Determining CP violation angle γ with B decays into a scalar/tensor meson

Wei Wang (王伟)
Deutsches Elektronen-Synchrotron
QCD@work
18-21 June 2012 Lecce

arXiv: 1110.5194. Phys.Rev. D85 (2012) 051301(R)

CKM angle γ / ϕ_{3}

Motivation and importance of measuring γ

Determination of γ is important because (together with $V_{u b}$ contraint) it selects $\rho^{-} \eta$ value valid in most of the NP extensions:

$$
\alpha+\beta+\gamma=180^{\circ}
$$

γ is still the less precisely known CKM angle

$$
\gamma=(66 \pm 12)^{\circ}
$$

Experiments providing most of analyses today

$3.1 \mathrm{GeV} e^{+}$ $9 \mathrm{GeV} e^{-}$

$3.5 \mathrm{GeV} e^{+}$ $8 \mathrm{GeV} e^{-}$

γ measurements from $B \rightarrow D K$

$\mathrm{b} \rightarrow \mathrm{c}\left(\mathrm{V}_{\mathrm{cb}}\right.$, real): favored

$$
\begin{aligned}
& \mathrm{b} \rightarrow \mathrm{u}\left(\mathrm{~V}_{\mathrm{ub},}=\left|\mathrm{V}_{\mathrm{ub}}\right|\right. \\
& \left.\mathrm{e}^{-\mathrm{iv}}\right): \text { suppressed }
\end{aligned}
$$

Advantages:

- Only tree decays.
- Largely unaffected by New Physics scenarios
-No hadronic uncertainties

D CP eigenstate :
$\mathrm{K}^{+} \mathrm{K}^{-} / \pi^{+} \Pi^{-}$

$$
\begin{aligned}
& \sqrt{2} A\left(B^{+} \rightarrow D_{ \pm}^{0} K^{+}\right)=A\left(B^{+} \rightarrow D^{0} K^{+}\right) \pm A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right) \\
& \sqrt{2} A\left(B^{-} \rightarrow D_{ \pm}^{0} K^{-}\right)=A\left(B^{-} \rightarrow D^{0} K^{-}\right) \pm A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)
\end{aligned}
$$

γ measurements from $B \rightarrow D K$

$$
\approx \mathrm{V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{us}}^{*} \times \mathrm{a}_{1} \times \mathrm{f}_{\mathrm{K}} \times \mathrm{F}^{\mathrm{B}} \rightarrow \mathrm{D}
$$

factorization

$$
\begin{aligned}
& \mathrm{b} \rightarrow \mathrm{u}\left(\mathrm{~V}_{\mathrm{ub},}=\left|\mathrm{V}_{\mathrm{ub}}\right| \mathrm{e}^{-\mathrm{r}}\right): \\
& \text { suppressed }
\end{aligned}
$$

$$
\approx \mathrm{V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{cs}}^{*} \times \mathrm{a}_{2} \times \mathrm{f}_{\mathrm{D}} \times \mathrm{F}^{\mathrm{B} \rightarrow \mathrm{~K}}
$$

$$
\begin{gathered}
r_{B}^{K_{J}} \equiv\left|A\left(B^{-} \rightarrow \bar{D}^{0} K_{J}^{-}\right) / A\left(B^{-} \rightarrow D^{0} K_{J}^{-}\right)\right|, \\
\delta_{B}^{K_{J}} \equiv \arg \left[e^{i \gamma} A\left(B^{-} \rightarrow \bar{D}^{0} K_{J}^{-}\right) / A\left(B^{-} \rightarrow D^{0} K_{J}^{-}\right)\right] \\
r_{B}^{K}=0.107 \pm 0.010, \delta_{B}^{K}=\left(112_{-13}^{+12}\right)^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
R_{C P \pm}^{K} & =2 \frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)} \\
& =1+\left(r_{B}^{K}\right)^{2} \pm 2 r_{B}^{K} \cos \delta_{B}^{K} \cos \gamma, \\
A_{C P \pm}^{K} & =\frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)} \\
& = \pm 2 r_{B}^{K} \sin \delta_{B}^{K} \sin \gamma / R_{C P \pm}^{K},
\end{aligned}
$$

```
CP eigenstate
    - K+K-},\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-
DCS D-decay mode
    - K+}\mp@subsup{\pi}{}{-},\mp@subsup{K}{}{+}\mp@subsup{\pi}{}{-}\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-},\mp@subsup{K}{}{+}\mp@subsup{\pi}{}{-}\mp@subsup{\pi}{}{0
SCS multi-body state
    - K}\mp@subsup{\textrm{K}}{s}{}\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-},\mp@subsup{\textrm{K}}{s}{}\mp@subsup{\textrm{K}}{}{+}\mp@subsup{\textrm{K}}{}{-},\textrm{K}+\mp@subsup{\textrm{K}}{}{-}\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-
```


