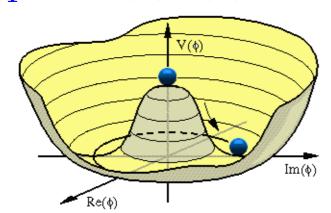
# **Higgs Physics**

as the origin of elementary particle masses


Abdelhak DJOUADI (Paris-Sud/CERN)

- EWSB and Higgs particles
  - Higgs decays
  - The Higgs at the LHC
- Implications of a Higgs discovery
  - Conclusion

### 1. EWSB and Higgs particles

To generate particle masses in an SU(2) $\times$ U(1) gauge invariant way: introduce a doublet of scalar fields  $\Phi = (\Phi^+)$  with  $\langle 0|\Phi^0|0
angle \neq 0$ 

$$\begin{split} \mathcal{L}_S = & D_\mu \Phi^\dagger D^\mu \Phi - \mu^2 \Phi^\dagger \Phi - \lambda (\Phi^\dagger \Phi)^2 \\ v = & (-\mu^2/\lambda)^{1/2} = 246 \ \mathrm{GeV} \\ \Rightarrow & \text{three d.o.f. for } M_{W^\pm} \text{ and } M_Z \\ & \text{For fermion masses, use } \underline{\text{same}} \ \Phi \text{:} \end{split}$$



$$\mathcal{L}_{Yuk} = -\mathbf{f_e}(\mathbf{\bar{e}}, \bar{\nu})_{\mathbf{L}} \mathbf{\Phi} \mathbf{e_R} + ...$$

Residual dof corresponds to spin-0 H particle.

- ullet The scalar Higgs boson:  ${
  m J^{PC}}=0^{++}$  quantum numbers.
- ullet Masses and self–couplings from  $V: \dot{M}_H^2 = 2\lambda v^2, g_{H^3} = 3\frac{M_H^2}{m}, ...$
- ullet Higgs couplings  $\propto$  particle masses:  $egin{gray}{c} \mathbf{g_{Hff}} = \frac{\mathbf{m_f}}{\mathbf{v}}, \mathbf{g_{HVV}} = 2 \frac{\mathbf{M_V^2}}{\mathbf{v}}$

#### The Higgs unitarizes the theory:

including H with couplings as predicted:

The Higgs unitarizes the theory: 
$$|A_0(vv\to vv)|\propto E^2/v^2$$
 without Higgs: 
$$|A_0(vv\to vv)|\propto E^2/v^2$$

 $m |A_0|\!\propto\! M_H^2/v^2\!\Rightarrow$  the theory is unitary but needs  $m M_H\!\lesssim\!700$  GeV...

### 1. EWSB and Higgs particles

A major problem in the SM: the hierarchy/naturalness problem

Radiative corrections to  $M_H^2$  in SM with a cut–off  $\Lambda\!=\!M_{NP}\!\sim\!M_{Pl}$ 

$$\Delta M_H^2 \ \equiv \ \stackrel{\text{H}}{----} - \stackrel{\text{f}}{----} - \frac{\text{H}}{----} - \propto \Lambda^2 \approx (10^{18} \ GeV)^2$$

 $M_{
m H}$  prefers to be close to the high scale than to the EWSB scale...

Three main avenues for solving the hierarchy problem:

Supersymmetry: a set of new/light SUSY particles cancel the divergence.

- MSSM  $\equiv$  two Higgs doublet model  $\Rightarrow$  5 physical states  $\mathbf{h},\mathbf{H},\mathbf{A},\mathbf{H}^{\pm}$
- very predictive: only two free parameters at tree–level ( $an\!eta, \mathbf{M_A}$ )
- upper bound on light Higgs  $M_h \lesssim 130~GeV$  and  $M_{H,H^\pm} \approx M_A \lesssim TeV$ Extra dimensions: there is a cut–off at TeV scale where gravity sets in.
- in most cases: SM-like Higgs sector but properties possibly affected
- but in some cases, there might be no Higgs at all (Higgsless models)....

Strong interactions/compositness: the Higgs is not an elementary scalar.

- H is a bound state of fermions like for the pions in QCD...
- H emerges as a Nambu–Goldstone of a strongly interacting sector...

### 1. EWSB and Higgs particles

and along the avenues, many possible streets, paths, corners...



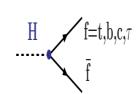
Which scenario chosen by Nature? The LHC will/should tell!

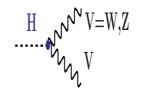
# 2. Higgs decays

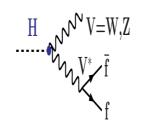
Higgs couplings proportional to particle masses: once  $M_{
m H}$  is fixed,

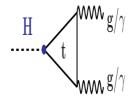
- the profile of the Higgs boson is determined and its decays fixed,
- the Higgs has tendancy to decay into heaviest available particle.

$$\mathbf{H} 
ightarrow \mathbf{f}\mathbf{ar{f}}: \mathbf{\Gamma} = rac{\mathbf{G}_{\mu}\mathbf{N_{c}}}{4\sqrt{2}\pi}\mathbf{M_{H}m_{f}^{2}}eta_{\mathbf{f}}^{\mathbf{3}}$$


- ullet only  $bar{b}, car{c}, au^+ au^-, \mu^+\mu^-$  and eventually  $tar{t}$
- ullet QCD RC very large  $\Rightarrow m_b^{\overline{MS}}(M_H^2)\!\sim\! 3\,GeV$  .
- also direct QCD (3-loops) and EW (1-loop).


$$\mathbf{H} o \mathbf{VV}$$
:  $\Gamma = rac{\mathbf{G}_{\mu} \mathbf{M_{H}^{3}}}{16\sqrt{2}\pi} \delta_{\mathbf{V}} eta_{\mathbf{V}} (1 - 4 rac{\mathbf{M_{V}^{2}}}{\mathbf{M_{H}^{2}}} + 12 rac{\mathbf{M_{V}^{4}}}{\mathbf{M_{H}^{4}}})$ 

