Report from Vienna

E.Paoloni (INFN & Università di Pisa)

TALK OUTLINE

- The (happy?) end of a Saga:
 - pairs production rate comparison
 - measurement made with Belle at KEKB
- The rest of the background picture in Belle-II
 - Radiative Bhabha
 - Touschek
- Conclusions

Rienna, Feb. 2012 the 9th

PAIRS PRODUCTION RATE ISSUE

Estimates for expected QED rates

background tracks per event:

 $N_{\rm tr}^{\rm bg} = 2630$ Expectation from SuperB MC: BDK: These numbers $N_{\rm tr}^{\rm bg} = 13800$ $N_{\rm tr}^{\rm bg} = 2519$ KW: from SuperB Naive estimate of occupancy: This is a factor 5.5 more !!! include the Nr of pixels: $250 \times 1600 \times 8 = 3.2 \times 10^{6}$ multiple hits (assume each track lights up 3 pixels) produced by each 1.3~%0.24~%track Our number "SuperB" number C. Kiesling, Joint Belle II & SuperB Background-Meeting, Vienna, Feb. 9-10, 2012 14

Rienna, Feb. 2012 the 9th

Eugenio Paoloni

MEASUREMENT WITH BELLE

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

How to Disentangle QED from Lumi?

Eugenio Paoloni

Background Correction

C. Kiesling, Joint Belle II & SuperB Background-Meeting, Vienna, Feb. 9-10, 2012

Rienna, Feb. 2012 the 9th

PAIRS RATE CONCLUSIONS

The Very Clever Measurements Made by our

Friendly Competitors at Belle are not

Contradicting our Predictions

Friendly Communication Channel Established

Let us Hope it will last ...

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

THE BELLE BACKGROUND PICTURE

	LER (4GeV e+)	HER (7GeV e–)	
Rad. Bhabha	0.55 W (eff. 0.9GHz)	1.60W (eff. 1.4GHz)	
Touschek	0.10 W (0.16GHz)	0.05 W (0.05GHz)	1GeV ,1GHz = 0.16W
Coulomb	0.06 W (0.09GHz)	0.001W (0.001GHz)	

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

RADIATIVE BHABHA

BELLE II LAYOUT

QCS cryostat

Vienna, Feb. 2012 the 9th

Courtesy Nakayama - San

Eugenio Paoloni

LER RAD BHABHA IN 100NS

HER RAD BHABHA IN 100NS

LER TOUSCHEK

Courtesy Ohnishi-San

Eugenio Paoloni

To be compared with our 90 MHz/beam

Vienna, Feb. 2012 the 9th

HER TOUSCHEK

Eugenio Paoloni

Scattered position of IR loss h Entries 14 Mattage [W] 0.05 0.04 Mean -144.1 RMS 52.46 Integral 0.1065 IR loss are scattered at ~50m or -180m 0.03 upstream 0.02 0.01 -200 -160 -140 -120 -100 -80 -20 -180 -60 -40 0

Within |z|<4m, - loss rate: 0.10 GHz - loss wattage: 0.10 W

Loss wattage: we assume all energy of beam particle is deposited at the loss position.

To be compared with our 6.8 MHz/beam

Rienna, Feb. 2012 the 9th

CONCLUSIONS

- The Vienna meeting was a very nice occasion to establish a fruitful communication channel with our friendly competitors
- We gained confidence in our background predictions (especially pairs)
- We learned about multi turn Rad Bhabha

Rienna, Feb. 2012 the 9th

BELLE-II

Lifetime and Injection Power

unit in sec	LER	HER 623	
Touschek lifetime	562		
Luminosity lifetime	1800	1300	
Beam-Gas lifetime	2240	3260	
Total lifetime	360	373	
Injection limit (25 Hz)*	181	104	

*Injection efficiency is assumed to be 100 %

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

BACKGROUND CROSS SECTIONS

	Scattering Cross section	#Evt / crossing	Scattering Rate	
Beam Strahlung	~340 mbarn (Eγ/Ebeam > 1%)	~1400	0.34 THz	Luminosity lifetime driving term
Beam Strahlung	~150 mbarn (Eγ/Ebeam > 10%)	~630	0.15 THz	Losses "near" the IP
e ⁺ e ⁻ production	~7.3 mbarn	~31	7.3 GHz	
e ⁺ e ⁻ production (seen by L0 @ 1.4 cm coverage 300 mRad)	~ 80 µbarn	~0.34	80 MHz	Main SVT L0 Background
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~420/Million	100 KHz	~LI Trigger rate
Ύ(4S)	O(10 ⁻⁶) mbarn	~4.2/Million	I KHz	Physics
Jugenio Paoloni		SuperB	<i>Bie</i>	nna, Feb. 2012 the.

Definitions

Event rate:

 $\mathcal{R} = \mathcal{L} \sigma$

track rate:

cluster rate:

 $\mathcal{R}_{trk} = \mathcal{R} \ \langle \#trk \rangle_{evt}$

 $\mathcal{R}_{clus} = \mathcal{R}_{trk} \langle \# clus \rangle_{trk}$

 $\mathcal{R}_{\text{hits}} = \mathcal{R}_{\text{clus}} \langle \# hits \rangle_{\text{clus}}$

hit rate:

DIAG36 TRACK RATE EVALUATION

Vienna, Feb. 2012 the 9th

BRUNO EVALUATION EXAMPLE

Eugenio Paoloni

Vienna, Feb. 2012 the 9th