what if we consider a different Kaon resonance?

$\mathrm{K}_{0}{ }^{*}$ and $\mathrm{K}_{2}{ }^{*}$

l	s	J	${ }^{2 s+1} L_{J}$	$J^{P C}$	Meson
$l=0$	$s=0$	$J=0$	${ }^{1} S_{0}$	0^{-+}	Pseudoscalar (P)
	$s=1$	$J=1$	${ }^{3} S_{1}$	1^{--}	Vector (V)
$l=1$	$s=0$	$J=1$	${ }^{1} P_{1}$	1^{+-}	Axial-vector $\left(A\left({ }^{1} P_{1}\right)\right)$
	$s=1$	$J=0$	${ }^{3} P_{0}$	0^{++}	Scalar (S)
		$J=1$	${ }^{3} P_{1}$	1^{++}	Axial-vector $\left(A\left({ }^{3} P_{1}\right)\right)$
		$J=2$	${ }^{3} P_{2}$	2^{++}	Tensor (T)

$\left.K_{0}^{*}(1430){ }^{[m m}\right]$

$K_{2}^{*}(1430)$

$\mathrm{K}_{0}{ }^{*}$: small decay constants

$$
\left\langle K_{0}^{*-}(1430)\right| \bar{s} \gamma^{\mu} u|0\rangle=f_{K_{0}^{*}} p_{K_{0}^{*}}^{\mu},
$$

The current experimental data on $\tau \rightarrow K_{0}^{*-}(1430) \bar{\nu}_{\tau}$ places an upper bound

$$
\left|f_{K_{0}^{*}}\right|<107 \mathrm{MeV},
$$

which is not very stringent. Adopting an estimate based on QCD sum rules

$$
f_{K_{0}^{*}}=-24 \mathrm{MeV}, \quad \text { or } \quad f_{K_{0}^{*}}=36 \mathrm{MeV},
$$

$$
\begin{aligned}
& \mathrm{b} \rightarrow \mathrm{c}\left(\mathrm{~V}_{\mathrm{cb},}\right. \\
& \text { real): favored }
\end{aligned}
$$

$$
\approx \mathrm{V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{us}}^{*} \times \mathrm{a}_{1} \times \mathrm{f}_{\mathrm{K}^{*} 0} \times \mathrm{F}^{\mathrm{B}} \rightarrow \mathrm{D}
$$

$\mathrm{b} \rightarrow \mathrm{u}\left(\mathrm{V}_{\mathrm{ub},}=\left|\mathrm{V}_{\mathrm{ub}}\right| \mathrm{e}^{-\mathrm{ry}}\right):$ suppressed

$$
\approx \mathrm{V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{cs}}^{*} \times \mathrm{a}_{2} \times \mathrm{f}_{\mathrm{D}} \times \mathrm{F}^{\mathrm{B}} \rightarrow \mathrm{~K}^{*} 0
$$

B to scalar/tensor to measure Y

$\mathrm{K}_{0}{ }^{*}$: small decay constants

$$
\left\langle K_{0}^{*-}(1430)\right| \bar{s} \gamma^{\mu} u|0\rangle=f_{K_{0}^{*}} p_{K_{0}^{*}}^{\mu},
$$