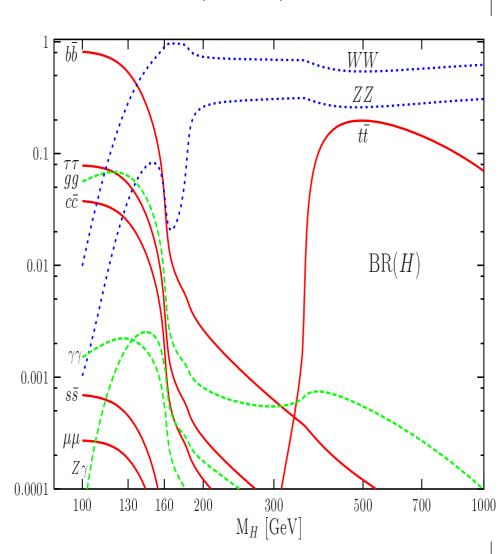

- above  $2M_Z$  th. dominant: BR(WW)= $\frac{2}{3}$ , BR(ZZ)= $\frac{1}{3}$
- ullet  $M_H \gg M_V$ : very large  $\Gamma_{VV} \propto M_H^3 \; (\Gamma_{tt} \propto M_H)^3$
- $\bullet$  below th. decays possible/important (  $m_{\rm b}\!\ll\! M_{\rm {\scriptsize V}})!$


$$\mathbf{H} o \mathbf{gg}/\gamma\gamma, \mathbf{Z}\gamma$$
: loop induced  $\propto \mathcal{O}(\alpha_s^2/\alpha^2)$ 

- heavy particles do not decouple! mainly t(W) loops
- ullet H o gg: large (#2) RC; reverse of gg o H!
- $\mathbf{H} \to \gamma \gamma$ : much smaller ( $\propto \alpha^2/\alpha_s^2$ ) but clean!





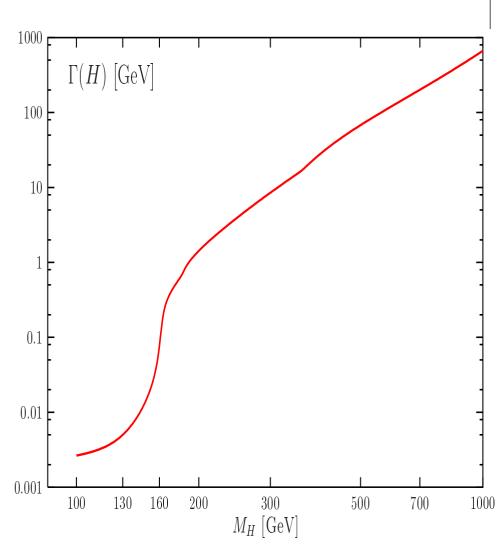





# 2. Higgs decays: branching ratios

Branching ratios: 
$$BR(H \to X) \equiv \frac{\Gamma(H \to X)}{\Gamma(H \to all)}$$

- ullet 'Low mass range',  $M_{H}\lesssim130\, ext{GeV}$ :
- $H \rightarrow b \bar{b}$  dominant, BR = 60–90%
- $-\mathbf{H} 
  ightarrow au^+ au^-, \mathbf{c}\mathbf{ar{c}}, \mathbf{g}\mathbf{g}$  BR= a few %
- $\mathbf{H} \rightarrow \gamma \gamma, \gamma \mathbf{Z}$ , BR = a few permille.
- ullet 'High mass range',  $m M_{H} \gtrsim 130\,GeV$ :
- $-\,H
  ightarrow\,WW^*,ZZ^*$  up to  $\,\gtrsim 2M_W$
- $-\mathbf{H} o \mathbf{WW}, \mathbf{ZZ}$  above (BR  $o frac{2}{3}, frac{1}{3}$ )
- $-\mathbf{H} \to \mathbf{t}\overline{\mathbf{t}}$  for high  $\mathbf{M}_{\mathbf{H}}$ ; BR  $\lesssim 20\%$ .
- Total Higgs decay width:
- $\mathcal{O}$ (MeV) for  $M_{
  m H}\!\sim\!100$  GeV (small)
- ${\cal O}$ (TeV) for  ${
  m M_H}\sim 1$  TeV (obese).




HDECAY: AD, Kalinowski, Spira (95–10). Includes all relevant higher orders.

# 2. Higgs decays: total width

### Total decay width: $\Gamma_{\mathbf{H}} \equiv \sum_{\mathbf{X}} \Gamma(\mathbf{H} o \mathbf{X})$

- lacksquare 'Low mass range',  $m M_{H} \lesssim 130$  GeV:
- $H \rightarrow bb$  dominant, BR = 60–90%
- $H 
  ightarrow au^+ au^-, car{c}, gg$  BR= a few %
- $-\mathbf{H} \rightarrow \gamma \gamma, \gamma \mathbf{Z}$ , BR = a few permille.
- ullet 'High mass range',  $m M_{H} \gtrsim 130\,GeV$ :
- $-\, {
  m H} 
  ightarrow {
  m WW}^*, {
  m ZZ}^*$  up to  $\, \gtrsim 2 {
  m M_W}$
- $-\mathbf{H} o \mathbf{WW}, \mathbf{ZZ}$  above (BR  $o frac{2}{3}, frac{1}{3}$ )
- $-{f H} 
  ightarrow t {f ar t}$  for high  ${f M_H}$ ; BR  $\lesssim 20\%$  .
- Total Higgs decay width:
- $\mathcal{O}$ (MeV) for  $m M_{H}\,{\sim}\,100$  GeV (small)
- ${\cal O}$ (TeV) for  ${
  m M_H}\sim 1$  TeV (obese).



HDECAY: AD, Kalinowski, Spira (95–10). Includes all relevant higher orders.

# 2. Higgs decays: theory uncertainties

#### However: there is QCD at work: theory uncertainties!

ullet Input quark masses in H o bar b, car c

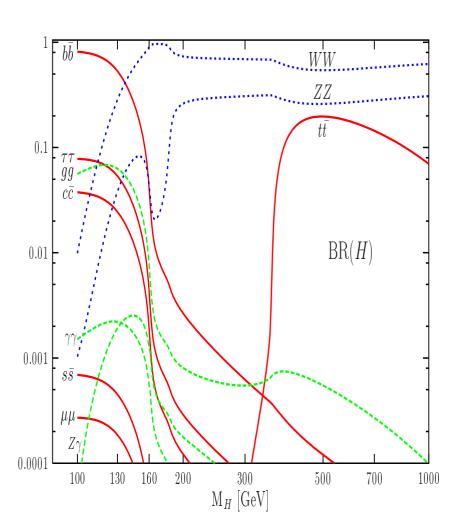
$$\mathbf{M}_{\mathbf{Q}}^{\mathbf{pole}} o \overline{\mathbf{m}}_{\mathbf{Q}}(\mu = \mathbf{M}_{\mathbf{H}})$$

$$-\,\overline{m}_{
m b}(M_{
m b}) = 4.19^{+.0.036}_{-0.012}\,{
m GeV}$$

$$-\overline{m}_{\mathbf{c}}(\mathbf{M}_{\mathbf{c}}) = 1.27^{+.0.014}_{-0.018}~ ext{GeV}$$

ullet Theory+experimental error on  $lpha_{f s}$  :

$$lpha_{\mathbf{s}}(\mathbf{M_Z^2}) = \mathbf{0.1171} \pm \mathbf{0.0028}$$
 @NNLO


