

First measurements on INMAPS prototypes & Analog MAPS: preliminary test-beam results

<u>S.Bettarini</u> – F.Morsani – A.Paladino – E.Paoloni – G.Rizzo Universita' di Pisa & INFN

III SuperB Coll. Meeting - LNF, SVT Parallel session - 21 March 2012

Outline

- INMAPS 32x32 prototype:
 - 1st chip on test
 - Analog response
 - Digital tests
- A5ttc (2D VI tier): analog 3x3 matrices maps on beam:
 - Set-up
 - Lab. Characterization
 - Test-beam results (MPV-Landau, efficiency)
- Conclusions

Why INMAPS

Standard MAPS: Tolerance to displacement damage could be a showstopper.

Avoid charge collection in parasitic N-wells by means of a buried P-type layer (deep P-well)

Improved charge collection by means of high resistivity epitaxial layer (~1 kOhm cm)

A high-resistivity, fully depleted sensing layer with analog CMOS front-end might be the solution.

CMOS sensor in the 180nm INMAPS process with high- Ω epilayer

INMAPS developments for SuperB Layer0

• Small N-well collecting diodes with small input capacitance and low power consumption.

• The forth-well prevents charge stealing by the parasitic Nwells (→efficiency benefit).

• Same analog and digital architecture as APSEL chips, to fit at best the high background rate of Layer0.

Charge

Proamnlifio

Shape

Discriminator

INMAPS CHIP

In 3x3 matrices all the analog outputs are available and an injection capacitor is connected to the central pixel

32x32 matrix (4diode pixels) with sparsified digital readout architecture

3x3 matrix, 4-diode, no DPW, preampli input device with EL structure, Nw/Pepi diodes and accumulator capacitors

> Nw/Pepi diodes, single channels

INMAPS CELL

Gain Calibration on pixel(31,31) by C_{ini}

The pixel having analog output used to verify the correct working point (Rif_FB, Rif_Mir, Rif_IN): Vout has a RMS_{noise}~2.4 mV.

Gain calibration pixel(31,31): Fe⁵⁵ source

With 1.5-h statistic, apparently no peak is present (RMS_{noise}~2.4 mV). Note: The #evts in the photo-peak (1640 e-) is proportional to the depleted volume (small electrodes \rightarrow much less in inmaps than in DEEP-N-well MAPS) Considering the spectrum "endpoint" @ 130 mV \rightarrow Gain~500 mV/fC To be done for chips on High- Ω epilayer (still waiting for the info from the foundry to indentify the wafers).

Noise scan calibration

Set-up for INMAPS 32x32:

• Modified sequences (directives and operands) for chip initialization according to "user-guide"

- Implemented the noise-scan
- found the (expected) limit on the buffer preventing data output from the 2nd submatrix (problem only during calibration, well dimensioned for data rate > 100 Mhz/cm²)
- Calibrations: ¹/₄ chip at a time
- Noise (on the scope): 2.4 mV
- τ_{obs} = 200us \rightarrow 1ms in different scan configurations

INMAPS chip on carrier mounted on the modified apsel4D board with TLA and scope probes

Noise scan calibrations: pixel (31,31)

Response to a Fe⁵⁵ source

Matrix acquired at THR = 2250 DAC (\rightarrow 60 mV) Some pixels are not responding and dis-umiformity (Gain spread?) in the matrix.

120 counts → ~1 Hz rate

List of empty pixels (all but one "alive" in noise scan) x=8 y=4 x=14 y=20 x=15 y=5 x=16 y=21 x=22 y=21 x=24 y=29 x=27 y=15 x=28 y=24 x=29 y=7 Dead x=30 y=23

Problems on INMAPS Carriers

Our usual company (who made in the past dozens of carriers) is experiencing problems in the production process: the quality of the gold traces is really BAD. F.Morsani is following the problem... This caused a long delay in the test! We decided to proceed: with some tricks, our technician successfully bonded 2 chips on the 2nd version of the carriers, even if the yield/reliability of the bonding is not ensured.

←INMAPS 3x3 analog: ready to be tested

Test-beam 2011 The experimental set-up

Tests of the layer with sensing electrode and analog front-end in APSEL chips from the first run of the 3D-IC consortium

Pitch = 40 um Fe⁵⁵ γ (5.9 keV) on test (3x3) matrices

ENC~45e-Gain([mV/fC] ~ 300

➡ First estimate of MIP-signal ~ 800e-

Telescope

MISALIGNMENT OF TELESCOPE wrt BEAM AXIS

the dark area is in the positive x region for the first three layers and in the negative region for the latter.

Analog MAPS on beam

- So far, analyzed only 1 matrix in one chips VI
- Alignment check: the runs must be reconstructed with the correct align. constant, otherwise a fake inefficiency may arise
- By cutting on the PH of pixels→defined the center of the matrix area with tracks extrapolated at the MAPS plane.
 Then we select a window of +- 1pitch around the center.
- Analisys to be done :
 - for the other v.i. matrix and the second chip
 - for the 2 matrices of apsel3T1 n-irradiated/not-irr
 - Apsel65 nm
- Important info:
 - Landau MPV on MIP \rightarrow charge collection
 - Efficiency (parasitic n-well at work)

Chip1 m2: Landau

(#run~50, #evt-fin=301 in window +-1 pitch) landau (x) gauss convolution

Noise events==off time window (w.r.t. scintillator)

From Fe55 :G=320 mV/fC

MPV = 53.5/G/1.6e-4=1044 e-

After syncing the DAQ telescope and the DAQ maps, the info is merged. Find the max ph in a 1us after the scint. pulse. Sum the ph@time-max of other 8 pixels to give the Qcluster

Note: there is a (+) bias is due to the max. search. To be taken into account the gain spread (20%)

Chip1 m2: efficiency Count the events with Phmax>Phcut

(+- 1 pitch window from the center of the extrapolated shadow)

Efficiency vs Ph cut

Chip1 m2

Request: Phmax>5 σ and 3 σ on the others partecipating to the cluster

Lab. Test with Sr⁹⁰ source

mV 22

Comparison vs apsel3T1 (TB 2009)

Tesbeam with γ irradiated MAPS - 2009

ENC increased by ~35% (after annealing)

Q

Conclusions

- Preliminary tests of the latest days on the INMAPS 32x32 matrix have shown that the analog section is working (ENC~30 e-) and the basic digital functionalities are insured.
- We observed a too fast turn on/off curve: to be further investigated with more chips and systematic tests (hints of induction?).
- Promising test beam preliminary results on VI 3x3 matrix:
 - Efficiency greater than 98% for THR < 8 x <RMS(noise)>
 - Collected Q cluster ~ 1000 e-
- Analisys to be completed with the other analog structures