The current experimental data on $\tau \rightarrow K_{0}^{*-}(1430) \bar{\nu}_{\tau}$ places an upper bound

$$
\left|f_{K_{0}^{*}}\right|<107 \mathrm{MeV},
$$

which is not very stringent. Adopting an estimate based on QCD sum rules

$$
f_{K_{0}^{*}}=-24 \mathrm{MeV}, \quad \text { or } \quad f_{K_{0}^{*}}=36 \mathrm{MeV}
$$

Using one set of results for the $B \rightarrow K_{0}^{*}$ form factors calculated in the perturbative QCD approach (corresponding to $f_{K_{0}^{*}}=36 \mathrm{MeV}$), the $B \rightarrow D$ form factors from light-front quark model and $a_{2}=0.2, a_{1}=1$ we estimate $C / T \sim 1.2$ and

$$
r_{B}^{K_{0}^{*}}=\left|C V_{u b} V_{c s}^{*} /\left[V_{c b} V_{u s}^{*}(C-T)\right]\right| \sim 2 .
$$

Reversing the sign of a_{2}, we obtain a smaller $r_{B}^{K_{0}^{*}} \simeq 0.3$, which is still larger than r_{B}^{K}.

$$
\begin{aligned}
& r_{B}^{K J} \equiv\left|A\left(B^{-} \rightarrow \bar{D}^{0} K_{J}^{-}\right) / A\left(B^{-} \rightarrow D^{0} K_{J}^{-}\right)\right|, \\
& \delta_{B}^{K J} \equiv \arg \left[e^{i \gamma} A\left(B^{-} \rightarrow \bar{D}^{0} K_{J}^{-}\right) / A\left(B^{-} \rightarrow D^{0} K_{J}^{-}\right)\right], \\
& R_{C P \pm}^{K}= 2 \frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)} \\
&= 1+\left(r_{B}^{K}\right)^{2} \pm 2 r_{B}^{K} \cos \delta_{B}^{K} \cos \gamma, \\
& A_{C P \pm}^{K}= \frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)} \\
&= \pm 2 r_{B}^{K} \sin \delta_{B}^{K} \sin \gamma / R_{C P \pm}^{K},
\end{aligned}
$$

better sensitivities to gamma!
Large CP asymmetries
dependence of $R_{C P_{+}}^{K_{0}}$ and $A_{C P_{+}}^{K_{0}}$ on γ

In panels (a,b), $r_{B}^{K_{0}^{*}}=2$ is employed, in panels (c,d) $r_{B}^{K_{0}^{*}}=1$ and in panels (e,f) $r_{B}^{K_{0}^{*}}=0.3$. The solid (green), dashed (black), dotted (blue) and dot-dashed (orange) lines in diagrams (a,c,e) correspond to $\delta_{B}^{K_{0}^{*}}=(30,60,120,150)^{\circ}$ respectively, while the corresponding lines in diagrams (b,d,f) correspond to $\delta_{B}^{K_{0}^{*}}=(30,60,-30,-60)^{\circ}$. The shadowed (light-green) region denotes the current bounds on $\gamma=\left(68_{-11}^{+10}\right)^{\circ}$ from a combined analysis of $B^{ \pm} \rightarrow D K^{ \pm}$, in which the vertical (red) line corresponds to the central value.

$\mathrm{B} \rightarrow \mathrm{DK}_{2}{ }^{\star}$

Turning to the $B^{ \pm} \rightarrow D K_{2}^{* \pm}$ mode in which the matrix element of the vector and the axial-vector current between the QCD vacuum and the K_{2}^{*} state is zero, we find a vanishing color-allowed amplitude T. Accordingly, the ratio $r_{B}^{K_{2}^{*}}$ is from the product of CKM matrix elements:

$$
r_{B}^{K_{E}^{*}}=0.5 .
$$

An estimate of the branching ratios can be made by using the data on the $B \rightarrow J / \psi K_{2}^{*}$