Scale error: measure of higher orders

$$\frac{1}{2}\mathbf{M_H} \le \mu \le 2\mathbf{M_H}$$

ullet Scale and  $lpha_{\mathbf{s}}$  errors in  $\mathbf{H} o \mathbf{g}\mathbf{g}$ 

$$\Gamma(\mathbf{H} \to \mathbf{g}\mathbf{g}) \propto \alpha_{\mathbf{s}}^2 + \mathbf{large} \ \mathcal{O}(\alpha_{\mathbf{s}}^3)$$

• No uncertainty on  $H \rightarrow \tau \tau$ , WW, ZZ (QCD effects appear at high orders).



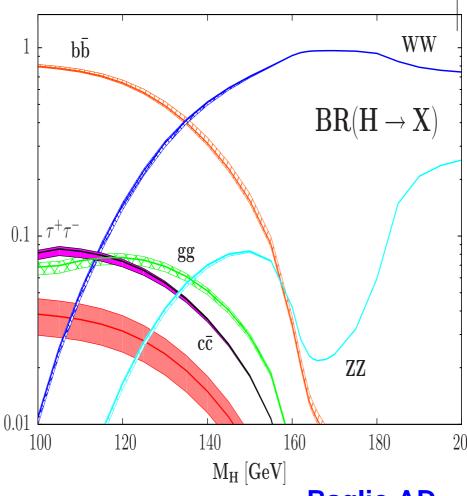
### 2. Higgs decays: theory uncertainties

**However: there is QCD at work: theory uncertainties!** 

ullet Input quark masses in  ${f H} 
ightarrow {f b} ar{f c} {f ar c}$ 

$$\mathbf{M}_{\mathbf{Q}}^{\mathbf{pole}} \to \overline{\mathbf{m}}_{\mathbf{Q}}(\mu = \mathbf{M}_{\mathbf{H}})$$

- $-\overline{m}_{\mathbf{b}}(M_{\mathbf{b}}) = 4.19^{+.0.036}_{-0.012}$  GeV
- $-\overline{m}_{f c}(M_{f c})=1.27^{+.0.014}_{-0.018}$  GeV
- ullet Theory+experimental error on  $lpha_{\mathbf{s}}$  :


$$lpha_{\mathbf{s}}(\mathbf{M_Z^2}) = \mathbf{0.1171} \pm \mathbf{0.0028}$$
 @NNLO

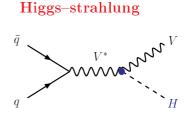
Scale error: measure of higher orders

$$\frac{1}{2}\mathbf{M_H} \le \mu \le 2\mathbf{M_H}$$

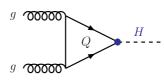
ullet Scale and  $lpha_{\mathbf{s}}$  errors in  $\mathbf{H} o \mathbf{g}\mathbf{g}$ 

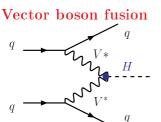
$$\Gamma(\mathbf{H} \to \mathbf{g}\mathbf{g}) \propto \alpha_{\mathbf{s}}^2 + \mathbf{large} \ \mathcal{O}(\alpha_{\mathbf{s}}^3)$$



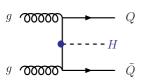

Baglio, AD

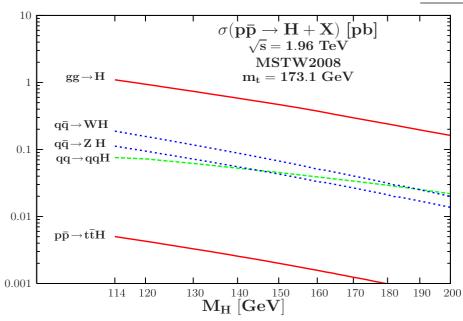
Include all items  $\Rightarrow$  non-negligible uncertainties...


esp. for  $M_h \approx$ 120–150 GeV:  $\approx$  5–10% for  $H \to b \bar b$  and  $H \to WW^*$ 


# 3. The Higgs at hadron colliders: production

#### **Main Higgs production channels**





gluon-gluon fusion

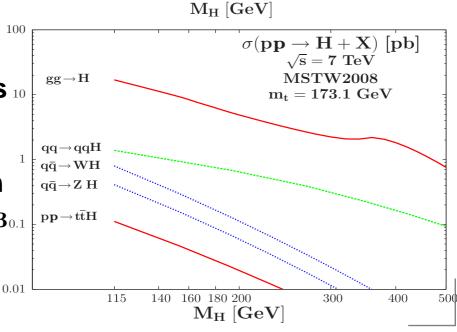




in associated with  $Q\bar{Q}$ 






#### Large production cross sections

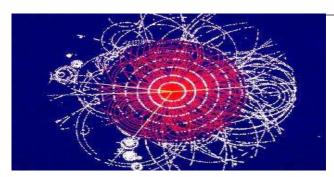
with gg→ H by far dominant process 10

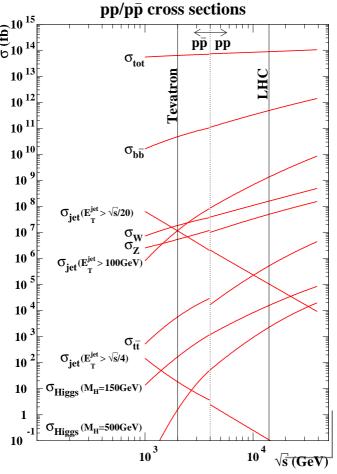
1  $fb^{-1}$   $\Rightarrow$   $\mathcal{O}(10^4)$  events@IHC  $\Rightarrow$   $\mathcal{O}(10^3)$  events @Tevatron

but eg BR(H $ightarrow\gamma, \mathbf{ZZ}
ightarrow 4\ell)\!pprox\!\mathbf{10^{-3}}_{\scriptscriptstyle{0.1}}$ 

... a small # of events at the end...




