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In SU(3) Yang-Mills theory, confinement of fundamental quarks is realized based on
the dual superconductivity caused by non-Abelian magnetic monopoles.
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§ Introduction

In this talk we reconsider the dual superconductor picture in SU(3) Yang-Mills
theory as a mechanism for quark confinement. We focus on how the SU(3) case is
different from SU(2) one.

The basic ingredient for dual superconductivity is the existence of magnetic monopoles
to be condensed and the realization of the dual Meissner effect.

What kind of magnetic monopoles can be defined in Yang-Mills theory without adjoint
scalar fields?

We follow the well-known Wilson criterion for quark confinement, i.e., area law of the
Wilson loop average.

We obtain the exact relationship between the Wilson loop and the magnetic monopole.

Consequently,

(1) the magnetic monopole can be defined in a gauge-invariant way,

(2) the magnetic monopole (inherent in the Wilson loop) can be detected by the
Wilson loop.
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Three steps of our strategy:

1) We give a definition of a gauge-invariant magnetic monopole which is inherent in
the Wilson loop operator even in SU(N) Yang-Mills theory without adjoint scalar fields.

← a non-Abelian Stokes theorem for the Wilson loop operator (a path-integral
representation of the Wilson loop operator using the coherent state for the Lie group)
[Diakonov & Petrov, 1989,...],[Kondo & Taira, 2000],[Kondo, 2008]

2) We develop an optimal description of the magnetic monopole derived in 1).

← a reformulation of Yang-Mills theory using new field variables
[Cho, 1980],[Duan & Ge, 1979],[Faddeev & Niemi, 1999],[Shabanov, 1999],[Kondo, Shinohara and

Murakami, 2005,2008]

3) For SU(3), we confirm the infrared dominance of the restricted variables and the
non-Abelian U(2) magnetic monopole dominance for quark confinement (in the string
tension). We demonstrate the dual Meissner effect due to non-Abelian magnetic
monopoles. cf. [infrared Abelian dominance and magnetic monopole dominance in MA
gauge]
← a lattice version of the reformulation of the Yang-Mills theory and numerical
simulations on a lattice
[Kato, Kondo, Shibata, Shinohara, Murakami and Ito, 2006, 2007, ...]
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§ Wilson loop operator and magnetic monopole
The SU(N) Wilson loop operator in a given representation specified by |Λ⟩:

WC[A ] :=tr

[
P exp

{
igYM

∮
C

dxµAµ(x)

}]
/tr(1), Aµ(x) = A A

µ (x)λA/2 ∈ su(N)

can be cast into an equivalent form without the path-ordering P

WC[A ] =

∫
dµC(g) exp

[
igYM

∮
C

A

]
, A := Aµ(x)dx

µ, (1)

where gYM is the Yang-Mills coupling constant,

dµC(g) :=
∏
x∈C

dµ(gx), dµ(g) : an invariant measure on G = SU(N) (2)

A := Aµ(x)dx
µ, Aµ(x) = tr{ρ[g†xAµ(x)gx + ig−1

YMg†x∂µgx]}, gx ∈ G = SU(N). (3)

ρ := |Λ⟩⟨Λ|. (4)

|Λ⟩: a reference state (highest–weight state of the rep.) making a rep. of the Wilson
loop we consider. tr(ρ) = ⟨Λ|Λ⟩ = 1 follows from the normalization of |Λ⟩.
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Then it is rewritten into the surface-integral form using a usual Stokes theorem:

WC[A ] =

∫
dµΣ(g) exp

[
igYM

∫
Σ:∂Σ=C

F

]
, (5)

where dµΣ(g) :=
∏

x∈Σ dµ(gx), the resulting two-form F := dA = 1
2Fµν(x)dx

µ ∧ dxν

is given by

Fµν(x) =
√

2(N − 1)/N [Gµν(x) + ig−1
YMtr{ρg†x[∂µ, ∂ν]gx}], (6)

with the field strength Gµν defined by

Gµν(x) := ∂µtr{n(x)Aν(x)} − ∂νtr{n(x)Aµ(x)}

+
2(N − 1)

