### Bandwidth and noise

Christopher Hearty University of British Columbia/IPP 21-Mar-2012

#### Overview

- One of the primary goals of the TRIUMF November beam test was to evaluate the amplifier prototype produced by Jean-Pierre Martin (Montreal).
- I will discuss bandwidth and noise issues with respect to the amplifier and the overall system design.





# Bandwidth

• Bandwidth specification has significant impact on overall design. e.g. cables and connectors.

#### **Electronics enclosure**

- The electronics enclosure forms the nitrogen-filled volume that contains the amplifiers mounted on the rear endplate.
- Feedthroughs for signals, power, calibration.
- Gas, cooling.
- Our focus so far is on signal feedthroughs. Mechanical interface with endplates/outer cylinder needs to be discussed with Stefano.



Robert Henderson TRIUMF

Gas lines at inner and outer radius. Cooling lines mounted to ribs. (Not shown)

- Layout is for 9216 cells ≈ 13.5 mm square, uniform size vs radius (265 780 mm).
- Each red box is 18 × 45 mm and contains a 20-pin 2.54mm spacing header. (8 signal + power + calibration).



# Cables / bandwidth beam test

- Jean-Pierre's recommended cable has a 4.03 mm diameter. Challenging layout for this number of channels.
- Plan is to evaluate impact of bandwidth (including cables) on performance using beam test data. Unfortunately, digitizer used in November TRIUMF beam test has only 300 MHz bandwidth.





# Signal cable test

- Ask for more beam test in July, if M11 is available.
- Use a 4 GHz bandwidth scope for digitizer.
- We are obtaining samples of a variety of signal cables. 10m length.

|            | impedance | diameter | db/10m at |                                     |
|------------|-----------|----------|-----------|-------------------------------------|
| Cable      | (ohms)    | (mm)     | 1 GHz     |                                     |
| 179DT      | 75        | 2.54     | 7.1       | Sub-Miniature RG-59/U ← my choice   |
| C1156      | 50        | 2.62     | 11.3      | General Cable RG 174                |
| 1281R      | 75        | 2.9      | 5.3       | 75 Ohm Miniature Coax               |
| 1865A      | 75        | 3.81     | 4.6       | Sub-Miniature RG-59/U               |
| 1855A      | 75        | 4.03     | 3.5       | Sub-Miniature RG-59/U ← JP's choice |
| HVS        | 75        | 4.03     | 3.8       | Holland Electronics mini coax       |
| 7806       | 50        | 4.95     | 3.7       | RG-58                               |
| LMR-400-UF | 50        | 10.29    | 1.7       | Times Microwave Used in test beam   |

- We did test RG-174 in November; noticeably worse bandwidth than the standard cable/digitizer combination.
- I have not seen cluster counting performance comparison.



#### Noise

- Is the noise performance of the amplifier prototype adequate? And was shielding (25µm aluminum) adequate to suppress pickup?
- Evaluate using measurement of drift time  $t_d$ , defined as the time that the integrated waveform exceeds threshold (nominally  $5\sigma_{noise}$ )
- Do this for various integration times.
- Slew is defined as change in  $t_d$  as threshold is varied from  $4.5\sigma_{noise}$  to  $5.5\sigma_{noise}$ .
- Hits with slew greater than 4.5 ns are considered lost.



#### Fraction of events with time slew $\geq$ 4.5 ns



• Loss is 2.7%, comparable to BaBar.

• 1.25% of no-beam events satisfy threshold during 1.28  $\mu s$  waveform.





• Easily rejected by pattern recognition; total charge  $\approx 0$ .



# Summary

- Noise performance of amplifier is comparable to BaBar. Probably adequate.
- On the second prototype, we have seen that the noise observed on the scope depends on details of grounding and shielding. Including some ringing.
- Important to test packaging appropriate for the real chamber.
- Bandwidth studies have started, but we probably need more data.



