site Investigation

MH: Accelerator Exp.

Figure 2: The power to discriminate the mass hierarchy (MH) with LBL experiments and the combinations of beam and Daya-Bay experiments where an inverted mass hierarchy is assumed in the simulation.

May 8, 2012

Reactor Exp. to determine MH

Features of Hierarchy

$$FST(\omega) = \int_{t_{min}}^{t_{max}} F(t) \sin(\omega t) dt$$
$$FCT(\omega) = \int_{t_{min}}^{t_{max}} F(t) \cos(\omega t) dt$$

- Clear distinctive features:
 - ⇒ FCT:
 - ✓ NH: peak before valley
 - ✓ IH: valley before peak
 - \Rightarrow **FST**:
 - ✓ NH: prominent peak
 - ✓ IH: prominent valley
- Better than power spectrum
- No pre-condition of Δm^2_{23}

Discrimination Power

$$\sin^{2} 2\theta_{13} = 0.092$$

$$\sin^{2} 2\theta_{12} = 0.861$$

$$\sin^{2} 2\theta_{23} = 1$$

$$\Delta m_{21}^{2} = 7.59 \times 10^{-5} eV^{2}$$

$$\Delta m_{32}^{2} = 2.43 \times 10^{-3} eV^{2}$$

Energy resolution	3%/sqrt(E)
Baseline	58 km
Thermal Power	35 GW

50k events = 20k tons X 3 years

Mixing parameters

• Uncertainties of mixing parameters

	Current	Daya Bay II
Δm_{12}^2	3%	< 1%
Δm_{23}^2	5%	< 1%
$\sin^2\theta_{12}$	6%	< 1%
$\sin^2\theta_{23}$	20%	-
$\sin^2\theta_{13}$	20% (5%)	cross check to 5%

To be elaborated

Check the unitary of the mixing matrix to 1% (need sin²θ₂₃, CPV)

It is possible to measure everything

250 MeV, 1 mA cyclotron is under construction at MIT and a GeV-energy, megawatt-class cyclotron is presently under design. When in production, because of new, inexpensive superconducting technology, these machines are expected to cost 5% of a conventional proton accelerator

Cyclotron Pion decay at rest

< \$20M). J. Conr

J. Conrad, M. Shaevitz, PRL 104, 141802

<u>Supernova</u>

• Less than 20 events observed so far (2002 Noble prize)

Assumptions:

- ⇒ Distance: 10 kpc (our Galaxy center)
- ⇒ Energy: 3×10⁵³ erg
- \Rightarrow L_v the same for all types
- ➡ Tem. & energy

Many types of events:

- $\Rightarrow v_e + p \rightarrow n + e^+, \sim 3000 \text{ correlated events}$
- \Rightarrow $\nabla_{e} + {}^{12}C \rightarrow {}^{13}B^* + e^+, \sim 10\text{-}100 \text{ correlated events}$
- $\Rightarrow \overline{v_e} + {}^{12}C \rightarrow {}^{11}N^* + e^-, \sim 10\text{-}100 \text{ correlated events}$
- $\Rightarrow v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*, \sim 600 \text{ correlated events}$
- $\Rightarrow v_{x} + p \rightarrow v_{x} + p, \text{ single events}$
- \Rightarrow $v_e + e^- \rightarrow v_e + e^-$, single events
- $\Rightarrow v_x + e^- \rightarrow v_x + e^-$, single events

 $T(\underline{v}_e) = 3.5 \text{ MeV}, \langle E(\underline{v}_e) \rangle = 11 \text{ MeV}$ $T(v_e) = 5 \text{ MeV}, \quad \langle E(v_e) \rangle = 16 \text{ MeV}$ $T(v_x) = 8 \text{ MeV}, \quad \langle E(v_x) \rangle = 25 \text{ MeV}$

SuperK can not see these correlated events

Detector Concept

- Neutrino target: ~20kt LS, LAB based
 30m(D)×30m(H)
- Oil buffer: 6kt
- Water buffer: 10kt
- PMT: 15000 20"

- Strong Source: Sterile neutrino, abnormal magnetic moment
- Geoneutrino

Thanks!