Higgs Physics – A. Djouadi – p.10/27


# 3. The Higgs at hadron colliders: challenges

#### ⇒ an extremely challenging task!

- Huge cross sections for QCD processes
- ullet Small cross sections for EW Higgs signal S/B  $\gtrsim 10^{10} \Rightarrow$  a needle in a haystack!
- Need some strong selection criteria:
- trigger: get rid of uninteresting events...
- select clean channels:  $\mathbf{H} \! \to \! \gamma \gamma, \mathbf{VV} \! \to \! \ell$
- use specific kinematic features of Higgs
- Combine # decay/production channels (and eventually several experiments...)
- Have a precise knowledge of S and B rates (higher orders can be factor of 2! see later)
- Gigantic experimental + theoretical efforts (more than 30 years of very hard work!)

For a flavor of how it is complicated from the theory side: a look at the  $gg \to H$  case





Higgs Physics – A. Djouadi – p.11/27

# 3. The Higgs at hadron colliders: gg fusion

LO<sup>a</sup>: already at one loop QCD: exact NLO $^b$ : K pprox2 (1.7)

**EFT NLO**<sup>c</sup>: good approx.

EFT NNLO $^d$ : K  $\approx$ 3 (2)

EFT NNLL $^{\rm e}$ :  $\approx +10\%$  (5%)

EFT other HO<sup>f</sup>: a few %.

EW: EFT NLO:  $^g$ :  $pprox \pm$  very small

exact NLO $^h$ :  $pprox \pm$  a few %

QCD+EW': a few %

**Distributions:** two programs

<sup>a</sup>Georgi+Glashow+Machacek+Nanopoulos

<sup>b</sup>Spira+Graudenz+Zerwas+AD (exact)

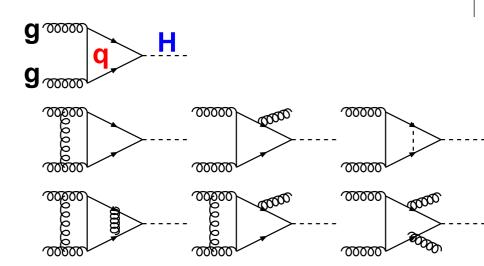
<sup>c</sup>Spira+Zerwas+AD; Dawson (EFT)

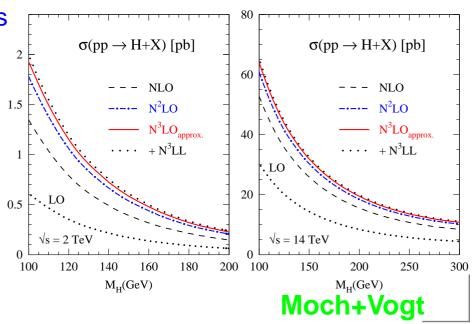
<sup>d</sup>Harlander+Kilgore, Anastasiou+Melnikov 1.5

Ravindran+Smith+van Neerven

<sup>e</sup>Catani+de Florian+Grazzini+Nason

<sup>1</sup>Moch+Vogt; Ahrens et al.


<sup>g</sup>Gambino+AD; Degrassi et al.


<sup>h</sup>Actis+Passarino+Sturm+Uccirati

'Anastasiou+Boughezal+Pietriello

<sup>J</sup>Anastasiou et al.; Grazzini

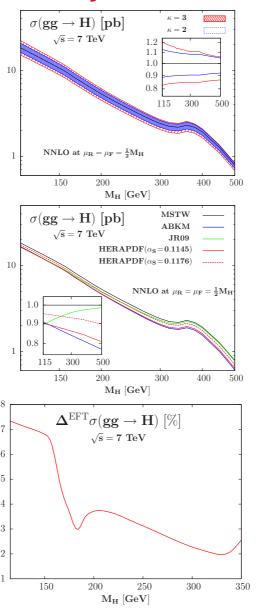
long story (70s-now) ...





Higgs Physics – A. Djouadi – p.12/27

### 3. The Higgs at hadron colliders: uncertainties


Despite of that, the  $gg\! o\!H$  cross section still affected by uncertainties

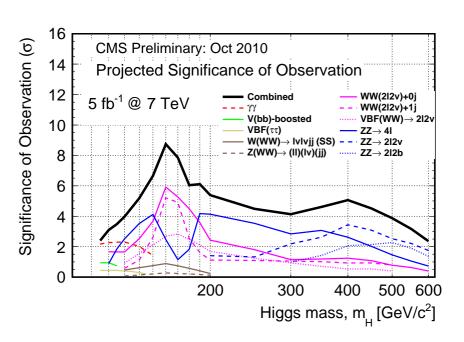
Higher-order or scale uncertainties:
 K-factors large ⇒ HO could be important
 HO estimated by varying scales of process

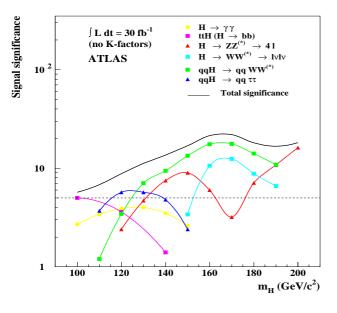
$$\mu_0/\kappa \leq \mu_R, \mu_F \leq \kappa \mu_0$$
 at IHC:  $\mu_0\!=\!\frac{1}{2}M_H, \kappa\!=\!2 \Rightarrow \Delta_{scale}\!\approx\!10\%$ 

- gluon PDF+associated  $\alpha_{\rm s}$  uncertainties: gluon PDF at high-x less constrained by data  $\alpha_s$  uncertainty (WA, DIS?) affects  $\sigma \propto \alpha_{\rm s}^2$   $\Rightarrow$  large discrepancy between NNLO PDFs PDF4LHC recommend:  $\Delta_{\rm pdf} \approx 10\%$ @lHC
- Uncertainty from EFT approach at NNLO  $m_{loop}\gg M_H$  good for top if  $M_H\!\lesssim\! 2m_t$  but not above and not b ( $\approx\! 10\%$ ), W/Z loops Estimate from (exact) NLO:  $\Delta_{EFT}\!\approx\! 5\%$
- ullet Include  $\Delta$ BR(HoX) of at most few % total  $\Delta\sigma_{
  m gg o H o X}^{
  m NNLO}pprox 20$ –25%@IHC