N
ig−1

YMtr{n(x)[∂µn(x), ∂νn(x)]}, (7)

by introducing the so-called color field

n(x) :=
√

N/[2(N − 1)]gx [ρ− 1/tr(1)] g†x, (8)

which is normalized (n(x) · n(x) = 1) and traceless (tr{n(x)} = 0).
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Finally, the Wilson loop operator in the fundamental rep. of SU(N) reads
[Kondo, arXiv:0801.1274, Phys.Rev.D77, 085029 (2008)] [Kondo, hep-th/0009152]

WC[A ] =

∫
dµΣ(g) exp {ig(ΞΣ, k) + ig(NΣ, j)} , C = ∂Σ

k := δ∗F = ∗dF, ΞΣ := δ∗ΘΣ△−1 ← (D-3)-forms

j := δF, NΣ := δΘΣ△−1 ← 1-forms (D-indep.)

Θµν
Σ (x) =

∫
Σ

d2Sµν(x(σ))δD(x− x(σ))

(k,ΞΣ) :=
1

(D − 3)!

∫
dDxkµ1···µD−3(x)Ξ

µ1···µD−3
Σ (x), (9)

k,j: “magnetic current” k and “electric current” j which are conserved, δk = 0 = δj.
∆ := dδ + δd: the D-dimensional Laplacian,
Θ: the vorticity tensor, which has the support on the surface Σ (with the surface
element dSµν(x(σ))) whose boundary is the loop C.

The last part ig−1
YMtr{ρg†x[∂µ, ∂ν]gx} in F corresponds to the Dirac string, which is not

gauge invariant and does not contribute to the Wilson loop (unless the gauge is fixed).
The gauge-invariant magnetic monopole k is inherent in the Wilson loop
operator.
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⊙ SU(2) case: For the fundamental rep. of SU(2), the highest-weight state |Λ⟩ yields

|Λ⟩ =
(
1
0

)
, ρ := |Λ⟩⟨Λ| =

(
1
0

)
(1, 0) =

(
1 0
0 0

)
, ρ− 1

2
1 =

σ3

2
, (10)

=⇒ n(x) =gx
σ3

2
g†x ∈ SU(2)/U(1) ≃ S2 ≃ CP 1. (11)

Then the gauge–invariant magnetic–monopole current (D-3)-form k = 1
2δ

∗f is given by

fµν =∂µ[n
AA A

ν ]− ∂ν[n
AA A

µ ]− g−1
YMϵABCnA∂µn

B∂νn
C

=2tr
{
nFµν + ig−1

YMn[Dµn, Dνn]
}
. (12)

The existence of magnetic monopole is suggested from a nontrivial Homotopy class of
the map n : S2 → SU(2)/U(1)

π2(SU(2)/U(1)) = π1(U(1)) = Z. (13)

Magnetic charge obeys the quantization condition a la Dirac:

Qm :=

∫
d3xk0 = 4πg−1

YMℓ, ℓ ∈ Z. (14)
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cf. the Abelian magnetic monopole of ’t Hooft–Polyakov type:

nA ↔ ϕ̂A(x)/|ϕ̂(x)|. (15)

For SU(2), if we choose a special gauge in which the color field is uniform:

n(x) = (n1(x), n2(x), n3(x)) = (0, 0, 1), (16)

then
fµν = ∂µA 3

ν − ∂νA
3
µ . (17)

The Wilson loop operator reduces to the “Abelian-projected” form:

WC[A ] = exp

[
igYM

∫
Σ:∂Σ=C

F

]
, (18)

where the two-form F := dA = 1
2Fµν(x)dx

µ ∧ dxν is defined by

Fµν(x) = Gµν(x) =
1

2
fµν(x). (19)

cf. Abelian projection, See reviews by Chernodub & Polikarpov, Greensite, ...
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⊙ SU(3) case: For the fundamental rep. of SU(3), the highest-weight sate |Λ⟩ yields

|Λ⟩ =

1
0
0

 , ρ := |Λ⟩⟨Λ| =

1 0 0
0 0 0
0 0 0

 , ρ− 1

3
1 =
−1
3

−2 0 0
0 1 0
0 0 1

 , (20)

=⇒ n(x) = gx
−1
2
√
3

−2 0 0
0 1 0
0 0 1

 g†x ∈ SU(3)/U(2) ≃ CP 2 (gx ∈ SU(3)). (21)

Then the gauge–invariant magnetic–monopole current (D-3)-form k = δ∗f is given by

Gµν := ∂µtr{nAν} − ∂νtr{nAµ}+
4

3
ig−1

YMtr{n[∂µn, ∂νn]}. (22)

Homotopy class of the map n : S2 → SU(3)/U(2)

π2(SU(3)/[SU(2)× U(1)]) = π1(SU(2)× U(1)) = π1(U(1)) = Z. (23)

Magnetic charge obeys the quantization condition:

Qm :=

∫
d3xk0 = 2π

√
3g−1

YMℓ, ℓ ∈ Z. (24)
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The maximal stability subgroup H̃ is defined by

h ∈ H̃ ⇐⇒ h|Λ⟩ = |Λ⟩eiϕ(h), (25)

for a reference state |Λ⟩ of a given representation of a Lie group G.

Every representation R of SU(3) with the Dynkin index [m,n] belongs to (I) or (II):

(I) m ̸= 0 and n ̸= 0 =⇒ H̃ = H = U(1)× U(1). maximal torus
e.g., adjoint rep.[1,1], {H1,H2} ∈ u(1) + u(1),

(II) m = 0 or n = 0 =⇒ H̃ = U(2).
when the weight vector Λ is orthogonal to some of the root vectors,
e.g., fundamental rep. [1,0], {H1,H2, Eβ, E−β} ∈ u(2), where Λ ⊥ β,−β.

H1

H2

- α(1)

- α(2)

Λν1ν2

ν3

- α(3)- α(2)



H1

H2Λ

H1

H2

− α(3)

α(2)

- α(1)

- α(2)
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The target space of the color field is specified by the maximal stability group H̃:

n(x) = gxdiag.(λ1, λ2, λ3)g
†
x ∈ G/H̃, (26)

The gauge-invariant magnetic monopoles inherent in the SU(3) Wilson loop
operator for the fundamental rep. are non-Abelian U(2) magnetic monopole in
the sense of Goddard–Nuyts–Olive–Weinberg.

c.f. Abelian projection method=the partial gauge fixing from an original gauge group
G to the maximal torus subgroup H:

G = SU(3)→ H = U(1)× U(1) (27)

π2(SU(3)/[U(1)× U(1)]) = π1(U(1)× U(1)) = Z2. (28)

=⇒ two kinds of Abelian U(1) magnetic monopoles for any rep.

No such difference for SU(2). For any rep. of SU(2), magnetic monopole is U(1), since

H̃ = H = U(1). (29)

H1

- α

Λ

H1

- α α
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§ Reformulating Yang-Mills theory using new variables
We can construct the decomposition:

Aµ(x) = Vµ(x) + Xµ(x), (1)

such that (a) Vµ alone reproduces the Wilson loop operator:

WC[A ] = WC[V ], (2)

and that (b) Fµν[V ] := ∂µVν − ∂νVµ − igYM[Vµ,Vν] in n direction agrees with Gµν:

Gµν(x) = tr{n(x)Fµν[V ](x)}. (3)

For this purpose, we impose the defining equations:
(I) n(x) is a covariant constant in the background Vµ(x):

0 = Dµ[V ]n(x) := ∂µn(x)− igYM[Vµ(x),n(x)],=⇒ (b) (4)

