A. Drutskoy, ITEP, Moscow

# sin $2\beta$ from 5S tagged events (Belle publ.)

#### 3<sup>rd</sup> SuperB Collaboration meeting



March 19-23, 2012, LNF, Frascati, Italy

3th SuperB Collaboration Meeting,

March 19-23, 2012, Frascati, Italy

### Hadronic event classification at $\Upsilon(5S)$



# $\Upsilon$ (5S) decays to B<sup>0</sup> and B<sup>+</sup> mesons

A. Drutskoy et al (Belle coll.) PRD 81, 112003 (2010)



Decomposition of 3-body channels

We can separate 2-body final states using  $M_{bc}$ . How to separate 3-body final states?

We reconstruct directly produced pion in  $B^{(*)}\overline{B}^{(*)}\pi^+$  channels. Then we calculate parameters ( all in CM system):

**Reconstructed B meson:**  $M_{bc}$ ,  $\Delta E$ ;  $\Delta X(rec) = M_{bc} + \Delta E - 5.28$ 



Missing B meson: use momentum P(B $\pi$ ) and energy E(B $\pi$ ) of reconstructed B and  $\pi$ :  $\Delta X(miss) = M_{bc}^{miss} + \Delta E^{miss} - 5.28$  (Belle 2010 paper)  $M_{miss}^{2} = [P_{total} - (P_{B} + P_{\pi})]^{2}$  (P-4-momenta) (Belle 2012 paper)

These two parameters are close to each other within 1 MeV. Missing mass is bit more natural variable. Belle 2010 paper, sum of 5 modes





 $B_{s}^{\,0}$  and  $B^{\,0/+}$  production rates at  $\Upsilon(5S)$  (at  $E_{cm}\text{=}10867~\text{MeV}$  )

| B <sup>0</sup> s (19 | 9.5 ± <sup>3.0</sup> ) % | <mark>± <sup>3.0</sup> ) %</mark> |                                  | $f(B_s * \overline{B_s} *) = (90.1 \pm \frac{3.8}{4.0} \pm 0.2)\%$ |                                                                         |  |  |
|----------------------|--------------------------|-----------------------------------|----------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
|                      |                          |                                   |                                  | $f(B_s \star \overline{B_s}) = (7.3 \pm 3.3_{3.0} \pm 0.1)\%$      |                                                                         |  |  |
|                      |                          |                                   |                                  | $f(B_s\overline{B_s}) = (2.6 \pm 2.6_{2.5})\%$                     |                                                                         |  |  |
| B (73                | 8.7 ± 3.2 ± 5            | 5 <mark>.1) %</mark>              | B <sup>0</sup><br>B <sup>+</sup> | (77.0                                                              | $0 \pm \frac{5.8}{5.6} \pm 6.1)$ %<br>$1 \pm \frac{3.9}{3.8} \pm 5.0$ % |  |  |
|                      | BB:                      | $(5.5 \pm \frac{1.0}{0.9})$       | ± 0.4                            | ) %                                                                |                                                                         |  |  |
| 2 - body             | B*B:                     | (13.7 ± 1                         | .3 ± 1                           | .1) %                                                              |                                                                         |  |  |
|                      | B*B*:                    | $(37.5 \pm \frac{2}{1})$          | $\frac{1}{9} \pm 3.0$            | ) %                                                                |                                                                         |  |  |
|                      | ΒΒπ                      | (0.0 ± 1.2                        | ± 0.3                            | ) %                                                                |                                                                         |  |  |
| 3 - body             | <b>Β*Β</b> π             | (7.3 ± 2.3                        | ± 0.8                            | ) %                                                                |                                                                         |  |  |
|                      | <b>Β*Β</b> * π           | $(1.0 \pm \frac{1.4}{1.3})$       | ± 0.4                            | ) %                                                                |                                                                         |  |  |
| Residual (ISR)       |                          |                                   | <b>(</b> 9.2                     | ± 3.0<br>2.8                                                       | ± 1.0 ) %                                                               |  |  |

# Time dependent CPV



 $A_{CP}(t) = \frac{\Gamma(B^{0}(\Delta t) \rightarrow f_{CP}) - \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})}{\Gamma(\overline{B^{0}}(\Delta t) \rightarrow f_{CP}) + \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})} = S_{f_{CP}} \sin(\Delta m \Delta t) + A_{f_{CP}} \cos(\Delta m \Delta t)$ 

 $S_{fCP}$  and  $A_{fCP}$  are obtained by unbinned maximum likelihood fit to  $\Delta t$  distribution(CP fit).

### Measurement sin $2\beta$ with tagging method at $\Upsilon(5S)$

Y. Sato, H. Yamamoto et al (Belle coll.) arXiv:1201.3502, to appear in PRL

Method was proposed by H. Yamamoto (not published), details are presented at L.Lellouch, L. Randal, E. Sather, NP B405, 55 (1993).

Select  $B^{(*)}B^{(*)}\pi$ + and  $B^{(*)}B^{(*)}\pi$ - tagged events at Y(5S) with reconstructed CP-fixed B<sup>0</sup> states (B<sup>0</sup> -> J/ $\psi$  K<sup>0</sup><sub>5</sub>).

$$A_{BB\pi} = \frac{N_{BB\pi^{-}} - N_{BB\pi^{+}}}{N_{BB\pi^{-}} + N_{BB\pi^{+}}} = \frac{Sx + A}{1 + x^{2}}$$

where S and A - mixing induced and direct CP- violating parameters, (A=0 with very small theoretical uncertainties)

No time measurement is required to obtain sin  $2\beta$ 

Using the same method a few channels were checked (L=121  $fb^{-1}$ ):

 $B^{0} \rightarrow J/\psi K^{*0}$  and  $D^{*-}\pi^{+}$  $\chi_{d} = N_{mixed} / (N_{mixed} + N_{unmixed}) = 0.19 \pm 0.09 \text{ (stat)}$ World average 0.1864 ± 0.0022

 $B^{0} \rightarrow J/\psi K^{+}$  $A_{BB\pi} = 0.02 \pm 0.17$  as expected,  $N_{ev} = 64.8 \pm 11.9$ 

These two measurements validate method.

### Measurement sin $2\beta$ with tagging method at $\Upsilon(5S)$



 $sin 2\beta = 0.57 \pm 0.58 (stat) \pm 0.06 (syst)$ , assuming A=0

# Conclusions



Two-dimensional confidence regions in S and A plane. Circle – physical boundary. Point with error – A=O. Here mixing parameter is taken from HFAG : x= 0.771 ± 0.007

Method of sin 2 $\beta$  measurement from 5S tagged events works well

Not enough data for precise measurement -> SuperB factory

With very large statistics -> CP measurement without vertex ( $\pi^0\pi^0$ )