Probing QCD with Jets, Photons and Weak Bosons at the LHC with ATLAS

QCD@Work – International Workshop on QCD Lecce, 18th – 21st June 2012

Ben Cooper

On behalf of the ATLAS Collaboration

QCD at ATLAS

Strong interactions dominate the physics at the LHC p-p collider. We have to understand it to search for new physics!

Motivations

Opportunity to probe QCD in a new unchartered high energy kinematic regime – will the theory hold-up here? Evidence of new physics?

Use anti- K_T R = 0.4 and/or 0.6 jets.

Measurements cover the largest energy ranges and go out to higher rapidities than ever before.

Kinematic ranges defined by detector-acceptance to minimise signal modelling systematics This talk will summarise ATLAS measurements of "hard" QCD processes

Unfolded to particle-level for direct comparison to theory.

Studies of soft QCD, diffraction, underlying event covered separately

NLO pQCD requires corrections to theory for non-perturbative effects (n.p.c)

Compare to latest NLO pQCD, NLO+MC and LO +MC predictions

Experimental Systematics

- Dominant systematic for most jetbased observables is the Jet Energy Scale (JES) uncertainty.
- JES calibrations correct jet p_T
 back to particle-level energy on
 average. Derived w/ simulation.
- Comes with p_T and η-dependent uncertainty 2% - 7%.

- Make an in-situ validation of JES and its uncertainties:
 - γ + jet balancing.
 - Multi-jet balance at high p_T.
 - Comparisons to trackjets.

Inclusive Jets (37pb⁻¹)

- Double-differential jet production cross-section in p_T and rapidity.
- Good agreement between data, NLOJET++ and POWHEG fixed order NLO.
- Significant deviations from data at low/high p_T in POWHEG + PS MC.
- Full correlation information for the systematic uncertainties available!

Dijet Production (4.8fb⁻¹)

• Double-differential dijet production as a function of mass and $y^* = |y_1 - y_2|/2$.

5

Up to 40% discrepancies with NLOJET++ at high mass/high y*.

4TLAS-CONF-2012-021

Dijets with Central Veto

- Define a dijet system as highest two p_T or largest Δy jets.
- Measure "Gap Fraction" fraction of events with no jets > 20 GeV within Δy of dijets.
- Sensitive to:
 - BFKL-like dynamics
 - wide-angle soft-gluon radiation
- Very similar topology to central jet veto used in VBF Higgs.

- Comparisons to HEJ (all-order description of wide-angle emissions),
 Powheg+Pythia and Powheg+Herwig (also Alpgen, Herwig++ and Pythia).
- Powheg+Pythia gives best description as Δy increases.

W plus Jets (36pb⁻¹)

Phys. Rev. D85 (2012) 092002

Inclusive Jet Multiplicity Ratio

- Differential cross-sections as a function of many different kinematic variables:
 - N_{jets} , 1st-4th jet p_T , H_T , mass, y, Δy , $\Delta \varphi$, ΔR
- Generally good agreement with Blackhat-Sherpa NLO.
- Sherpa in sightly worse agreement than Alpgen.
- Complementary Z + jets measurement also made.

Vector Boson Transverse Momenta

W Transverse Momentum (31pb⁻¹)

Z Transverse Momentum (35-40pb⁻¹)

8

- Differential cross-section for the production of vector bosons as a function of their transverse momenta.
- RESBOS matches soft gluon resummation prediction (NNLL) at low p_T^V with pQCD (order α_s^2) at high p_T^V . Reproduces data well over full range.
- Good agreement with Sherpa, Alpgen and Pythia (normalised to inclusive) also found.

Photon plus Jets (37pb⁻¹)

- Differential crosssection for isolated γ + jet production as function E_T^γ, y^{jet} and for η_γy^{jet} > 0 and η_γy^{jet}
 < 0 configurations.
- Varying direct and fragmentation photon contributions and regions of x.
- Comparison to
 JETPHOX NLO (+
 n.p.c) good
 agreement except at
 low E_T^y (as observed
 in inclusive photon
 measurement).
- Also a measurement of diphoton production.

Inclusive b-jet Production (34pb⁻¹)

- Differential b-jet production cross-section as a function of p_T.
- POWHEG + Pythia performs well, MC@NLO + Herwig less so....
- Also a bb dijet mass measurement made (low statistics less discrimination between generators).

Phys.Lett. B706 (2012) 295-3

Vector Boson plus b-jets (35pb⁻¹)

W+≥1 b-jet

- Differential cross-section as a function of the number of b-jets in the event.
- Tension between measurement and NLO 5FNS (+ n.p.c) calculation.

Inclusive Z+b-jet production

Experiment	$3.55^{+0.82}_{-0.74}(\text{stat})^{+0.73}_{-0.55}(\text{syst}) \pm 0.12(\text{lumi}) \text{ pb}$
MCFM	$3.88 \pm 0.58 \text{ pb}$
ALPGEN SHERPA	2.23 ± 0.01 (stat only) pb 3.29 ± 0.04 (stat only) pb

Average # b-jets in Z+b-jet events

Experiment	$(7.6^{+1.8}_{-1.6}(\text{stat})^{+1.5}_{-1.2}(\text{syst})) \times 10^{-3}$
MCFM	$(8.8 \pm 1.1) \times 10^{-3}$
ALPGEN SHERPA	$(6.2 \pm 0.1 \text{ (stat only)}) \times 10^{-3}$ $(9.3 \pm 0.1 \text{ (stat only)}) \times 10^{-3}$

- Good agreement with MCFM NLO (+ n.p.c) calculations in Z+b-jet production.
- Significant differences between Alpgen & Sherpa, but both consistent with measurement.

