

Neutrino Beams @ CERN

...with feedback from many colleagues thanks!

- Operational v-beam : CNGS
- Design Studies
 - -EUROv/FP7 (2008-2012) : SuperBeams BetaBeams NeutrinoFactory (IDS-NF)
 - -LAGUNA/FP7 (2008-2011) : Far detector for astroparticle and beam physics
 - -LAGUNA_LBNO/FP7 (20011-2014) : LAGUNA + Beam from CERN
 - Incremental Approach towards a ~2MW v-beam facility
 - -R&D activities for HP-SPL
- ▶ v-experiment proposals
 - Short-baseline neutrino Beam at CERN/PS sterile neutrinos

CERN Neutrinos to Grand Sasso – CNGS LBL beam

Long-baseline ν beam designed for ν oscillation studies via ν_{τ} appearance

- two optimized detectors at LNGS : OPERA (1.2kt) - ICARUS (0.6kt)

Approved program:

- 4.5×10^{19} protons/year 5 year program
- ~3.5 \times 10 11 $\nu_{\mu}/year$ at Grand Sasso
- ~3000 CC ν_{μ} interactions/kt/year at the experiment
- ~2÷3 ν_{τ} interactions detected/year (OPERA)

- Construction completed in 2006, physics since 2008

Beam parameters	Nominal beam			
Nominal energy [GeV]	400			
Normalized emittance [µm]	H: 12 V: 7			
Emittance [µm]	H: 0.028 V: 0.016			
Momentum spread $\Delta p/p$	0.07% ± 20%			
# extractions per cycle	2 separated by 50 ms			
Batch length [µs]	10.5			
Cycel length [s]	6 2100			
# of bunches per pulse				
Intensity per extraction	2.4 10 ¹³			
Beam power [100%df]	510 kW			
Bunch length [ns] (4 σ)	2			
Bunch spacing [ns]	5			
Beta at focus [m]	H: 10 V: 20			
Beam sizes at 400 GeV [mm]	0.5 mm			
Beam divergence [mrad]	H: 0.05 V: 0.03			

CNGS : Conventional long-baseline v beam

TARGET UNIT

MUON DETECTORS

CNGS : Operation

I. Efthymiopoulos - NuTurn2012, May 10 2012

CNGS : Operation history

CNGS : Operation

ERN

Courtesy : Edda Gschwendtner

• At the end of 2012 CNGS should reach 1.88×10^{20} pot

- to complete the presently approved program (5y \times 4.5 10¹⁹ pot/y = 2.2 10²⁰ pot) running in 2014 will be required

decision to continue or not beyond LS1 still pending

Lessons learned - CNGS Technology

The design and operation of a high-intensity, high-power beam facility is always very challenging

Design

- choice of materials, layout, shielding, radiation environment
- technical challenges during construction

Operation

- possibility for early repairs must be included in the design
- radiation effects on proximity electronics should not be ignored
- the target area ventilation system is a key element with double challenge:
 - temperature/humidity control and management of the radioactive air
- H-3 creation (air, water) should not be forgotten
 - civil engineering & layout are key elements for the operation of the facility

> Important lessons learned, in view of future facilities with (M)MW of beam power

CNGS upgrades ? (1)

- Target station design with large cavern
- Optimized shielding and services (crane, etc.)
- However difficult to imagine could suffice for MW class beams
 - lot of air volume around the target --> H3 production is a time bomb!
 - still lot of equipment in a very "hot" environment

Limitations:

- key elements of the secondary beam line to increased beam power: target, horns, beam windows
- layout and RP considerations (impact to environment beam permit?), SPS RF and beam extraction system

Considerations:

- target/horn optimization for new (lower) energy
- no near detector, decay pipe length, beam dump

Int. per PS batch	# PS batches	Int. per SPS cycle	200 days, 100% efficiency, no sharing	200 days, 55% efficiency, no sharing	200 days, 55% efficiency, 60% CNGS sharing	
		[prot./6s cycle]	[pot/year]	[pot/year]	[pot/year]	
2.4×10 ¹³ – Nominal CNGS	2	4.8×10 ¹³	1.38×10 ²⁰	7.6×10 ¹⁹	4.56×10 ¹⁹	
3.5×10 ¹³ – Ultimate CNGS	2	7.0×10 ¹³	2.02×10 ²⁰	1.11×10 ²⁰	6.65×10 ¹⁹	
750kW design limit for the target head (rods only!)		working hyp calculations	pothesis for RP	M.Meddahi, E.Schaposnicov	va - CERN-AB-2007-013 PAF	

