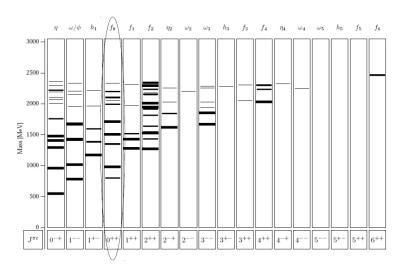
Sigma meson and lowest possible glubeall candidate in an extended linear σ model


Tamal K Mukherjee

Institute of High Energy Physics, CAS.

Collaborators: Mei Huang, Qi-Shu Yan

Reference: arXiv:1203.5717 [hep-ph]

Experimental Light Flavoured Iso-Scalar Meson Spectrum:

Unusual Spectroscopy

Vector Mesons:

```
\begin{array}{lll} {\rm I} = 1 \colon & {\rm m}[\rho(776)] \approx 776 MeV & n\bar{n} \\ {\rm I} = 0 \colon & {\rm m}[\omega(783)] \approx 783 MeV & n\bar{n} \\ {\rm I} = \frac{1}{2} \colon & {\rm m}[K^{\star}(892)] \approx 892 MeV & n\bar{s} \\ {\rm I} = 0 \colon & {\rm m}[\phi(1020)] \approx 1020 MeV & s\bar{s} \end{array}
```

Unusual Spectroscopy

```
Vector Mesons:
 I = 1: m[\rho(776)] \approx 776 MeV
                                                 пī
 I = 0: m[\omega(783)] \approx 783 MeV
                                                 n\bar{n}
 I = \frac{1}{2}: m[K^*(892)] \approx 892 MeV
                                                 กริ
 I = 0: m[\phi(1020)] \approx 1020 MeV
                                                 55
Scalar Mesons:
                                              \sqrt{\frac{1}{2}}(\bar{u}u+\bar{d}d)
             m[f_0(600)] \approx 500 MeV
 I = 0:
                                              ūs. su. ds. sd
 I = \frac{1}{2}: m[\kappa] \approx 800 MeV
 I = 0: m[f_0(980)] \approx 980 MeV 5s
                                           \bar{u}d, \bar{d}u, \sqrt{\frac{1}{2}}(\bar{u}u - \bar{d}d)
 I = 1: m[f_0(980)] \approx 980 MeV
```

Unusual Spectroscopy

```
Vector Mesons:
 I = 1: m[\rho(776)] \approx 776 MeV
                                                пī
 I = 0: m[\omega(783)] \approx 783 MeV
                                                nīn
 I = \frac{1}{2}: m[K^*(892)] \approx 892 MeV
                                                กริ
 I = 0: m[\phi(1020)] \approx 1020 MeV
                                                55
Scalar Mesons:
 I = 0: m[f_0(600)] \approx 500 MeV \sqrt{\frac{1}{2}(\bar{u}u + \bar{d}d)}
                                       ūs, su, ds, sd
 I = \frac{1}{2}: m[\kappa] \approx 800 MeV
 I = 0: m[f_0(980)] \approx 980 MeV 5s
                                           \bar{u}d, \bar{d}u, \sqrt{\frac{1}{2}}(\bar{u}u - \bar{d}d)
 I = 1: m[f_0(980)] \approx 980 MeV
```

Light Scalars are tetraquark state: Jaffe (Phys. Rev. D 15 (1977)) The States above consecutively can be represented as: $nn\bar{n}\bar{n}, nn\bar{n}\bar{s}, ns\bar{n}\bar{s}, ns\bar{n}\bar{s}$

Consideration:

• Scalar condensates are allowed by the QCD vaccum.

Consideration:

- Scalar condensates are allowed by the QCD vaccum.
- Mesons having identical external quantum numbers can mix even if they have different internal flavour structures.

Consideration:

- Scalar condensates are allowed by the QCD vaccum.
- Mesons having identical external quantum numbers can mix even if they have different internal flavour structures.

Three types of fields:

• Two chiral effective nonet fields (Φ, Φ') describing the two quark and four quark states.

Consideration:

- Scalar condensates are allowed by the QCD vaccum.
- Mesons having identical external quantum numbers can mix even if they have different internal flavour structures.

Three types of fields:

- Two chiral effective nonet fields (Φ, Φ') describing the two quark and four quark states.
- Spurion field (Y) representing pure ground gluonbound state.

Consideration:

- Scalar condensates are allowed by the QCD vaccum.
- Mesons having identical external quantum numbers can mix even if they have different internal flavour structures.

