3rd SuperB Collaboartion Meeting- LNF- ITALY 19-23/03/2012

Time-Dependent Studies Comparison

Sensitivity studies on mixing and CP violation in charm at $\Psi(3770)$ and Y(4S) at SuperB

- M. Giorgi¹, F. Martínez-Vidal², N. Neri³, A. Oyanguren²,
- M. Rama⁴, P. Ruiz², P. Villanueva²

¹ Università and INFN Pisa, ² IFIC Valencia, ³ INFN Milano, ⁴ INFN Laboratori Nazionali di Frascati

The Time-Dependent CPV in Charm

A. Bevan¹, G. Inguglia¹, B. Meadows² ¹ Queen Mary, University of London ² University of Cincinnati

22-03-2012 G. Inguglia Queen Mary, University of London g.inguglia@qmul.ac.uk

Are we comparing apples to apples?

N. Neri et al. Work. From N. Neri - December Collaboration Meeting

Example: flavor tag

At $\Upsilon(4S)$ using D^{*+} tagged events:

$$\frac{d\Gamma[M^0_{\rm phys}(t) \to f]/dt}{e^{-\Gamma t} \mathcal{N}_f} = \left(|A_f|^2 + |(q/p)\bar{A}_f|^2\right)\cosh(y\Gamma t) + \left(|A_f|^2 - |(q/p)\bar{A}_f|^2\right)\cos(x\Gamma t) + 2\mathcal{R}e((q/p)A_f^*\bar{A}_f)\sinh(y\Gamma t) - 2\mathcal{I}m((q/p)A_f^*\bar{A}_f)\sin(x\Gamma t)\right)$$

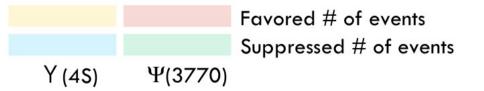
N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

General considerations

• At Y(4S)

- ► Flavor tagged D^0 through $D^{*+} \rightarrow D^0 \pi^+$ decay. We denote the D* flavor tag with the label IX
- ► D⁰ can be reconstructed in flavor *l*X, CP, K π and multibody (e.g. Ks $\pi\pi$) final states. Relatively high purity due to m(D⁰) and $\Delta m=m(D^{*+})-m(D^{0})$
- ▶ Flavor mistag ~0.2%
- > Proper time resolution is about $\tau(D^0)/4 \approx 0.1$ ps
- At $\Psi(3770)$
 - > Coherent D^0D^0 production
 - Both D mesons can be reconstructed in *l*X, CP, Kπ and Ksππ final states, with very low background
 - > Flavor mistag $\sim 0.2\%$ with eX,
 - Time-dependent measurements require larger CM boost compared to the Y(4S) case to achieve similar time

resolution, but reconstruction efficiency decreases with large CM boost. Need to determine the optimal boost range.


Double tags @ $\Psi(3770)$

Modes with D* tag @ Y (4S)

	CP-	Κπ	lX	Κsππ
CP+	X	Χ	XX	Χ
CP-		Χ	XX	Χ
Κπ		X	XX	Χ
lX			XX	XX
Κsππ				Χ

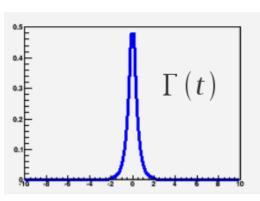
Sensitivity studies: expected num. of events

		LB Ψ(3770)	IB Ψ(3770)	HB Ψ (3770)
Selected	$\Upsilon(4S)$	$\Psi(3770)$	$\Psi(3770)$	$\Psi(3770)$
decays	$75\mathrm{ab}^{-1}$	$0.5 \mathrm{ab}^{-1}, \beta\gamma = 0.238$	$0.5 \mathrm{ab^{-1}}, \beta\gamma = 0.56$	$0.5 \mathrm{ab^{-1}}, \beta\gamma = 0.91$
$l^{\pm}X^{\mp}, CP+$	19600000	569395	525890	418331
$l^{\pm}X^{\mp}, CP-$	30900000	685053	612430	491599
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494	3862011	3072118
	(790000)	(13798)	(12744)	(10137)
$l^{\pm}X^{\mp}, K^0_S \pi^+ \pi^-$	86600000	828850	689557	498370
$l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	85300000	1067615	986045	784370
	(50)	(51)	(47)	(38)
$K^{\mp}\pi^{\pm}, K^{\pm}\pi^{\mp}$	N/A	1067615	986045	784370
	(N/A)	(51)	(47)	(38)
$CP+, K^{\mp}\pi^{\pm}$	N/A	309608	285953	227467
$CP-, K^{\mp}\pi^{\pm}$	N/A	291814	260879	209408
CP+, CP-	N/A	92526	82717	66397
$CP+, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	113691	91553	66770
$CP-, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	115525	93030	67847
$K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	290342	217578	142875