QCD at work again! LHC-HxsWG; Baglio+AD ⇒




# 3. The Higgs at hadron colliders: expectations


#### **Expectations for 2011 and beyond:**

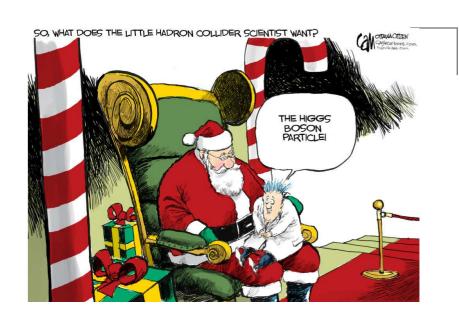
At IHC:  $\sqrt{s} = 7$  TeV and  $\mathcal{L} \approx few \ fb^{-1}$   $5\sigma$  discovery for  $M_H \approx 130$ –200 GeV 95%CL sensitivity for  $M_H \lesssim 600$  GeV  $gg \rightarrow H \rightarrow \gamma\gamma$  ( $M_H \lesssim 130$  GeV)  $gg \rightarrow H \rightarrow WW \rightarrow \ell\nu\ell\nu + 0, 1$  jets  $gg \rightarrow H \rightarrow ZZ \rightarrow 4\ell, 2\ell2\nu, 2\ell2b$  Help from VBF/VH;  $gg \rightarrow H \rightarrow \tau\tau$ ?

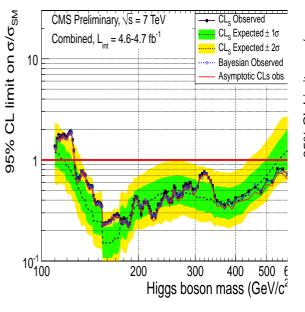
Tevatron: some data still to be analyzed now surpassed by IHC in all channels. Still  $HV \to b\bar{b}\ell X@M_H \lesssim$  130 GeV! Full LHC: same as IHC plus some others

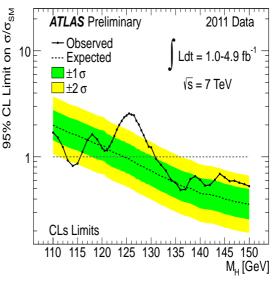
- VBF:  $qqH \rightarrow \tau\tau, \gamma\gamma, ZZ^*, WW^*$
- VH→Vbb with jet substructure tech.
- ttH: H $\rightarrow \gamma \gamma$  bonus, H $\rightarrow bb$  hopeless?

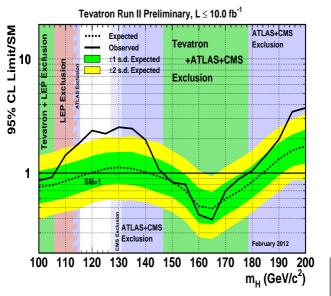





# 4. Implications of Higgs discovery


We desperately wanted a Higgs for last Christmas and we got:


– SM Higgs excluded everywhere except for  $M_H$ =123.5-127.5 GeV


–  $a \approx 3\sigma$  signal at  $M_H \approx$ 125 GeV  $\rightarrow$  thanks to LHC, ATLAS, CMS! (let us hope it will not go away....)

Also a 2.2 $\sigma$  "hint" from Tevatron!

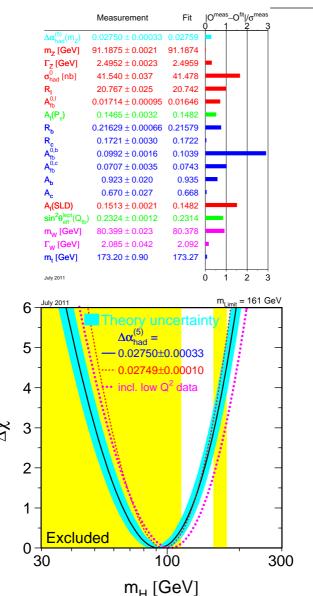









# 4. Implications of Higgs discovery: SM


The SM: a rather predictive theory:
A triumph for high-energy physics!
Indirect constraints from EW data<sup>a</sup>
H contributes to RC to W/Z masses:



Fit the EW precision measurements, one obtains  $M_{\rm H}=92^{+34}_{-26}$  GeV, or

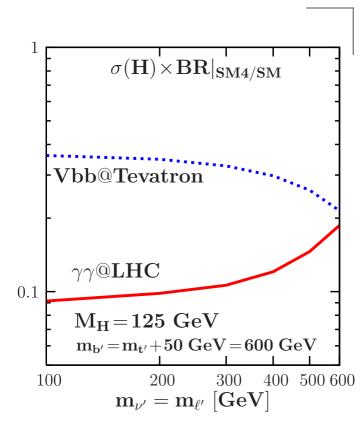
$$M_{H} \lesssim 161$$
 GeV at 95% CL

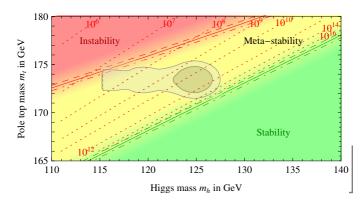
compared with "observed"  $M_H\!=\!125$  GeV A very non–trivial check of SM consistency! In 1995: top discovery with  $m_t\!\approx\!175$  GeV while best-fit in the SM is for same value: it was considered as a great achievement....



 $<sup>^</sup>a$  Still some problems with  ${f A_{FB}^b}$  (LEP),  ${f A_{FB}^t}$  (TeV) and  ${f g-2}$  but not severe...

# 4. Implications of Higgs discovery: SM


If excess due to Higgs: spectrum complete no room for a 4th fermionic generation! extra fermion doublet (with heavy  $\nu'$ ) will:


- increase  $\sigma(\mathbf{gg} o \mathbf{H})$  by factor  $pprox \mathbf{9}$
- Hightarrowgg suppresses BR(bb,VV) by pprox2
- strongly suppresses  ${
  m BR}({
  m H} o \gamma \gamma)$

If indeed a 125GeV H: SM4 ruled out...

 $M_H \!=\! 125$  GeV, SM valid up to  $M_{GUT}$  No problem with triviality:  $M_H \lesssim 180$  GeV SM valid only if v=EW-min, ie  $\lambda(Q^2) \!>\! 0$   $\Lambda_C \!\sim\! M_P \Rightarrow M_H \!\gtrsim\! 130 \ GeV$  refinements+uncertainties+metastability  $\Rightarrow$  A 125 GeV Higgs is still OK!

