

Neutrino Physics Searches: Future Perspectives for LNGS

Lucia Votano - LNGS

Gran Sasso Laboratory

Net

3 main halls A B C ~100 x 20 m² (h 20 m)

External facilities

Muon Flux

3.0 10⁻⁴ µ m⁻² s⁻¹

itron Flux	
2.92 10 ⁻⁶ n cm ⁻² s ⁻¹	(0-1 keV)
0.86 10 ⁻⁶ n cm ⁻² s ⁻¹	(> 1 keV)

<u>Depth</u>: 1400 m (3800 m w.e.)

<u>Surface</u>: 17800 m²

<u>Volume</u>: **180000** m³

<u>Rn in air</u>: 20-80 Bq/m³

ISO 14001

Ventilation: 1 Lab volume/3 h

Electrical power: 1300 kW

Access: horizontal

Gran Sasso Laboratory

Research activities:

- Dark matter searches
- > Neutrino physics
- > Nuclear Astrophysics

> Associate Sciences:

Environmental Radioactivity for Earth Sciences, Geophysics, Fundamental Physics, Biology

Neutrino physics @ LNGS

Solar neutrinos (Borexino)

- ⁷Be the main target
- ⁸B, pep first evidence, CNO limit, and possibly pp
- Geo anti-neutrinos (Borexino)
- CNGS neutrinos
 - OPERA and ICARUS
- > SuperNova neutrinos
 - LVD, Borexino and ICARUS
 - LVD and Borexino are in the SNEWS network
- > Basic neutrino properties
 - OvDBD

a real time liquide scintillator detector for solar neutrinos

1

a real time liquid scintillator detector for solar neutrinos =278 tons of PC+PPO in a nylon bag =200 photomultipliers =2500 tons ultrapure water

Stainless steel water tank with 2400 tons of ultrapure water 18m diameter

BOREXINO Low-level background record

- The possibility to perform further purification steps is being evaluated;
- Collect few more months of data (good data!) to precisely evaluate ²¹⁰Bi level

CNGS beam: CERN Neutrino to Gran Sasso

Project INFN-CERN: approved in 1999, started in 2006

 ν_{μ} beam produced at CERN and detected at LNGS

Experimental halls designed in the CERN direction

OPERA running since 2006 ICARUS running since 2010

Neutrino Oscillations: OPERA

- > In 2010 at LNGS the first evidence of direct detection of $v_{\mu} \rightarrow v_{\tau}$ oscillation in appearance mode
- > Waiting for more events

ICARUS T600 in LNGS Hall B

Two identical modules 3.6 x 3.9 x 19.6 ≈ 275 m³ each Liquid Ar active mass: ≈ 476 t

Conceived as a Multi-purpose detector: atmospheric, solar (>8 Mev), supernovae neutrinos, nucleon decay searches in "exotic" channels, CNGS beam

Milestone towards a multi-kton LAr detector with unique imaging capability, and spatial/calorimetric resolutions

$\mathbf{0}_{\nu\beta\beta}$ experiments

 $O_{V\beta\beta}$ experiments can answer to 1. and fix constraints on 2.

Neutrinoless Double Beta Decay

<u>LNGS program</u>: complementary approaches concerning isotopes and techniques

GERDA: HPGe detectors enriched in ⁷⁶Ge

running

CUORE: TeO₂ bolometers (¹³⁰Te)

- construction phase.
- Lucifer R&D to further suppress background: scintillating bolometers
- > COBRA R&D: CdZnTe room temperature detectors

GERDA goals and sensitivity

GERDA goal: 10⁻³ counts/(keV kg y) improvement of a factor 100 with respect of H-M

Phase I: test claim

crystals from HM and IGEX exposure: 15 kg·y bck: **10**⁻² counts/(keV kg y)

Phase II: measure T_{1/2} or improve limit

new better ^{enr}Ge detectors (bought 40 kg of raw material)

exposure: 100 kg·y

bck: 10⁻³ counts/(keV kg y)

CUORE goal

Background goal: 0.01 c/keV/kg/y $T_{1/2} = 1.6 \times 10^{26}$ y $m_{\beta\beta} = 41-95$ meV

Cuoricino result and CUORE 1σ background-fluctuation sensitivity overlaid on plots that show the bands preferred by neutrino oscillation data (inner region: best-fit data; outer region: at 3σ). Both normal (red) and inverted (green) hierarchies are shown.