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

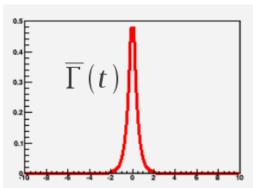
Summary

- Flavor tag at DD threshold provides identical time-dependence than at Y (4S) using D* tagging, and less events, although in a different environment
- $D\overline{D}$ threshold is unique to provide CP, K π and Ks $\pi\pi$ tags
- Variation of Δt resolution and geometrical acceptance vs CM boost was evaluated
- Estimated the impact on physics with 2-body decays
 - > Combined fit to all 2-body double-tags allows determination of x, y, arg(q/p), |q/p|


Parameter	Sensitivity @ Y (4S) with time resolution, no mistag. 75 ab ⁻¹	Best sensitivity @ $\Psi(3770)$ with time resolution (bg=0.56), no mistag. 0.5 ab ⁻¹
x	0.017%	0.11%
у	0.008%	0.05% Relative effect of flavor mist
Arg(q/p)	0.8 deg	similar at $\Psi(3770)$ and $Y(4.8 \deg)$
q/p	0.5%	3.7%

> Best sensitivity at $\Psi(3770)$ for intermediate boost, bg ~ 0.3-0.6

error per ab⁻¹ at \$\Psi(3770)\$ ~ \$\frac{1}{2}\$ error per ab⁻¹ at \$Y(4S)\$ (2-body only, no mistag)
error at \$\Psi(3770)\$ [0.5ab⁻¹] ~ 6x error at \$Y(4S)\$ [75ab⁻¹] (2-body only, no mistag)


N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

A. Bevan et al. Work. From G. I. - December Collaboration Meeting

G. Inguglia- December 2011 SuperB Coll. Meeting

Time-dependent formalism (ii)

The time-dependence of decays of P^0 (P^0) to final state |f > are:

$$-\Gamma\left(P^{0} \to f\right) \propto e^{-\Gamma_{1}|\Delta t|} \left[\frac{h_{+}}{2} + \frac{\Re\left(\lambda_{f}\right)}{1 + |\lambda_{f}|^{2}}h_{-} + e^{\left[\Delta\Gamma\Delta t/2\right]} \left(\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}\cos\Delta M\Delta t - \frac{2\Im\left(\lambda_{f}\right)}{1 + |\lambda_{f}|^{2}}\sin\Delta M\Delta t\right)\right]$$

$$-\overline{\Gamma}(\overline{P^{0}} \to f) \propto e^{-\Gamma_{1}|\Delta t|} \left[\frac{h_{+}}{2} + \frac{\Re(\lambda_{f})}{1 + |\lambda_{f}|^{2}}h_{-} - e^{[\Delta\Gamma\Delta t/2]} \left(\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \cos\Delta M \Delta t - \frac{2\Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}} \sin\Delta M \Delta t\right)\right]$$

► where: $h_{+-}=1\pm e^{\Delta\Gamma\Delta t}$, $\lambda_f=\frac{q}{p}\frac{\overline{A}}{A}$ We now obtain the time-dependent CP asymmetry

$$A^{Phys}(\Delta t) = \frac{\overline{\Gamma^{Phys}}(\Delta t) - \Gamma^{Phys}(\Delta t)}{\overline{\Gamma^{Phys}}(\Delta t) + \Gamma^{Phys}(\Delta t)} = -\Delta \omega + \frac{(D + \Delta \omega)e^{\Delta \Gamma \Delta t/2}(|\lambda_f|^2 - 1)\cos\Delta M \Delta t + 2\Im(\lambda_f)\sin\Delta M \Delta t}{(1 + |\lambda_f|^2)h_+/2 + h_-\Re(\lambda_f)}$$