Three types of fields:

- Two chiral effective nonet fields (Φ, Φ') describing the two quark and four quark states.
- Spurion field (Y) representing pure ground gluonbound state.
- Basic Lagrangian:

$$\mathcal{L} = \text{Tr} \left(\partial_{\mu} \Phi \ \partial^{\mu} \Phi^{\dagger} \right) + \text{Tr} \left(\partial_{\mu} \Phi' \ \partial^{\mu} \Phi^{\dagger\prime} \right) + \partial_{\mu} Y \partial^{\mu} Y^{\star} - V_{0} - V_{SB}$$

Some Remarks

- Tetraquark field:
 - a) molecular type:

$$M^b{}_a = (q_{bA})^\dagger \gamma_4 \frac{1 + \gamma_5}{2} q_{aA}; \Phi^b{}_a = \epsilon_{acd} \epsilon^{bef} (M^\dagger)^c{}_e (M^\dagger)^d{}_f$$

b) scalar di-quark + anti-diquark :

$$\phi_i = \sqrt{\frac{1}{2}} \epsilon_{ijk} q^{\dagger}_{j} C \gamma^5 q_k; \Phi_{ij} = \phi^{\dagger}_{i} \phi_{j}$$

At the symmetry level we are working: we are not interested in the underlying quark structure.

Some Remarks

- Tetraquark field:
 - a) molecular type:

$$M^b{}_a = (q_{bA})^\dagger \gamma_4 \frac{1+\gamma_5}{2} q_{aA}; \Phi^b{}_a = \epsilon_{acd} \epsilon^{bef} (M^\dagger)^c{}_e (M^\dagger)^d{}_f$$

b) scalar di-quark + anti-diquark :

$$\phi_i = \sqrt{\frac{1}{2}} \epsilon_{ijk} q^{\dagger}_{j} C \gamma^5 q_k; \Phi_{ij} = \phi^{\dagger}_{i} \phi_{j}$$

At the symmetry level we are working: we are not interested in the underlying quark structure.

• Glueball field:

We interpret the spurion field as effective glueball field. To accommodate realistic glueball field it is widely used practice to introduce a flavor singlet complex field to the linear/non-linear sigma model.[Phys Rev. D 21, 3393 (1980), Nucl. Phys. B175, 477 (1980), Prog. Theor. Phys. 66, 1789 (1981), Phys. Rev. D 80, 014014 (2009)].

Lagrangian

$$\mathcal{L}_{\mathcal{S}} = Tr(\partial_{\mu}\Phi\partial^{\mu}\Phi^{\dagger}) + Tr(\partial_{\mu}\Phi'\partial^{\mu}\Phi^{\dagger'}) + \partial_{\mu}Y\partial^{\mu}Y^{\star} - m_{\Phi}^{2}Tr(\Phi^{\dagger}\Phi) - m_{\Phi'}^{2}Tr(\Phi^{\dagger'}\Phi') - m_{Y}^{2}YY^{\star} - \lambda_{1}Tr(\Phi^{\dagger}\Phi\Phi^{\dagger}\Phi) - \lambda_{1}'Tr(\Phi^{\dagger'}\Phi'\Phi^{\dagger'}\Phi') - \lambda_{2}Tr(\Phi^{\dagger}\Phi\Phi^{\dagger'}\Phi') - \lambda_{Y}(YY^{\star})^{2} - [\lambda_{3}\epsilon_{abc}\epsilon^{def}\Phi_{d}^{a}\Phi_{e}^{b}\Phi_{f}^{'c} + h.c.] + [kYDet(\Phi) + h.c.]$$
(1)

$$\mathcal{L}_{\mathcal{SB}} = [Tr(B.\Phi) + h.c.] + [Tr(B'.\Phi') + h.c.] + (D.Y + h.c.)$$
$$- [\lambda_m Tr(\Phi \Phi^{\dagger \prime}) + h.c.]$$
(2)

Mixing and Parameter Fixing:

• For I = 1/2, 1 states: Two and four quarks states mixed with each other.

Mixing and Parameter Fixing:

- For I = 1/2, 1 states: Two and four quarks states mixed with each other.
- \bullet For I = 0 scalar and pseudoscalar states two, four quarks as well as glueball states mixed with each other.