Fragmentation and Shape (36pb⁻¹)

Eur.Phys.J.C 71 (2011) 1795

- Structure of jets studied using associated charged particle tracks.
- Measurement of the jet fragmentation function and transverse profile in different jet p_T bins:

$$F(z, p_{\text{T jet}}) \equiv \frac{1}{N_{\text{jet}}} \frac{dN_{ch}}{dz}$$
$$\rho_{ch}(r, p_{\text{T jet}}) \equiv \frac{1}{N_{\text{jet}}} \frac{dN_{ch}}{2\pi r dr}$$

- Test of fragmentation models/tunes of many MC event generators. Pythia6 tunes come out on top – Sherpa, Herwig++ and Pythia8 struggle...
- Also measurements of boosted jet shape and substructure variables.

Conclusions

- In its first years of operation ATLAS has conducted a thorough and comprehensive test of QCD at a new high energy frontier.
- A wide-range of different processes have been measured at an accuracy and depth not seen before.
- These measurements have enabled extensive testing of the new generation of NLO pQCD, NLO+MC and LO+MC predictions:
 - NLO pQCD calculations are generally performing very well, with some exceptions.
 - Important differences between matched NLO+MC predictions are evident.
 - Also see some significant differences between LO+MC predictions in terms of their ability to describe the kinematics of hard QCD.
- This extensive mapping of the dominant physics processes at the LHC place the searches for new physics on solid ground.
- ~5fb⁻¹ 2011 dataset measurements imminent! (dijets, V+jets, V+HF)
- Analysis of the 8 TeV data already under way...

Backup Slides

The ATLAS Detector

 The measurements presented here utilise the inner tracker, calorimeter and muon chamber components.

ATLAS Calorimetry

- EM barrel/endcap:
 - Pb/LAr accordion
 - $|\eta| < 3.2$
 - σ/E ≈ 10-17%/ \sqrt{E} + 0.7%.
- HAD barrel:
 - Fe/scintillator tiles.
 - $|\eta| < 1.7$
 - σ/E ≈ 50%/ \sqrt{E} + 3%.
- HAD endcap:
 - Cu/LAr
 - $-1.5 < |\eta| < 3.2$
 - σ /E ≈ 50%/ \sqrt{E} + 3%.
- EM/HAD forward (FCal):
 - Cu/W-LAr
 - $-3.1 < |\eta| < 4.9$
 - σ/E ≈ 100%/√E + 10%.

Jet Resolution

Inclusive Jets (37pb⁻¹)

Inclusive Jets (37pb⁻¹)

• Comparisons to NLOJET++ using different PDF sets.

Inclusive Jets Systematics

Dijet Production (37pb⁻¹)

4×10⁻¹

2

 $\begin{array}{cc} 3 & 4 \\ m_{12} \, [\text{TeV}] \end{array}$

- Double-differential dijet production as a function of mass and $y^* = |y_1 y_2|/2$.
- Dijet masses measured up to 5 TeV!
- Evidence of disagreement with NLO...

Dijet Production (37pb⁻¹)

Dijets with Central Veto

Dijets with Central Veto

Z/γ^* plus Jets (35pb⁻¹)

- Differential cross-sections as a function of N_{jets}, 1st and 2nd jet p_T, y,
- Comparisons to Blackhat NLO (+ n.p.c), Sherpa and Alpgen + Herwig-Jimmy. Good agreement within uncertainties.

Inclusive b-jet Purity Determination

Dijet b-jet Production

- bb production cross-section as a function of the dijet mass.
- Statistically limited in the 2010 dataset.

W plus Jets (36pb⁻¹)

Vector Boson Transverse Momenta

 Good consistency between W and Z transverse momenta measurements and their comparison to RESBOS.

Inclusive Photon and Diphotons

- Inclusive photon cross-section as a function E_T^γ (880nb⁻¹).
- See similar discrepancy to γ+jets measurement at low E_T^γ

- Diphotons (37pb⁻¹): $d\sigma/dm_{\gamma\gamma}$, $d\sigma/dp_{T,\gamma\gamma}$, $d\sigma/d\Delta\phi_{\gamma\gamma}$.
- Diphoton p_T well reproduced by perturbative QCD but Δφ separation broader in data (sensitive to photon fragmentation).

Fragmentation and Shape (36pb⁻¹)

Jet transverse profile at high jet p_T

Boosted Jet Substructure (35pb⁻¹)

- Inclusive measurements of jet variables capable of discriminating between hadronic boosted heavy particle decays and QCD jets e.g. C-A R=1.2 mass.
- C-A "splitting-filtering" procedure reduces sensitivity to soft physics.
- After filtering the mass is well reproduced by Pythia and Herwig++ within systematics.