Where we include mistag probability

G. Inguglia- December 2011 SuperB Coll. Meeting Uncorrelated D⁰ mesons

 $A(t) = \frac{\overline{\Gamma}(t) - \Gamma(t)}{\overline{\Gamma}(t) + \Gamma(t)} = 2e^{\Delta \Gamma t/2} \frac{(|\lambda_f|^2 - 1) \cos \Delta M t + 2\Im(\lambda_f) \sin \Delta M t}{(1 + |\lambda_f|^2)(1 + e^{\Delta \Gamma t}) + 2\Re(\lambda_f)(1 - e^{\Delta \Gamma t})}$

Mistag probability and dilution become important

 $A^{Phys}(t) = \frac{\overline{\Gamma^{Phys}}(t) - \Gamma^{Phys}(t)}{\overline{\Gamma^{Phys}}(t) + \Gamma^{Phys}(t)} = +\Delta \omega + \frac{(D - \Delta \omega) e^{\Delta \Gamma t/2} (|\lambda_f|^2 - 1) \cos \Delta M t + 2\Im (\lambda_f) \sin \Delta M t}{(1 + |\lambda_f|^2) h_+ / 2 + h_- \Re (\lambda_f)} \pi^+$

The flavour tagging is accomplished by identifying a "slow" pion in the $D^{*+} \rightarrow D^0 \pi_s^+$ processes (CP and CP conjugated): $D^{*-} \rightarrow \overline{D^0} \pi_s^-$

e⁺e⁻ machines at Υ (4S) and hadron machines

D^{*} from $e^+e^- \rightarrow c \overline{c}$ can be separated from those coming from B's by applying a momentum cut. Clean environment.

More easier to separate prompt D* from B cascade than LHCb

D^{*} mesons are produced both promptly or as secondary particles from primary decay of a B meson. High background level to keep under control. Trigger efficiency.

 π_s

G. Inguglia- December 2011 SuperB Coll. Meeting

Expected number of (tagged) events

LHCb 5.0 fb⁻¹ Estimated from arXiv:1112.0938 [hep-ex]

$$4.9 \times 10^{6} \quad D^{0} \to \pi^{+} \pi^{-}$$
$$..9 \times 10^{7} \quad D^{0} \to K^{+} K^{-} \pi^{-} \pi^{-}$$

Belle II *50.0 ab⁻¹* Estimated from Phys. Rev. D 78, 011105 (2008)

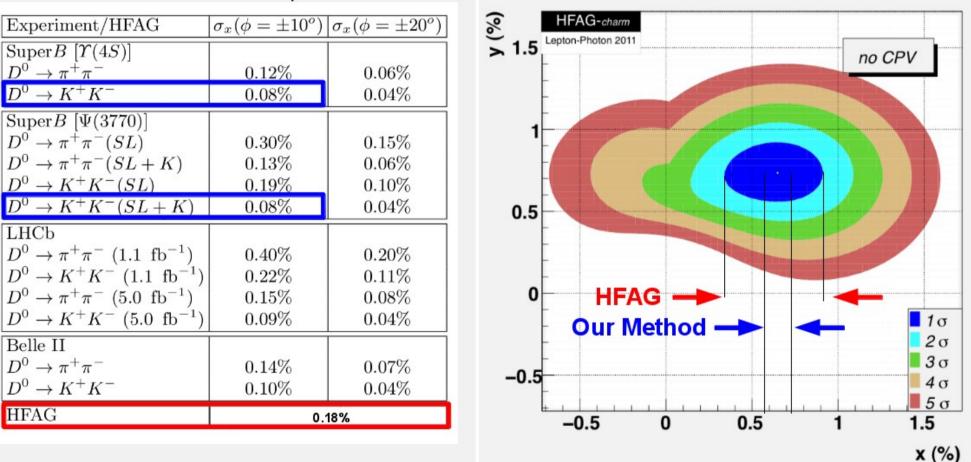
$$\begin{array}{ccc}
4.4 \times 10^6 & D^0 \to \pi^+ \pi^- \\
.0 \times 10^7 & D^0 \to K^+ K^-
\end{array}$$

SuperB 1.0 ab^{-1} $\Psi(3770)$ Estimated from Phys. Rev. D 78, 012001 (2008)