Mixing and Parameter Fixing:

- For I = 1/2, 1 states: Two and four quarks states mixed with each other.
- ullet For I=0 scalar and pseudoscalar states two, four quarks as well as glueball states mixed with each other.
- Input Parameters: Mixing angles for π and K within the range $\{-\frac{\pi}{4}, \frac{\pi}{4}\}$ along with their decay constants.

Two condensates (below 2 GeV)

• Symmetry Breaking Parameters:

$$\frac{B_s}{B_{u,d}} = \frac{m_s}{m_{u,d}} = \frac{B_s'}{B_{u,d}'}$$

Parameter Fixing contd..

- Vacuum Stability Conditions: $\frac{\partial V}{\partial < v_i >} = 0$.
- Physical Input Mass: $(R^{-1})M^2_{bare}(R) = M^2_{phys}$

Parameter Fixing contd..

- Vacuum Stability Conditions: $\frac{\partial V}{\partial < v_i >} = 0$.
- Physical Input Mass: $(R^{-1})M^2_{bare}(R) = M^2_{phys}$
- Parameters related to Glueball sector:

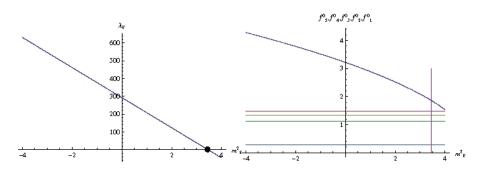
$$Tr[M_{\eta}^{2}]_{Model} = Tr[M_{\eta}^{2}]_{Exp} , \qquad (3)$$

$$Det[M_{\eta}^{2}]_{Model} = Det[M_{\eta}^{2}]_{Exp} . \tag{4}$$

π' Mass (GeV)	Field	Our Value (GeV)	quarkonia (%)	tetraquark (%)	Experimental Value (GeV)
	а	1.055	38.14	61.8 6	0.98
	a'	1.417	61.86	38.14	1.47
1.2	κ	1.13	62.14	37.86	0.80
	κ'	1.186	37.86	62.14	1.43

Table: Mass spectra and components for the triplet and doublet sector based on our fit are demonstrated where the best value of $m_{\pi'}$ is found to be $m_{\pi'}=1.2$ GeV.

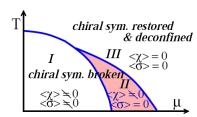
π' Mass (GeV)	$J^{PC} = 0^{-+}$	Our Value (GeV)	quarkonia (%)	tetraquark (%)	glueball (%)	Experimental Value (GeV)
	η_5	1.858	0.037	0.001	99.962	1.756 ± 0.009
	η_4	1.380	75.803	24.167	0.03	1.476 ± 0.004
1.2	η_3	1.291	26.700	73.294	0.006	1.294 ± 0.004
	η_2	0.907	15.852	84.145	0.003	0.95766 ± 0.00024
	η_1	0.595	81.607	18.393	0.0	0.547853 ± 0.000024


Table: Mass spectra and components for the pseudo-scalar mesons based on our fit are shown where the best value of $m_{\pi'}$ is found to be $m_{\pi'}=1.2$ GeV.

	π' Mass (GeV)	$J^{PC} = 0^{++}$	Our Value (GeV)	quarkonia (%)	tetraquark (%)	glueball (%)	Experimental Value (GeV)
		f_5^0	2.09	0.01	0.0	99.99	-
1.2		f ₄ 0	1.487	77.469	22.53	0.001	1.505 ± 0.006
	1.2	f ₃ ⁰	1.347	22.177	77.82	0.003	1.2-1.5
		f ₂ 0	1.124	21.561	78.439	0.0	0.980 ± 0.010
		f10	0.274	78.784	21.211	0.005	0.4-1.2

Table: Mass spectra and components for the scalar mesons based on our fit are shown where the best value of $m_{\pi'}$ is found to be $m_{\pi'}=1.2$ GeV.

Bounded potential constraint $\lambda_Y > 0$


Dependence of λ_Y and scalar meson masses on the scanning parameter m_Y^2

Summary and Outlook

- Without the mixing between tetraquark and glueball the heaviest scalar is glueball dominated and the lowest scalar is quarkonia dominated with a seizable porition of tetraquakr percentage.
- It would be interesting to check if the mixing between quarkonia and tetraquark changes the scenario.
- \bullet Understanding of the vacuum phenomenology \to medium behaviours.

• Implication for chiral symmetry restoration. $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V \times (Z_{N_f})_A \rightarrow SU(N_f)_V$. M. Harada et al. arXiv:0908.1361

THANK YOU!