Near detector location under Meyrin/Airport

► Access via LHC/Point-8

0 10

Summary

Extending the lifetime of present CNGS looks tempting

- at the same time
 - difficult to modify the layout (if requested) of highly radioactive facilities not designed to retrofit; it will be costly in dose and money, and will take time
 - the present installation may reach its limits (H3, environment impact) even before the intensity limits (~700kW) from SPS !!
 - in all cases would be a single step upgrade without long-term possibilities
- If the CERN-LNGS baseline represents a solid physics case for neutrino physics today, with short and long-term perspectives, building a new optimized target station and secondary beam with a ND is probably a better alternative

– this is also considered for other v–installations – NuMI

Alternatively, the experience gained by CNGS in the design and operation of high-power neutrino beams (and detectors), can be capitalized in future projects

Deliverable : comparison evaluation based on cost, physics reach

-use CERN as example site for localization dependent costs

EUROnu / FP7 - Design Study (2008-2012)

Three neutrino beam facilities under study

EUROnu : CERN Super-beam to Frejus

H-linac 2.2 (3.5) GeV, 4 MW

^{~300} MeV v_{μ} beam to far detector

Courtesy : M. Dracos – EUROnu

Technical Challenges

- Target design
 - impact of the 4 MW beam
 - 50 Hz operation

-Horn design

 high-current, mechanical constraints due to physics requirements, radiation, heating (Joule effect + radiation), pulsing

Solution

- -4×1 MW = 4 MW !!
- four target/horn assemblies mounted on a common mechanical structure

-12.5 Hz operation, beam delivery ???

Target baseline : packed bet with Ti spheres

LAGUNA_LBNO / FP7 Design Study (2011-2014)

- New design study, extending that of LAGUNA, including the neutrino beams from CERN
- Beam options for unique physics opportunities in Europe

🖙 Talk A. Rubbia, S. Pascoli

- Profit from experience gained with the CNGS operation
- Incremental approach with competitive physics goals at each stage
- Synergy with other v-beam options
 - \blacktriangleright CN2FR : β -beam
 - ▶ CN2PY : Neutrino Factory
- Collaboration in a global scale, profit from know-how in other v-beam facilities in US and Japan

CN2PY LBL v-beam

- A Long-baseline Neutrino Beam for unique physics opportunities in Europe
- Incremental approach for beam intensity
 - Initial phase: 400 GeV protons from SPS
 - present 500kW beam operation (CNGS)
 - future ~700kW profiting form injector upgrades
 - Second phase: 30-50 GeV protons from a new HP-PS
 - Use the (LP)-SPL as injector (4 GeV ?)
 - Fast acceleration reaching ~2MW
- ...and detector size
 - Phase 1: 20kT LAr + 25kT LSc + Fe detector
 - Phase 2(add): 50kT LAr + 25kT LSc + Fe detector
 - Phase 3 : replace 20kT by 50 kT LAr + Fe detector
- Clear physics opportunities for each stage, flexible program that can adopt to physics requirements and possible funding profile

CERN v-beam to Pyhasalmi – CN2PY

Phase 1 layout using the 400 GeV beam from SPS

Possibilities:

- Option A: LSS6 extraction, target near BA2
 - LSS6 fast extraction and TT60 beam line exists
 - New switch to direct the proton beam towards North
 - Long (~1.6km) proton tunnel to bring the beam towards BA2
- Option B : LSS2 extraction, target near TCC2
 - new fast extraction system in LSS2
 - TT20 beam line exists
 - Target area near existing TCC2

CERN v-beam to Pyhasalmi – CN2PY

CERN v-beam to Pyhasalmi – CN2PY

CERN v-beam to Pyhasalmi – CN2PY

Option B:

CERN v-beam to Pyhasalmi – CN2PY

Option B:

CERN v-beam to Pyhasalmi – CN2PY

Option B:

CN2PY Option-B Layout study

CN2PY - Layout considerations

The depth for the installations is the major concern

-18% slope compared to 5.6% for CNGS

I. Efthymiopoulos - NuTurn2012, May 10 2012

Depth

0 m

NA Long & Short Baseline v beams

CN2PY Beam layout parameters

- 10.4 deg downwards slope to point to Finland
- 15.1 deg angle wrt North Area beams
- target station at ~34m underground
 - 20 m deeper than the existing TCC2 targets
 - ~6m of concrete shielding around to allow 2MW operation
- decay pipe ~300-400m long
- near detector at ~500m, 116m underground, within the CERN area

Short-Baseline beam (SBL2NA)

- horizontal (or slightly upwards) beam line
- short decay pipe (~50m) followed by the beam dump
- target station at ~10m underground, adjacent to existing TCC2 target station
- possibilities for detectors at 300, 1100, or 1600m
 - profit from existing infrastructure, including cryogenics
- detector position and on/off axis location depending on physics