(II) X µ(x) does not have the H̃-commutative part:

X µ(x)H̃ :=

(
1− 2

N − 1

N
[n, [n, ·]]

)
X µ(x) = 0. =⇒ (a) (5)
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By solving the defining equations, such fields Vµ(x) and Xµ(x) are determined uniquely:

Xµ =− ig−1
YM

2(N − 1)

N
[n,Dµ[A ]n] ∈ L ie(G/H̃),

Vµ =Cµ + Bµ ∈ L ie(G),

Cµ = Aµ −
2(N − 1)

N
[n, [n,Aµ]] ∈ L ie(H̃),

Bµ = ig−1
YM

2(N − 1)

N
[n, ∂µn] ∈ L ie(G/H̃). (6)

At the same time, the color field

n(x) ∈ L ie(G/H̃)

must be obtained by solving the reduction condition χ = 0 for a given A , e.g.,

χ[A ,n] := [n, Dµ[A ]Dµ[A ]n] ∈ L ie(G/H̃). (7)
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For the gauge transformations of the original field Aµ(x)

Aµ(x)→ A ′
µ(x) := U(x)Aµ(x)U(x)−1 + ig−1

YMU(x)∂µU(x)−1. (8)

new fields obey the gauge transformation:

Xµ(x)→X ′
µ(x) := U(x)Xµ(x)U(x)−1,

Vµ(x)→ V ′
µ(x) := U(x)Vµ(x)U(x)−1 + ig−1

YMU(x)∂µU(x)−1, (9)

if the color field obeys

n(x)→ n′(x) := U(x)n(x)U(x)−1. (10)

The gauge invariance of Gµν(x) and hence the magnetic current k follow from these
transformation rules.
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We consider the Wilson loop average

W (C) := ⟨WC[A ]⟩YM = Z−1
YM

∫
DA e−SYM[A ]WC[A ]. (11)

original YM =⇒ reformulated YM
field variables A A

µ ∈ L (G) =⇒ nβ,C k
ν ,X

b
ν

action SYM[A ] =⇒ S̃YM[n,C ,X ]

integration measure DA A
µ =⇒ DnβDC k

ν DX b
ν J̃δ(χ̃)∆

red
FP[n, c,X ]

Wilson loop operator WC[A ] =⇒
∫
dµΣ(g) exp {igYM(k,ΞΣ) + igYM(j,NΣ)}

Thus, we have arrived at the Wilson loop average in the reformulated YM theory:

⟨WC[A ]⟩YM′ = Z−1
YM′

∫
dµΣ(g)

∫
DnβDC k

ν DX b
ν J̃δ(χ̃)∆

red
FPe

−S̃YM[n,C ,X ]

× exp {igYM(k,ΞΣ) + igYM(j,NΣ)} , (12)

where χ̃ = 0 is the reduction condition written in terms of the new variables:

χ̃ := χ̃[n,C ,X ] := Dµ[V ]Xµ, (13)
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and ∆red
FP is the Faddeev-Popov determinant associated with the reduction condition:

∆red
FP := det

(
δχ

δθ

)
χ=0

= det

(
δχ

δnθ

)
χ=0

. (14)

which is obtained by the BRST method as ∆red
FP[n, c,X ] = det{−Dµ[V +X ]Dµ[V −

X ]}.
The Jacobian J̃ is very simple, irrespective of the choice of the reduction condition:

J̃ = 1. (15)

[Kondo, Shinohara & Murakami, arXiv:0803.0176, Prog.Theor.Phys. 120, 1–50 (2008)]
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§ Lattice reformulation and numerical simulations
Lattice reformulation [Kondo, Shibata, Shinohara, Murakami, Kato and Ito, Phys. Lett.
B669, 107(2008)] [Shibata, Kondo and Shinohara, Phys. Lett. B691, 91(2010) ]
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Figure 1: quark-antiquark potential: (from above to below) full SU(3) potential Vf(r),
restricted part Va(r) and magnetic–monopole part Vm(r) at β = 5.7 on 164 lattice

