

EMC Session 3rd SuperB Collaboration Meeting LNF 21/3/2012

S. Germani INFN Perugia

OUTLINE

- Simulation Details
 - Geometry Options
 - Electronic Signal and Noise
 - Work flow
 - Background
- Simulation Results
 - Barrel
 - Fwd Endcap Options
- Conclusions and Outlook

BACKGROUND EVENT DISPLAY

CALORIMETER GEOMETRY

SuperB baseline option for the calorimeter is to reuse the BaBar Barrel and to build a LYSO Forward Endcap

GEOMETRY OPTIONS

ELECTRONICS

Use Tool provided by V. Bocci to evaluate the response of the Crystal-CSP-Shaper chain

CSP

Shaper

From Shaper Data Sheet

- → Gaussian shaping amplifiers accept a steplike input pulse and produce an output pulse shaped like a Gaussian function...
- → The <u>shaping time</u> is defined as the timeequivalent of the "standard deviation" of the Gaussian output pulse
- → The shaping time must be long enough to collect the charge from the detector

Crystal

SHAPER SIGNAL

Theoretical Tool Signal for LYSO gives good agreement with Testbeam data

Output signal shape depends on ✓ Shaping Time

✓ Input signal

Crystal Type affects Shaper output

21/03/2012

EMC Options Simulation

SIGNAL/NOISE EVALUATION

All the S/N evaluations start from TB experience

- Electronic Noise RMS is the same for CERN and BTF TB (~2 ADC counts)
 - Noise is mainly generated at the Shaper Level
 - S/N depends on the Signal Amplitude at Shaper input

Cryst al	LO [pe/MeV]	Reference
PWO	35	Panda and CMS
BGO	225	RY Zhu paper
Csl	36	A. Rossi meas. with PMT
LYSO	900	RY Zhu measurement
CsI(TI)	7000	BaBar

In agreement with RY Zhu

measuremnts presented today

Crystal	Sensor	Sensor Area	Gain	Shaping Time	SN/SN(BTF)
LYSO	APD	0.5 cm2	50	100 ns	16
PWO	APD	2 cm2	50	100ns	0.86
BGO	APD	0.5 cm2	50	100 ns	2.1
Csl	PP	20 cm2	180	100 ns	6.4
CsI(TI)	PIN	4 cm2	1	500 ns	0.95
CsI(TI)	APD	4 cm2	50	500 ns	48

SIMULATION WORK FLOW

Crystal Energy Deposit (Bruno)

Interleave Single Particles with Background evts. (Rad Bhabha)

Get Energy and Time from Electronic Signal Peak

Clustering (BaBar algorithm)

Select Signal Cluster for Performance Studies

21/03/2012

EMC Options Simulation

ELECTRONIC SIGNAL TIME

21/03/2012

EMC Options Simulation

BARREL RESULTS

BARREL

BARREL ENERGY DISTRIBUTIONS

→Background has significant impact on Energy Resolution
→Background shifts peak energy toward higher values
✓ Background adds extra energy to signal crystals

BARREL – ERES VS BACKGROUND LEVEL

SIGNAL CLUSTER SIZE

Background reduces signal cluster size

- \checkmark The effect is related to signal shape distortion for low energy crystals
- ✓ Signal peak moves out of the time window

Signal Time Window already optimized to get the best resolution (300 ns)

NUMBER OF CLUSTERS

 ✓ Large difference between nominal background and x5 safety factor

✓ High multiplicity with x5 background

21/03/2012

BARREL PERFORMANCE VS THETA

CSP WITH 100 NS RC - SIMULATION

Try to shorten signal from long CsI(TI) time constant using a CSP wit 100 ns RC constant instead of 140 μs used at TB

- \checkmark Overshoot correction is beyond the simple excel tool purpose
- ✓ According to Valerio my "hand-made" correction is reasonable
- $\checkmark\,$ Signal amplitude is the same as for 140 μs CSP (need measurements to feed simulation with realistic numbers)

CSP with 100 NS RC - MEASUREMNTS

Measurments performed at Rome show that reading out CsI(TI) with 100 ns CSP and 100 ns Shaper may be possible (see P. Gauzzi talk at EMC II session).

1) CSP Cremat integr. time = $140 \ \mu s + shaping time = 500 \ ns$

2) CSP Hamamatsu integr.time = 100 ns + shaping time = 100 ns

Need a precise signal and noise amplitude assessment to feed simulations

21/03/2012

BARREL X5 BACKGROUND – COMPARE CSP

BARREL – BACKGROUND TYPES

 Tool from A. Perez allows to study Touschek together with RadBhaBha and Pairs

Resolution is mainly affected by Radiative
Bhabha background

Cumulative effect of Pairs+Touschek
+RadBhaBha is close to RadBhaBha alone

FWD OPTIONS RESULTS

LYSO ENERGY DISTRIBUTIONS

→Background has small impact on Energy Resolution
→Background does not shift peak energy

LYSO RESOLUTION COMPONENTS

LYSO – ERES VS BACKGROUND LEVEL

BGO ENERGY DISTRIBUTIONS

→Background has significant impact on Energy Resolution
→Background shifts peak energy toward lower values

- ✓ Opposite effect with respect to Barrel
- Background moves low energy crystals out of time

BGO – Eres vs Background Level

BGO BACKGROUNS X5 STUDIES

PURE CSI ENERGY DISTRIBUTIONS

→Background impact on Energy Resolution is not negligible
→Background does not shift peak energy

PURE CSI – ERES VS BACKGROUND LEVEL

CsI(TL) – ERES VS BACKGROUND LEVEL

R7-9 is the CsI(TI) region for the Hybrid

the Barrel (Theta 30-40)

Fwd option

^{21/03/2012}

PWO – ERES VS BACKGROUND LEVEL

COMPARE FWD OPTIONS

✓ Difference between CsI(TI) and Pure
CsI given by signal shape (crystal τ)

- ✓ Difference between BGO and LYSO or PWO given by signal shape (crystal τ)
- ✓ Difference between Pure CsI and LYSO or PWO given by crystal size (~x5)

CONCLUSIONS AND OUTLOOK

- Barrel Simulation
 - Background has large effect on energy resolution
 - Large Theta dependence on resolution
 - Significant signal shape improvements may be possible
- Fwd Options Simulations
 - CsI(TI) performances are similar to Barrel
 - BGO needs signal shape improvements but also crystal size match with Moliere Radius
 - Pure CsI: background has non negligible effect
 - Performance with background limited by crystal size
 - PWO is not affected by background
 - Noise level need to be confirmed with measurements
 - LYSO is not affected by background
 - All input parameters come form measurements and experience
- Background Types:
 - Energy resolution is affected mainly by Radiative Bhabha