Espinosa et al. 2011





Higgs Physics – A. Djouadi – p.17/27

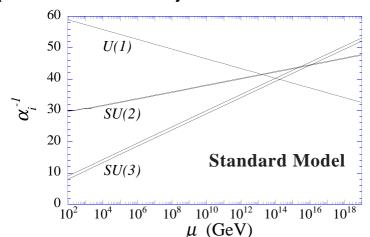
# 4. Implications of Higgs discovery: SM respectable theory?

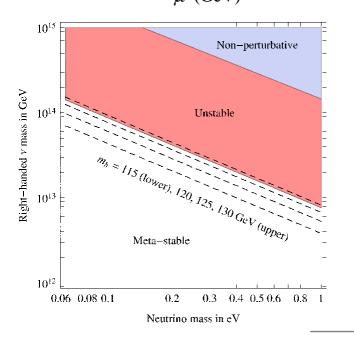
With the Higgs, the SM is a perturbative, renormalisable, unitary theory.

Can be extrapolated up to very high energy (even ultimate) scales.

However there are theoretical problems:

- extremely fine—tuned.... so what?
- no coupling unification; thresholds?
- not a theory of flavor; too bad...
  - ⇒ Maybe nature is not perfect?


#### To be extended to cope with experiment:


- needs framework for neutrino masses
- $\Rightarrow$  simply add  $\nu_{\mathbf{R}}$ 's at very high scale will enter stability limit and help BAU?

Espinosa et al, 2011

- no thermal dark matter candidate
- ⇒ axion would make it? try harder...

Maybe minimal SM extension is the TO(a)E? (esp. no hint of new physics@LHC yet...)





# 4. Implications of Higgs discovery: MSSM

In MSSM with two Higgs doublets: 
$$m H_1=inom{H_1^0}{H_1^-}$$
 and  $m H_2=inom{H_2^+}{H_2^0}$ ,

- ullet to cancel the chiral anomalies introduced by the new h field,
- give separately masses to d and u fermions in SUSY invariant way.

After EWSB (which can be made radiative: more elegant than in SM): three dof to make  $W_L^\pm, Z_L \Rightarrow$  5 physical states left out:  $h, H, A, H^\pm$  Only two free parameters at the tree level:  $tan\beta, M_A$ ; others are:

$$\begin{aligned} \mathbf{M_{h,H}^2} &= \tfrac{1}{2} \left[ \mathbf{M_A^2} + \mathbf{M_Z^2} \mp \sqrt{(\mathbf{M_A^2} + \mathbf{M_Z^2})^2 - 4\mathbf{M_A^2}\mathbf{M_Z^2}\mathbf{cos^2}2\beta} \right] \\ & \mathbf{M_{H^\pm}^2} = \mathbf{M_A^2} + \mathbf{M_W^2} \\ & \tan \! 2\alpha = \tan \! 2\beta \left( \mathbf{M_A^2} + \mathbf{M_Z^2} \right) / (\mathbf{M_A^2} - \mathbf{M_Z^2}) \end{aligned}$$

We have important constraint on the MSSM Higgs boson masses:

$$\mathbf{M_h} \leq \min(\mathbf{M_A}, \mathbf{M_Z}) \cdot |\mathbf{cos2}\beta| \leq \mathbf{M_Z}, \, \mathbf{M_{H^\pm}} > \mathbf{M_W}, \mathbf{M_H} > \mathbf{M_A}...$$

 $M_{A}\gg M_{Z}$ : decoupling regime, all Higgses heavy except for h:

$$|\mathbf{M_h} \sim \mathbf{M_Z} |\mathbf{cos2}\beta| \leq \mathbf{M_Z}! \; , \; \mathbf{M_H} \sim \mathbf{M_{H^{\pm}}} \sim \mathbf{M_A} \; , \; \alpha \sim \frac{\pi}{2} - \beta$$

 $\Rightarrow$  Inclusion of radiative corrections to  $m M_h$  important and necessary.

### 4. Implications of Higgs discovery: pMSSM

The mass value 125 GeV is rather large for the MSSM h boson,

 $\Rightarrow$  one needs from the very beginning to almost maximize it...

Maximizing  $M_h$  is maximizing the radiative corrections; at 1-loop:

$$\mathbf{M_h} \overset{\mathbf{M_A} \gg \mathbf{M_Z}}{\longrightarrow} \mathbf{M_Z} |\mathbf{cos2}\beta| + \frac{3\bar{\mathbf{m}_t^4}}{2\pi^2\mathbf{v^2sin^2}\beta} \left[ \log \frac{\mathbf{M_S^2}}{\bar{\mathbf{m}_t^2}} + \frac{\mathbf{X_t^2}}{2\mathbf{M_S^2}} \left( 1 - \frac{\mathbf{X_t^2}}{6\mathbf{M_S^2}} \right) \right]$$

- ullet decoupling regime with  $\mathbf{M_A}\!\sim\!\mathcal{O}(\mathsf{TeV})$ ;
- ullet large values of  $aneta \gtrsim 10$  to maximize tree-level value;
- ullet maximal mixing scenario:  ${
  m X_t}=\sqrt{6}{
  m M_S}$ ;
- $\bullet$  heavy stops, i.e. large  $M_S\!=\!\sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}}$  ;

we choose at maximum  $M_{\rm S}\!\lesssim\!3$  TeV, not to have too much fine-tuning....

Do the complete job as in real life:

- ullet small contributions of entire SUSY spectrum:  $m{\Phi}, \chi_{f i}^{\pm}, \chi_{f i}^{m{0}}, m{ ilde{q}_i}, m{ ilde{l}_i}, m{ ilde{g}_m}$
- complete radiative corrections up to two-loops

We use the RGE codes Suspect Kneur+Moultaka+AD and Softsusy Allanach which implement the known radiative corrections in the  $\overline{DR}$  scheme.