⟨WC[A ]⟩YM → Vf(r) full SU(3) quark-antiquark potential,

⟨WC[V ]⟩YM′ → Va(r) restricted field part

→ infrared V dominance in the string tension (85–90%),

⟨eigYM(k,ΞΣ)⟩⟩YM′ → Vm(r) magnetic–monopole part

→ U(2) magnetic monopole dominance in the string tension (75%),
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We study the color flux produced by a quark-antiquark pair, see the left-panel of Fig.2.

q q̄

y

x

position x

distance  y

〈trWLUpL†〉

〈trW〉

X

T

Y

W

L

Up

distance  y

Figure 2: (Left) The setup for measuring the color flux produced by a quark–antiquark
pair. (Right) The connected correlator between a plaquette P and the Wilson loop W .

In order to explore the color flux in the gauge invariant way, we use the connected
correlator ρW of the Wilson line (see the right panel of Fig.2),

ρW :=

⟨
tr
(
UPL

†WL
)⟩

⟨tr (W )⟩
− 1

N

⟨tr (UP ) tr (W )⟩
⟨tr (W )⟩

, (1)
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In the naive continuum limit, ρW reduces to the field strength:

ρW
ε→0≃ gϵ2 ⟨Fµν⟩qq̄ :=

⟨
tr
(
gϵ2FµνL

†WL
)⟩

⟨tr (W )⟩
+O(ϵ4), (2)

Thus, the color filed strength produced by a qq̄ pair is given by Fµν =
√

β
2NρW .
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Figure 3: Measurement of chromo-electric flux in the SU(3) Yang-Mills theory.
(Left) Ex from the original field A . (Right) Ex from the restricted field V .

These are numerical evidences supporting “non-Abelian” dual superconductivity due
to non-Abelian magnetic monopoles as a mechanism for quark confinement in SU(3)
Yang-Mills theory.
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§ Conclusion and discussion

1) We have defined a gauge-invariant magnetic monopole k inherent in the Wilson loop
operator by using a non-Abelian Stokes theorem for the Wilson loop operator, even in
SU(N) Yang-Mills theory without adjoint scalar fields.

For quarks in the fundamental representation, H̃ = U(N) for G = SU(N)
G=SU(2) Abelian magnetic monopole SU(2)/U(1)
G=SU(3) non-Abelian magnetic monopole SU(3)/U(2)

2) We have constructed a new reformulation of Yang-Mills theory using new field
variables, which gives an optimal description of the magnetic monopole derived in 1).

The reformulation allows options discriminated by the maximal stability group H̃.

For G = SU(3), two options are possible:

• The minimal option H̃ = U(2) gives an optimized description of quark confinement
through the Wilson loop in the fundamental representation.

• The maximal option, H̃ = H = U(1)×U(1), the new theory reduces to a manifestly
gauge-independent reformulation of the conventional Abelian projection in the maximal
Abelian gauge.
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The idea of using new variables is originally due to Cho, and Faddeev & Niemi,
where N − 1 color fields n(j) (j = 1, ..., N − 1) are introduced.
However, our reformulation in the minimal option is new for SU(N), N ≥ 3: we
introduce only a single color field n for any N , which is enough for reformulating the
quantum Yang-Mills theory to describe confinement of the fundamental quark.

By constructing a lattice version of the reformulation of the SU(N) Yang-Mills
theory and performing numerical simulations on a lattice,

3) For SU(3), we have confirmed the infrared dominance of the restricted variables
V and the non-Abelian magnetic monopole dominance for quark confinement (in the
string tension),
cf. [infrared Abelian dominance and magnetic monopole dominance in MA gauge]

4) We have shown the evidence of the dual Meissner effect caused by non-Abelian
magnetic monopoles in SU(3) Yang-Mills theory: the tube-shaped flux of the chromo-
electric field originating from the restricted field including the non-Abelian magnetic
monopoles.

