A. Drutskoy, ITEP, Moscow $\sin 2 \beta$ from $5 S$ tagged events (Belle publ.)
 $3^{\text {rd }}$ SuperB Collaboration meeting

March 19-23, 2012, LNF, Frascati, Italy

Hadronic event classification at $r(5 S)$

$r(5 S)$ decays to B^{0} and B^{+}mesons

Two variables calculated: $M_{b c}=\sqrt{E^{*}{ }_{\text {beam }}{ }^{2}-P^{*}{ }_{B}{ }^{2}}, \quad \Delta E=E^{*}{ }_{B}-E^{*}{ }_{\text {beam }}$ B energy $\left(E_{B}^{*}\right)$ and momentum (P_{B}^{*}) are reconstructed; no rec. γ from $B{ }^{*}$

Decomposition of 3-body channels

We can separate 2 -body final states using $M_{b c}$. How to separate 3-body final states?
We reconstruct directly produced pion in $B^{(*)} \bar{B}(*) \pi^{+}$channels.
Then we calculate parameters (all in CM system):

Reconstructed B meson:
$M_{b c}, \Delta E: \quad \Delta X(r e c)=M_{b c}+\Delta E-5.28$

Missing B meson:

miss.
use momentum $P(B \pi)$ and energy $E(B \pi)$ of reconstructed B and π :
$\Delta X($ miss $)=M_{b c}{ }^{\text {miss }}+\Delta E^{\text {miss }}-5.28$
(Belle 2010 paper)
$M_{\text {miss }}=\left[P_{\text {total }}-\left(P_{B}+P_{\pi}\right)\right]^{2} \quad$ (P-4-momenta) (Belle 2012 paper)
These two parameters are close to each other within 1 MeV .
Missing mass is bit more natural variable.

Decomposition of 3-body channels

Belle 2010 paper, sum of 5 modes

3 - body channels can be well separated using direct pion
$\mathrm{B}_{\mathrm{s}}^{0}$ and $\mathrm{B}^{0 /+}$ production rates at $\mathrm{r}(5 \mathrm{~S})$ (at $\mathrm{E}_{\mathrm{cm}}=10867 \mathrm{MeV}$)

Time dependent CPV

$\mathrm{A}_{\mathrm{CP}}(\mathrm{t})=\frac{\Gamma\left(\overline{\mathrm{B}^{0}}(\Delta \mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)-\Gamma\left(\mathrm{B}^{0}(\Delta \mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)}{\Gamma\left(\overline{\mathrm{B}^{0}}(\Delta \mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)+\Gamma\left(\mathrm{B}^{0}(\Delta \mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)}=\mathrm{S}_{\mathrm{f}_{\mathrm{CP}}} \sin (\Delta \mathrm{m} \Delta \mathrm{t})+\mathrm{A}_{\mathrm{f}_{\mathrm{CP}}} \cos (\Delta \mathrm{m} \Delta \mathrm{t})$
$\mathrm{S}_{\mathrm{fCP}}$ and $\mathrm{A}_{\mathrm{fCP}}$ are obtained by unbinned maximum likelihood fit to Δt distribution(CP fit).

Measurement $\sin 2 \beta$ with tagging method at $r(5 S)$

Y. Sato, H. Yamamoto et al (Belle coll.) arXiv:1201.3502, to appear in PRL

Method was proposed by H. Yamamoto (not published), details are presented at L.Lellouch, L. Randal, E. Sather, NP B405, 55 (1993).

Select $B^{(*)} B^{(*)} \pi+$ and $B^{(*)} B^{(*)} \pi$ - tagged events at $Y(5 S)$ with reconstructed $C P$-fixed B^{0} states ($B^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}$).

$$
A_{\mathrm{BB} \pi}=\frac{\mathrm{N}_{\mathrm{BB} \pi-}-\mathrm{N}_{\mathrm{BB} \pi^{+}}}{\mathrm{N}_{\mathrm{BB} \pi-}+\mathrm{N}_{\mathrm{BB} \pi+}}=\frac{\mathrm{S} x+\mathrm{A}}{1+x^{2}}
$$

where S and A - mixing induced and direct $C P$ - violating parameters, ($A=0$ with very small theoretical uncertainties)

No time measurement is required to obtain $\sin 2 \beta$

Cross checks at r(5S)

Using the same method a few channels were checked ($L=121 \mathrm{fb}^{-1}$):

$$
\begin{aligned}
& \mathrm{B}^{0}->\mathrm{J} / \psi \mathrm{K}^{\star 0} \text { and } \mathrm{D}^{*-} \pi^{+} \\
& \chi_{\mathrm{d}}=\mathrm{N}_{\text {mixed }} /\left(\mathbf{N}_{\text {mixed }}+\mathrm{N}_{\text {unmixed }}\right)=0.19 \pm 0.09 \text { (stat) } \\
& \quad \text { World average } 0.1864 \pm 0.0022 \\
& \mathrm{~B}^{0}->\mathrm{J} / \psi \mathrm{K}^{+} \\
& \mathrm{A}_{\mathrm{BB} \pi}=0.02 \pm 0.17 \text { as expected, } \mathrm{N}_{\mathrm{ev}}=64.8 \pm 11.9
\end{aligned}
$$

These two measurements validate method.

Measurement $\sin 2 \beta$ with tagging method at $r(5 S)$

Belle preliminary, $L=121 \mathrm{fb}^{-1}$
Channel $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{S}$
Full set of events (no $\mathrm{BB} \pi$ selection)
N events $=75.9 \pm 9.5$

$B B \pi$ selections
$A_{B B \pi}=0.28 \pm 0.28$ (stat)
$\sin 2 \beta=0.57 \pm 0.58$ (stat) ± 0.06 (syst), assuming $A=0$

Conclusions

Two-dimensional confidence regions in S and A plane. Circle - physical boundary. Point with error - $A=0$. Here mixing parameter is taken from HFAG:

$$
x=0.771 \pm 0.007
$$

Method of $\sin 2 \beta$ measurement from 5S tagged events works well
Not enough data for precise measurement -> SuperB factory
With very large statistics -> CP measurement without vertex $\left(\pi^{0} \pi^{0}\right)$