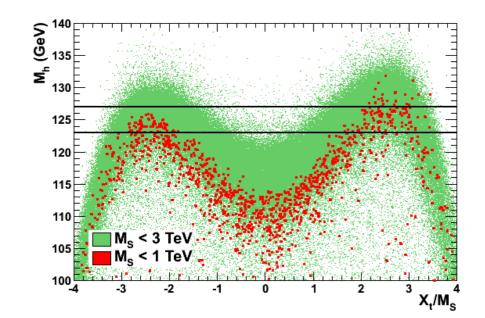
# 4. Implications of Higgs discovery: pMSSM

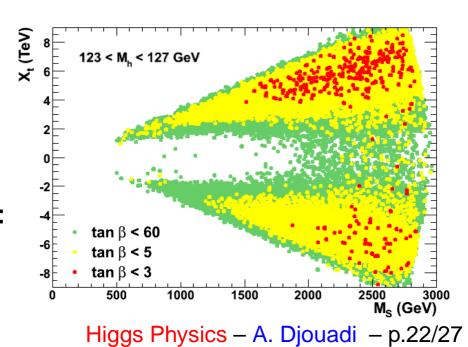
To evaluate  $M_h$ , perform a full scan of the MSSM parameter space; too complicated in the general MSSM as there are 105 free parameters  $\Rightarrow$  work in the phenomenological MSSM or pMSSM:

- no CP or flavor-violation: no new phase and diagonal  $ilde{\mathbf{m}}, \mathbf{A}$  matrices,
- universal first and second generation sfermions to cope with flavor.

Only 22 free parameters:  $tan\beta, M_A, \mu, M_{1,2,3}, m_{\tilde{f}_L}, m_{\tilde{f}_R}, A_f$  and only a few of them will play and important role in the Higgs sector..

#### Perform a full and fine scan of the pMSSM parameter space:


$$\begin{split} \mathbf{1} &\leq \tan\beta \leq \mathbf{60}\,,\; \mathbf{50} \; \mathrm{GeV} \leq \mathbf{M_A} \leq \mathbf{3} \; \mathrm{TeV},\; -\mathbf{9} \; \mathrm{TeV} \leq \mathbf{A_f} \leq \mathbf{9} \; \mathrm{TeV}, \\ \mathbf{50} \; \mathrm{GeV} &\leq \mathbf{m_{\tilde{\mathbf{f}_L}}}, \mathbf{m_{\tilde{\mathbf{f}_R}}}, \mathbf{M_3} \leq \mathbf{3} \; \mathrm{TeV}, \mathbf{50} \; \mathrm{GeV} \leq \mathbf{M_1}, \mathbf{M_2}, |\mu| \leq \mathbf{1.5} \; \mathrm{TeV} \end{split}$$


- ullet determine the regions of parameter space where  $123\!\leq\!M_h\leq\!127$  GeV (2 GeV uncertainty includes both "experimental" and "theoretical" error)
- require h to be SM–like:  $\sigma(h) \times BR(h \to VV) \gtrsim 0.9 H_{SM}$  (we will also consider the possibility that H is the  $H_{SM}$ , see later).

# 4. Implications of Higgs discovery: pMSSM

#### Main results:

- ullet Large  $M_{
  m S}$  values needed:
- $M_{
  m S}pprox 1$  TeV: only maximal mixing
- ${
  m M_S}pprox 3$  TeV: only typical mixing.
- ullet Large  $an\!eta$  values favored but  $an\!eta\!pprox\!3$  possible if  $extbf{M}_{ extbf{S}}\!pprox\!3$ TeV
- What about other benchmarks?
   Carena+Heinemeyer+Wagner+Weiglein
- small  $\alpha_{\rm eff}$  scenario with  $g_{\rm hbb} \approx 0$ : ruled out by LHC/Tevatron data.
- gluophobic h with  $g_{hgg}\ll g_{H_{SM}gg}$  ruled out by  $4\ell^+,\gamma\gamma$  signals at LHC (difficult to achieve as  $\tilde{t}_1$  heavy..).
- no SUSY regime with light sparticles: BR(h  $\to \chi_1^0 \chi_1^0$ ) should be small...
- max and no-mix need to be updated!





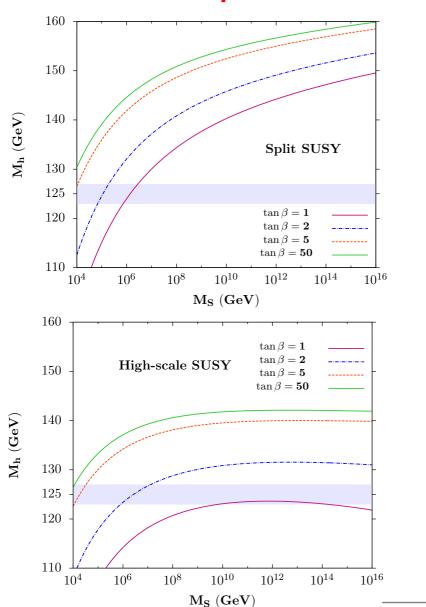
# 4. Implications of Higgs discovery: high scale SUSY

The scale  $m M_{S}$  seems to be large. There are two extreme possibilities

ullet Split SUSY: allow fine—tuning scalars (including  $H_2$ ) at high scale gauginos—higgsinos at weak scale (unification+DM solutions still OK)

$$\mathbf{M_h} \propto \log(\mathbf{M_S}/\mathbf{m_t}) 
ightarrow ext{large}$$

Arkani-Hamed+Dimopoulos Giudice, Romanino


 $\bullet$  SUSY broken at the GUT scale... give up fine-tuning and everything else still,  $\lambda\!\propto\! M_H^2$  related to gauge cplgs

$$\lambda(\mathbf{\tilde{m}}) = \frac{\mathbf{g_1^2(\tilde{m})} + \mathbf{g_2^2(\tilde{m})}}{8} (1 + \delta_{\mathbf{\tilde{m}}})$$

... leading to  $m M_{H}$  =120–140 GeV ...

Hall+Nomura, Giudice+Strumia Bernal+Slavich+AD

In both cases small  $an\!eta$  needed...



Higgs Physics – A. Djouadi – p.23/27

# 4. Implications of Higgs discovery: cMSSM

Constrained MSSMs are interesting from model building point of view:

- provide concrete schemes for supersymmetry breaking
- solve some problems of unconstrained MSSM: flavor, CPV, universality,
- reduce number of input parameters and are thus more predictive

Prototype model: the minimal supergravity model (mSUGRA).

- Underlying assumption: SUSY-breaking occurs in a hidden sector communicating with visible sector through gravitational interactions,
- parameters obey a set of boundary conditions at  $M_{GUT}\!pprox\!10^{16}\,$  GeV
- universal soft terms emerge if the interactions are "flavor–blind"

 $\Rightarrow$  only 4.5 inputs:  $\tan \beta$ ,  $\mathbf{m_{1/2}}$ ,  $\mathbf{m_0}$ ,  $\mathbf{A_0}$ ,  $\operatorname{sign}(\mu)$ 

In GMSB, SSB transmitted to MSSM fields via SM gauge interactions.