Perspectives @ LNGS

- > LNGS can host in future new detectors for neutrino physics searches
- vturn workshop: a step towards an assessment of a physics program
 - 1. Present underground Laboratory:
 - After the end of the CNGS program (2013-2015), large underground space could be made available

Present situation

PLANT VIEW

> LVD: observatory for v from stellar collapses

> GERDA

- Completion of Phase I and start of PHASE II data taking in spring 2013
- After Phase II completion (100kgyear) decision on Phase III based on physics results, in close contact with Majorana collaboration

> CUORE

- In construction phase, start data taking in 2014
- the program will extend up to the end of this decade

> CRESST (DM)

Results shown last September, resume Data Taking with low bkg
precursor of the next-generation dark matter project EURECA

- > Borexino Phase II (3-4 years) Physics goal
 - Improve significance of pep signal
 - Improve limit (or observation?) of CNO
 - Search for pp neutrinos
 - Improve precision on ⁷Be neutrinos
 - Improve significance of geo-antineutrinos
- Proposal for a short baseline sterile neutrino search experiment submitted to LNGS SC
 - v^{51} Cr Source under the detector
 - Antiv ¹⁴⁴Ce-¹⁴⁴Pr inside the detector

> Convert Borexino to $O_{V\beta\beta}$ experiment?

> DarkSide WIMP-Dark-Matter Program

- DS-50 approved, inside CTF, commissioning by 2013
- Multi ton detector (Goal: ~10⁻¹¹ pb) could be accommodated inside the CTF in the future

> OPERA

- Run in 2012, if 4.7x10¹⁹ pot, 82% of the proposed value
- Decision on possible extension of data taking, after CERN shutdown, related to physics results
- 2-3 years for emulsion scanning analysis needed after the end of data taking

Volume under the crane $\approx 17 \times 10^3 \text{ m}^3$

Present situation + Xenon 1t

> ICARUS

- Run up to 2013
- Afterwards could be moved to CERN if the Proposal "Search for "anomalies" from neutrino and anti-neutrino oscillations at ∆m2 ≈ 1eV2 with muon spectrometers and large LAr-TPC imaging detectors."
 is approved, or dismounted in any case

> XENON DM program

 XENON 1t: Start installation by fall 2012, data taking in 2015

> WARP

End data taking, can be decommissioned

Future situation

Perspectives @ LNGS

- LNGS can host in future new detectors for neutrino physics searches
- vturn workshop: a step towards an assessment of a physics program
 - 1. Present underground Laboratory: After the end of the CNGS program (2013-2015), large underground space could be made available
 - 2. New halls in the present site can hardly be excavated
 - 3. LNGS-B proposal

A shallow depth (1.2 Km w.e.) new laboratory 2 possible sites, 7-12 Km off axis CNGS Out of the protected area of the Gran Sasso Park Any presence of significant Uwater Partially based on Regional Funds

TUNNEL TYPICAL SECTION

Courtesy of Prof. Ing. Roberto Guercio - University of Rome "La Sapienza"

Courtesy of Prof.Ing. Roberto Guercio - University of Rome "La Sapienza"

Conclusions

- > INFN-Gran Sasso Laboratory:
 - 18 experiments + R&D activities, including worldleading in the fields of solar neutrinos, accelerator neutrinos, double beta decay, dark matter and nuclear astrophysics
 - Leadership in massive experiments with record performance and low-level background
- Plan to maintain the scientific excellence in the next years by an extensive physics program (new experiments and upgrades of the present ones)
- After the end of the CNGS program (2013-2015), underground space (OPERA and ICARUS) could be made available
- LNGS-B: a shallow depth new laboratory can be envisaged