$$
\frac{\mathcal{B}\left(B^{-} \rightarrow D^{0} K_{2}^{*-}\right)}{\mathcal{B}\left(B \rightarrow J / \psi K_{2}^{* 0}\right)} \simeq x_{K_{2}^{*}}\left|\frac{V_{c b} V_{u s}^{*}}{V_{c b} V_{c s}^{*}} \frac{f_{D}}{f_{J / \psi}}\right|^{2} \sim 0.8 \%,
$$

with $x_{K_{2}^{*}}$ being the ratio of the form factor products which is evaluated from a recent calculation of $B \rightarrow K_{2}^{*}$ form factor in the PQCD approach: $x_{K_{2}^{*}} \simeq 0.5$. The branching ratio $\mathcal{B}\left(B \rightarrow J / \psi K_{2}^{* 0}\right)=(4.0 \pm 2.4) \times 10^{-4}$ extracted from the data on $B^{-} \rightarrow J / \psi K^{-} \pi^{+} \pi^{-}$gives

$$
\mathcal{B}\left(B^{-} \rightarrow D^{0} K_{2}^{*-}\right) \simeq 3 \times 10^{-6} .
$$

$B->\mathrm{DK}_{2}{ }^{\star}$

PQCD estimate (in units of 10^{-6}) by Z.T. Zou,X.Yu and C.D.Lu (1205.2971)

Decay Modes	Class	This Work	SDV[14]	KLO[15]
$B^{-} \rightarrow \bar{D}^{0} K_{2}^{*-}$	C	3.7 ± 1.7	1.3	1.2
$B^{-} \rightarrow D^{0} K_{2}^{*-}$	T	33 ± 16	8.7	7.3
		[14] Sharma Dhir, Verma, Phys. Rev.D 83, 014007 (2011) [15] Kim, Lim S. Oh, Phys. Rev. D 67, 014011 (2003).		

QCD corrections enhanced the branching ratios of $B^{-} \rightarrow D^{0} K_{2}^{*-}$

$\mathrm{K}_{0}{ }^{*}$ and $\mathrm{K}_{2}{ }^{*}$ Decay

The $K_{0,2}^{*}$ have significant decay rates into $K \pi$, with $\mathcal{B}\left(K_{0}^{*} \rightarrow K \pi\right)=(93 \pm 10) \%$ and $\mathcal{B}\left(K_{2}^{*} \rightarrow K \pi\right)=(49.9 \pm 1.2) \%$, and the final mesons are also easy to detect in experiments at hadron colliders.

Since the CKM matrix elements for the K_{0}^{*} and K_{2}^{*} are the same, no knowledge of the resonance structure in this method is required and therefore the angle γ can be extracted without any hadronic uncertainty.

Compared with the BR of $B^{-} \rightarrow \bar{D}^{0} K^{-}$, of order 10^{-6}, which is an unavoidable entry in the currently-adopted methods to determine γ, the summed BRs for the channels involving K_{0}^{*} and K_{2}^{*}, of order 10^{-5}, are comparable or even larger, and hence their measurements will not be statistically limited. The large amount of data accumulated by LHCb recently and in future will lead to a promising prospect of the proposed method.
$K_{0}^{*}(1430)$ DECAY MODES

Fraction $\left(\Gamma_{i} / \Gamma\right)$
$p(\mathrm{MeV} / c)$
$K \pi$
$(93 \pm 10) \%$
619

$\boldsymbol{K}_{\mathbf{2}}^{\boldsymbol{*}} \mathbf{(1 4 3 0)}$ DECAY MODES	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$	Scale factor/ Confidence level	p $(\mathrm{MeV} / \mathrm{c})$
$K \pi$	$(49.9 \pm 1.2) \%$		619

Conclusion

γ is the less precisely known CKM angle.

I proposed that $B \rightarrow D K^{*}{ }_{0,2}$ can be used to extract γ

- Color-allowed and color-suppressed amplitudes are comparable
- Large CP asymmetries are expected in these processes
- Branching ratios are of the order 10^{-6} or may be even larger.

I also hope that this proposal can be fleshed out as part of, say, a graduate student Masters project with some experimental group.

Thank you for your attention!

