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Outline

iIntroduction
bound-state eigenvalue problem

light-front coupled-cluster method
s Chabysheva and jrh, PLB 711, 417 (2012)
s also next talk by Chabysheva

sample application
form-factor calculation
summary
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# wish to compute hadron structure in terms of wave
functions
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# must truncate in some fashion
o the LFCC method avoids Fock-space truncation
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Equations for wave functions
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Solve (K.E. + Voep) Ip) = Eplp) with E,, = \/m2 + p? and

Vaep = \\\\ + rfrﬁ

b

Equivalent to coupled integral equations
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Uncanceled diver gences

for example, the Ward identity of gauge theories is
destroyed by truncation

analog in Feynman perturbation theory
s separate diagrams into time-ordered diagrams

o discard time orderings that include intermediate
states with more particles than some finite limit

» destroys covariance, disrupts regularization, and
Induces spectator dependence for subdiagrams

In the nonperturbative case, this happens not just to
some finite order in the coupling but to all orders
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L ight-cone coor dinates

-

Dirac, RMP 21, 392 (1949); T
Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1997).

o time:z" =t+z

® spaceiz=(z",%.), 2 =t—=z T, = (z,y)

® energy.p- =FE —p,

® momentum: p = (p*,5.), pt = E+ps, L= (ps,py)

. . 2 2
mass-shell condition: p2 = m?2 = p = mptpi
A0
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M ass eigenvalue problem

-

f.o Pauli and Brodsky, PRD 32, 1993 (1985); 2001 (1985)

M?* + P?
Pt

P~|P) = P),

# N0 spurious vacuum contributions to eigenstates

s p* > 0 for all particles

s cannot produce particles from vacuum and still
conserve p*

s (but difficult to analyze structure of physical vacuum)
#® Dboost-invariant separation of internal and external

momenta

» longitudinal momentum fractions z; = p;” /P

» relative transverse momenta k; | = p; | — a:z-li J
.
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Coupled-cluster (CC) method

originated with Coester, Nucl. Phys. 7, 421 (1958) and
Coester and Kummel, Nucl. Phys. 17, 477 (1960), with

app
nuc

app

Ications to the many-body Schrodinger equation in
ear physics.

led to many-electron problem in molecules by

Cizek, J. Chem. Phys. 45, 4256 (1966).

form eigenstate as e'|¢) where
s |¢) Is product of single-particle states

s terms in T annihilate states in |¢) and create excited
states, to build in correlations

o truncate T at some number of excitations
review: RJ Bartlett and M Musial, RMP 79, 291 (2007).
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Light-front CC (L FCC) method
- -

# wish to solve P~ |¢) = M2 +PL!¢>

® write eigenstate as |¢) = v/ Ze' |¢)
s Z controls normalization: (¢'|¢)) = §(P" — P).
|¢) is the valence state, with (¢/|¢) = §(P' — P).

9

s T contains terms that only increase particle number.
s T conserves J,, light-front momentum P, charge, ...
»

pT > 0 = T must include annihilation
and powers of 7" include contractions.

® construct P— = e 'P~e! and let P, project onto the
valence Fock sector. Then, have coupled system:

PP ¢y = M 4) and (1— P,)P-|¢) = 0. N
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# light-front analog of the Greenberg—Schweber model

A soluble model

» Static fermionic source that emits and absorbs
bosons without changing its spin

N 7

A A
- - —X —<~ — <« @ < —

Chabysheva and jrh, PLB 711, 417 (2012);
Brodsky, jrh, and McCartor, PRD 58, 025005 (1998);
Greenberg and Schweber, N Cim 8, 378 (1958).

# not fully covariant

<

s hides some of the power of the LFCC method, but is
sufficient to show how the method can be applied.

s states are all limited to having a fixed total transverseJ
momentum P, , which we take to be zero.
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Fock-state expansions
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Instead, in LFCC:
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Truncation

ﬁ
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Effective Hamiltonian

f.o constructed from Baker—Hausdorff expansion. T
[P_v T] — h g

\ ~

P~,T|,T] — “ee < e e < ees  cewmape

# list only terms that connect the lowest Fock sectors.

# the self-energy contribution is the same in all Fock
sectors

L’ contains all three of the diagrams analogous to those J
o~ for the Ward identity in QED
M
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Eigenvalue problems
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In LFCC:
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Exact solution

-

# in this special case, the exponential operator e’
generates the exact solution, with
_ __—g pt ' ¢ /P"
tls(ga 2_9) VT (p+_|_q+) e
# the fact that the self-energy loop is the same in the

valence sector and the one-fermion/one-boson sector
plays a critical role. It contributes

P+f\/w P q+)( )ZZ( D't (g, P —q),

regulated by the PV (I = 1) term.

# the expression for the loop obtained in the valence
sector is exactly what is needed to obtain the necessary
cancellations. J
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Dirac form factor

-

compute the Dirac form factor for the dressed fermion
from a matrix element of the current J* = 7T

the current couples to a photon of momentum g
the matrix element is generally

(7 (P + q)[1673.T°+(0)|[* (P)) = 2052 F1 (¢?) + L5095, Fy(¢?)

with F; and F5 the Dirac and Pauli form factors.

In the present model, the fermion cannot flip its spin;
therefore, 5 Is zero, and we investigate only F;

|
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Expectation values

(6le”" Oc”|g)
(pleT"eT|)
direct computation requires infinite sum.

expectation value for op O: (0) =

o) — —1' AT o s
define O = e™* Oe* and (| = (¢| G eTIa]
then (O) = (|0|¢) and

T g el et _ ;-
W |§b> _ <¢ ‘<¢|€TT€T|¢> |¢> — 5(£ B)

O computed from Baker—Hausdorff expansion:
O0=0+[0T]+3[0,T),T] +---

(1| is a left eigenvector of P—:

TPD= __ eTTP_eT _ el | eTTeT _ M?+P7 7
<¢|P T <¢‘<¢|6TT6T|¢> T <¢‘P <¢‘€TT€T‘¢> T P+ <¢‘
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L FCC approximation
-

the form factor Is approximated by the matrix element

Fi(¢?) = 87 (¢ (P + )| T+(0)|6™(P)),

with J+(0) = JT(0) + [JT(0),T] + - - -

for this model, there are no contributions from
fermion-antifermion pairs, so that

b (p')bs(p),

_22/\/16% \/167r3 ’

only the first two terms of the Baker—Hausdorff
expansion contribute to the matrix element

the first term contributes 1 /873 J
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Evaluation of the form factor

the left-hand wave function takes the form

v .
—g P+—C]+) q+/P+l(q+/P+)

54 P) = 503\/W ( P ui+at

with [ the solution of a 1D integral equation

if [ is computed in quadrature, the integrals remaining in
Fy can be computed from the same quadrature rule for
any chosen value of ¢?

if  is instead constructed as an expansion in ¢2, F; can
also be constructed as an expansion

in any case, in the limit of ¢* — 0, we have F;(0) = 1,
consistent with the unit charge in the current J™ = ¢y 1
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Summary

-

# advantages of LFCC approach:
» no Fock-space truncation.
» No sector dependence or spectator dependence.
s Systematically improvable.

o future work:

s QED (see 1203.0250 and talk by Chabysheva):
s dressed-electron-state
s dressed-photon state.
s extend dressed-electron state to include e*e™.
s Mmuonium, positronium.

s symmetry breaking in scalar theories.

s QCD
s holographic & full J

|
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