Short Baseline ν beam in the SPS North Area

Layout parameters

- primary beam : 100 GeV, v-beam : ~2 GeV
- target station at the TCC2 level (~11m underground)
 - Lateral distance defined by the location of the near&far detectors
 - sufficient distance from TCC2 to allow works during NA operation

- not really mandatory but better if we can, at least for civils
- Cavern design like NuMI (LBNE)
- decay pipe : 80m, 3m diameter
- beam dump : 15m of Fe with graphite core, followed by μ stations
- V-beam angle : pointing upwards
 - at -3m in the far detector --> ~5mrad slope

SBL2NA Layout - Vertical plane

Neutrino beam slope : 8m/1600m = 5mrad

Depths :

-near detector : -9.3m, or ~11m below the EHN1 level

-middle detector : -5.5m

- far detector : -3m

SBL2NA Layout - Target station and Near Detector

Short Baseline ν beam in the SPS North Area

Variant - "Saleve" side

- tuned for the 100 GeV primary beam
- has a shorter primary proton beam
- better (cheaper) detector locations, could profit from the muon/neutrino beam of COMPASS

NA v-beam facility – Civil Engineering Works

- Primary beam
 - 300m of beam tunnel (4.5m diameter ?)
 - Connection to TT20
- Target station + Secondary beam
 - Target station
 - -Decay pipe
 - -Hadron stop
- Detector pits
 - -Near detector
 - -Far detector
- Buildings
 - -Primary beam services
 - Target station services

BB4 (b.921,3880): surface service building for TT41/CNGS (should also count the equipment installed in ECA4 [horn-PS]!

Profit from the existing experience from the other installations:

- CNGS : radiation, tritium issues, target lifetime/operation
- -T2K : high-power design, He vessel for target and decay pipe, remote handling
- -NuMI : layout design access and repair of "hot" equipment
- ▶.. and the design options for future projects
 - -LBNE : target station layout options

-Neutrino Factory : target station design

Work cell Target module in beam-line 1st target being removed

3

P. Hurh: LBNE Remote Handling Overview for NBI 2010

ORNL Remote Systems Group enlisted to develop conceptual designs of remote handling equipments and systems

- Tom Burgess
- Van Graves
- Adam Carroll
- Tim Lessard
- 40 ton remotely operated bridge crane
- Full vision system (mounted video cameras removed during beam on)

Y. Yamada/KEK - NBI10

SBL2NA - RP considerations

- In a first approximation the SBL2NA beam can receive the same beam intensity presently delivered to CNGS
 - 4÷5 10¹⁹ pot/year
 - further increase can come as by-product of the SPS upgrades, and a possible shorter SPS cycle (3.6s instead of 6s for CNGS) due to the lower beam energy
- Preliminary FLUKA studies
 - RP issues can be easily mitigated with appropriate shielding
 - Muons rate to near detector (330m) can be kept low: 1 μ/spill
 - Soil activation (³H, ²²Na) and RP to environment can be under control with appropriate design

	Element	kJ/spill	kW avg.
1	Dump core (C)	162.29	45.08
	DP inner Fe lining	139.50	38.75
	Target Fe sh.	130.15	36.15
	Dump (Fe)	79.01	21.95
	Target Fe sh. (down)	37.87	10.52
	DP upper Fe lining	10.29	2.86
	DP concrete shielding	6.40	1.78
	Horn inner conductor	2.39	0.66
	Target	1.97	0.55
	Reflector inner conductor	1.48	0.41

M. Calviani, A. Ferrari - CERN

B. Goddard - CERN

Constraints : must keep slow extracted beam capability to North Area

-Hybrid extraction needed for slow and fast extracted beams

First preliminary feasibility study

Solution found with displacement of ZS girder and TCE downstream by 3m

- Two new MKEX kickers - [larger H aperture version than MKE]

- Extraction energy limited to 100 GeV with 1µs kicker rise time - Can be later modified to extract 400 GeV, with a rise time 3-4µs

– Emittance limited to about 8 $\pi.um$ in H, and 5 $\pi.um$ in V

LSS2 Present Layout

ERN

B. Goddard - CERN

LSS2 Possible Layout

ERN

B. Goddard - CERN

Beam Intensity Upgrades – Injectors (PSB, PS, SPS)

Present limitations:

- PSB-to-PS injection, losses
 - controls
- -PS-to-SPS extraction, losses
 - MTE, bunch to bucket injection
- SPS RF power
 - additional RF cavities
 - injection beyond transition
- Shielding in PS
 - ongoing

E. Shaposhnikova, R. Garoby – LiU–LLBNO/CERN

		SPS record at 450 GeV		HL-LHC at 450 GeV	
Parameters	LHC	CNGS	Ι	II	
bunch spacing	25	5	25	50	
bunch intensity /10 ¹¹		1.3	0.13	2.2	3.6
number of bunches		288	4200	288	144
total intensity /10 ¹³		3.7	5.3	6.3	5.2
long. emittance	[eVs]	0.7	0.8	0.8	0.9
norm. H/V emitt.	[µm]	3.0	8/5	2.5	3.0