To confirm the non-Abelian dual superconductivity picture in SU(3) Yang-Mills
theory, we plan to do further checkes, e.g., determination of the type of dual
superconductor, measurement of the penetraing depth, induced magnetc current around
color flux due to magnetic monopole condensations, and so on.
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Thank you very much
for your attention!
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Questions:

• breaking of the dual gauge symmetry, generation of dual gluon mass

• relationship between magnetic monopoles and vortex.

We can define a gauge-invariant vortex which ends on the non-Abelian magnetic
monopole.

• relationship between magnetic monopoles and instantons or merons.
SU(2) case
Kondo, Fukui, Shibata and Shinohara, arXiv:0806.3913[hep-th], Phys.Rev.D78, 065033
(2008)
Fukui, Kondo, Shibata and Shinohara, arXiv:1005.3157[hep-th], Phys.Rev.D82, 045015
(2010)

• Extension to finite temperature case: magnetic–monopole liquid (Tc < T < 2Tc) ,
magnetic–monopole gas (T > 2Tc), proposed by [Chernodub & Zakharov,2007]

• Skyrme-Fadeev-Niemi model as an low-energy effective theory, a non-linear sigma
model written in terms of n ∈ CPN−1 = SU(N)/U(N − 1)

• Large N analysis
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To obtain correlation functions of field variables, we need to fix the gauge and we
have adopted the Landau gauge.
Fig.4 shows two-point correlation functions of color field, indicating the global SU(3)
color symmetry preservation, no specific direction in color space:

⟨nA(0)nB(r)⟩ = δABD(r)

.
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Figure 4: Color field correlators ⟨nA(0)nB(r)⟩ (Left) A = B, (Right) A ̸= B
(A,B = 1, · · · , 8) measured at β = 6.2 on 244 lattice, using 500 configurations
under the Landau gauge.

We have also checked that one-point functions vanish,

⟨nA(x)⟩ = ±0.002 ≃ 0

.
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Fig. 5 shows correlators of new fields V , X , and original fields A , indicating the
infrared dominance of restricted correlation functions ⟨V A

µ (0)V A
µ (r)⟩ in the sense that

the variable V is dominant in the long distance, while the correlator ⟨X A
µ (0)X A

µ (r)⟩
of SU(3)/U(2) variable X decreases quickly.

For X , at least, we can introduce a gauge-invariant “mass” term 1
2M

2
XX A

µ X A
µ ,

since X transforms like an adjoint matter field under the gauge transformation. The
naively estimated “mass” of X is MX = 2.409

√
σphys = 1.1 GeV. This value should

be compared with the result in MA gauge.

25



The above form is obtained from the coherent state for SU(N) group:

|gx,Λ⟩ := gx|Λ⟩, ⟨Λ, gx| := ⟨Λ|g†x, gx ∈ G = SU(N). (3)

by inserting the complete set at each partition point,

1 =

∫
dµ(gx)|gx,Λ⟩⟨Λ, gx|

(
=

∫
dµ(gx)gx|Λ⟩⟨Λ|g†x

)
, (4)

and replacing the trace by the integral,

tr(O)/tr(1) =

∫
dµ(g0)⟨Λ, g0|O|g0,Λ⟩

(
=

∫
dµ(g0)⟨Λ|g†0Og0|Λ⟩

)
. (5)

In fact,

WC[A ] =

∫ ∏
x∈C

dµ(gx)
∏
x∈C

⟨Λ|g†x exp[igYM∆xµAµ(x)]gx+∆x|Λ⟩

=

∫ ∏
x∈C

dµ(gx)
∏
x∈C

exp
[
igYM∆xµtr{ρ[g†xAµ(x)gx + ig−1

YMg†x∂µgx]}
]
. (6)
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