Minimal inputs:  $tan\beta$ ,  $sign(\mu)$ ,  $M_{mes}$ ,  $\Lambda_{SSB}$ ,  $N_{mess\ fields}$ 

In AMSB, SSB in hidden sector transmitted via (super-Weyl) anomalies.

Minimal inputs:  $\mathbf{m_0}$ ,  $\mathbf{m_{3/2}}$ ,  $\tan \beta$ ,  $\mathrm{sign}(\mu)$ 

Using Suspect+Softsusy, perform scans of the models parameter space and confront them with LHC constraint  $123~GeV\!\leq\!M_h\!\leq\!127~GeV$ 

### 4. Implications of Higgs discovery: cMSSM

The following ranges are considered for the model input parameters besides  $1 \leq an\!eta \leq 60$  and sign( $\mu$ ) =  $\pm 1$  that are common to all:

mSUGRA: 50GeV  $\leq$   $m_0 \leq$  2TeV, 50GeV  $\leq$   $m_{1/2} \leq$  3TeV,  $|A_0| \leq$  9TeV;

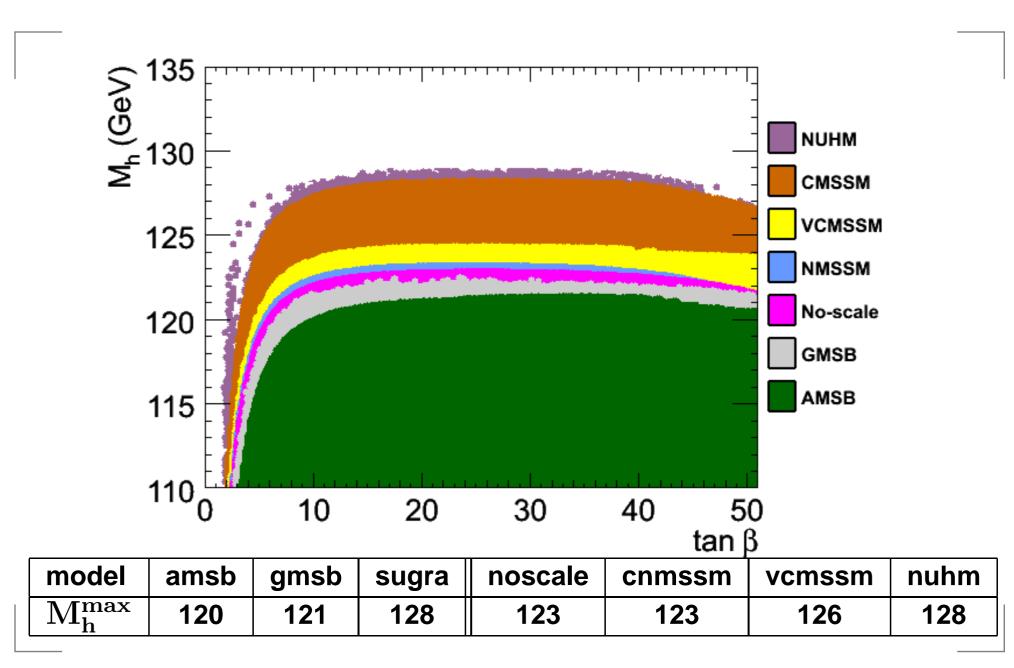
mGMSB: 10TeV $\leq$   $\Lambda$   $\leq$  1000 TeV, 1  $\leq$   $M_{\rm mes}/\Lambda$   $\leq$   $10^{11}$ ,  $N_{\rm mess}$  =1;

mAMSB: 1 TeV  $\leq m_{\frac{3}{2}} \leq$  100TeV,50 GeV  $\leq m_0 \leq$  2 TeV.

In mSUGRA we further consider the following (over-constrained) cases:

- ullet no-scale:  $\mathrm{m}_0=\mathrm{A}_0=0$
- ullet cNMSSM:  $\mathbf{m_0}=\mathbf{0}, \mathbf{A_0}=-rac{1}{4}\mathbf{m_{1/2}}$
- ullet vcMSSM:  $m_0=A_0$

as well as as the less constrained non-universal Higgs mass model:


 $\bullet$  NUHM:  $m_{1/2}, m_0, A_0$  and  $m_{H_u}, m_{H_d}$ 

In mSUGRA case and its variants, we impose in addition bounds from:

- correct relic density of DM neutralino as measured by WMAP,
- constraints from flavor physics:  ${f b} 
  ightarrow {f s} \gamma, {f B_s} 
  ightarrow \mu \mu$  ,
- constraints from heavy MSSM Higgs production at the LHC.

Less freedom for  $A_t \Rightarrow M_h$  is much more constraining!

# 4. Implications of Higgs discovery: cMSSM



#### **5. Conclusions**

#### There is a hint of a 125 GeV Higgs but many questions remain:

- is the 125 GeV Higgs really there? any wrong cable connection?
- if yes, is it really SM–like? What about the  $\gamma\gamma,4\ell^\pm,bar{b}$  rates?
- if indeed OK, a triumph for the Standard Model: Standarissimo!

A 125 GeV Higgs provides information on BSM and SUSY in particular:

- ullet  $M_{H}\!=\!119$  GeV would have been a boring value: everybody OK...
- ullet  $M_{H}\!=\!145$  GeV would be a devastating value: mass extinction...
- ullet  $M_{
  m H}\!pprox\!125$  GeV is Darwinian: (natural) selection among models...

SUSY spectrum heavy; except maybe for weakly interacting sparticles and also stops  $\Rightarrow$  more focus on them in SUSY searches!

Some answers in July or December. More complete picture later!

My personal feeling or bet: maybe the rather optimistic scenario?

- a ( $\mathbf{5} \oplus \mathbf{5} \sigma$ ?...) Higgs in 2012, Higgstoric year!
- a stop and a chargino in 2015: my favorite/best–guess SUSY signal:

$$\mathbf{pp} o ilde{\mathbf{t}_1} ilde{\mathbf{t}_1} o \mathbf{b} \chi_1^+ ar{\mathbf{b}} \chi_1^- o \mathbf{b} ar{\mathbf{b}} \mathbf{e} \mu + \mathbf{E} \mathbf{\chi}_1$$

– following years, search for  $gg \to \tilde{t}_1 \tilde{t}_1 h$  and measurement of  $A_t...$