Studies ongoing to understand the limits and identify possible upgrade options
– constraint : keep the machine performance for LHC beams

Aim to reach ~750kW of nominal beam power (7.0E13, 6s cycle)

39

Beam Intensity Upgrades – HP-PS Y. Papaphilippou, M. Benedikt, R. Steerenberg - LLBNO/CERN

alir	ninary	$P = qf_r$	$N_p E_k$				
Pres	Parameters	PS2	HP-PSa	HP-PSb	HP-PSc	HP-PSd	
	Circumference [m]	1346.4	1256	1009	763	1256	
	Symmetry	2-fold	3 / 4-fold				
	Beam Power [MW]	0.37	2.0				
	Repetition rate [Hz]	0.42	2	2	2.6	1.3	
	Kinetic Energy @ inj./ext. [GeV]	4/50	4/50	4/40	4/30	4/50	
	Protons/pulse [10 ¹⁴]	1.1	1.25	1.6	1.6	1.9	
	Dipole ramp rate [T/s]	1.4	6.1	6.0	7.5	4.0	
	Bending field @ inj/ext. [T]	0.17/1.7	0.17/1.7	0.21/1.7	0.27/1.7	0.17/1.7	
	Fractional beam loss [10-4]	35.1	6.5	5.0	4.0	6.5	
	Space-charge tune-shift H/V	-0.13/-0.2	-0.2/-0.2				
	Lattice type	NMC arc, doublet LSS and DS	Resonant NMC arc, doublet LSS				
	Norm. emit. H/V [µm]	9/6	6.8/6.7	8.6/8.5	11/11	10.5/10.3	
	Max. beta H/V [m]		60/60				
	Max. dispersion [m]	3.2		5			

Getting 2MW of beam power is not straight-forward

-ramp rate, space-charge, losses, acceptance, space(circumference), cost!

Future Neutrino Beams – possible timeline

- The newly obtained results enhanced the interest for v-physics, changed the landscape and will help to better define a future v-program among the all possible options currently under study
 - T2K : θ_{13} non-zero and large
 - NuMI/MINOS : θ_{13} , $\nu \leftrightarrow$ anti- ν results
 - CNGS: # v_{τ} events
 - Reactor experiments :
 - θ_{12} , θ_{13} measurement indeed very large!!!

- The newly obtained results enhanced the interest for v-physics, changed the landscape and will help to better define a future v-program among the all possible options currently under study
 - T2K : θ_{13} non-zero and large
 - NuMI/MINOS : θ_{13} , $\nu \leftrightarrow$ anti- ν results
 - CNGS: # v_{τ} events
 - Reactor experiments :
 - θ_{12} , θ_{13} measurement indeed very large!!!
- CERN/Europe has the potential to play an important role in the new experiments
 - Understand possibilities/limitations of CERN-LNGS beam
 - ▶ The CN2PY proposal for a future v-experimental program
 - broad physics potential (CP-violation, mass hierarchy,..)
 - can accommodate different detector technologies, beam options, and synergy with v-factory
 - The short-baseline option (SBL2NA) can be envisioned as initial step
 - for an independent physics program and detector R&D

- The newly obtained results enhanced the interest for v-physics, changed the landscape and will help to better define a future v-program among the all possible options currently under study
 - T2K : θ_{13} non-zero and large
 - NuMI/MINOS : θ_{13} , $\nu \leftrightarrow$ anti- ν results
 - CNGS: # v_{τ} events
 - Reactor experiments :
 - θ_{12} , θ_{13} measurement indeed very large!!!

Courtesy : HRN Europe blog (http://www.hrneurope.com/blog/?p=206

- CERN/Europe has the potential to play an important role in the new experiments
 - Understand possibilities/limitations of CERN-LNGS beam
 - ▶ The CN2PY proposal for a future v-experimental program
 - broad physics potential (CP-violation, mass hierarchy,..)
 - can accommodate different detector technologies, beam options, and synergy with v-factory
 - > The short-baseline option (SBL2NA) can be envisioned as initial step
 - for an independent physics program and detector R&D

...with feedback from many colleagues - thanks!

NuTurn2012 - May 10, 2012

...with feedback from many colleagues - thanks!

NuTurn2012 - May 10, 2012

I. Efthymiopoulos – CERN

to North?

...with feedback from many colleagues thanks!

to North?

from South ...

As Greek, I would certainly prefer South than Any colleagues North, but life these days for Greeks is tough!

NuTurn2012 - May 10, 2012