9.8×10⁵
$$D^{0} \rightarrow \pi^{+}\pi^{-}$$
 SL-T
4.8×10⁶ $D^{0} \rightarrow \pi^{+}\pi^{-}$ K-T
2.5×10⁶ $D^{0} \rightarrow K^{+}K^{-}$ SL-T
1.2×10⁷ $D^{0} \rightarrow K^{+}K^{-}$ K-T

 π -T indicates that the D⁰ mesons are tagged using the electrical charge of the associated short pion (LHCb/Belle/SuperB)

SL-T refers to semileptonic tag at charm threshold and **K-T** to the Kaon tag at charm thereshold (SuperB only)


SuperB 75.0 ab^{-1} Y(4S) Estimated from Phys. Rev. D 78, 011105 (2008)

$$6.6 \times 10^{6} \quad D^{0} \rightarrow \pi^{+} \pi^{-}$$
$$1.5 \times 10^{7} \quad D^{0} \rightarrow K^{+} K^{-} \pi^{-} \pi^{-}$$

G. Inguglia- December 2011 SuperB Coll. Meeting

Precision II

 $x(\%) = x + \sigma_x$

no CPV assumption

With the time-dependent analysis it is possible to add information on mixing of *D*⁰ meson and improve the current limits

We now need to compare the two studies to understand if we are really comparing apples-to-apples.

Two different comparisons shown in the next slides...

Selected	$\Upsilon(4S)$	$\Psi(3770)$
decays	$75\mathrm{ab}^{-1}$	$0.5 \mathrm{ab}^{-1}, \beta\gamma = 0.238$
$l^{\pm}X^{\mp}, CP+$	19600000	569395
$l^{\pm}X^{\mp}, CP-$	30900000	685053
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494
	(790000)	(13798)
$l^{\pm}X^{\mp}, K^0_S\pi^+\pi^-$	86600000	828850
$l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	85300000	1067615
	(50)	(51)
$K^{\mp}\pi^{\pm}, K^{\pm}\pi^{\mp}$	N/A	1067615
	(N/A)	(51)
$CP+, K^{\mp}\pi^{\pm}$	N/A	309608
$CP-, K^{\mp}\pi^{\pm}$	N/A	291814
CP+, CP-	N/A	92526
$CP+, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	113691
$CP-, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	115525
$K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	290342

N. Neri, December Collaboration Meeting.

Super <i>B</i> 1.0 ab^{-1} $\Psi(3770)$ Estimated from Phys. Rev. D 78, 012001 (2008)	4.8×10^{6} 2.5×10^{6}	$D^{0} \rightarrow \pi^{+}\pi^{-}$ $D^{0} \rightarrow \pi^{+}\pi^{-}$ $D^{0} \rightarrow K^{+}K^{-}$ $D^{0} \rightarrow K^{+}K^{-}$	K-T SL-T
SuperB 75.0 ab^{-1} Y(4S) Estimated from Phys. Rev. D 78, 011105 (2008)		$D^{0} \rightarrow \pi^{+} \pi^{-}$ $D^{0} \rightarrow K^{+} K^{-}$	π-Τ

A. Bevan et al. most up-to-date estimate (2012)

Selected	$\Upsilon(4S)$	$\Psi(3770)$	
decays	$75\mathrm{ab}^{-1}$	$0.5 \mathrm{ab}^{-1}, \ \beta \gamma = 0.238$	
$l^{\pm}X^{\pm}, CP+$	19600000	569395	
$l^{\pm}X^{\mp}, CP-$	30900000	685053	
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494	$9.8 \times 10^5 D^0 \rightarrow \pi^+ \pi^- \text{ sL-T}$
	(790000)	(13798)	SuperB 1.0 ab 4.8×10^6 $D^0 \times \pi^+ \pi^ K^-$
$l^{\pm}X^{\mp}, K^{0}_{S}\pi^{+}\pi^{-}$	86600000	828850	$\Upsilon(J/V)$
$l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	85300000	1067615	Estimated from 2.5×10^6 $D^0 \rightarrow K^+ K^-$ SL-T Phys. Rev. D 78, 012001 (2008)
	(50)	(51)	1.2×10' $D^{\circ} \rightarrow K^{+}K^{-}$ K-T
$K^{\mp}\pi^{\pm}, K^{\pm}\pi^{\mp}$	N/A	1067615	
	(N/A)	(51)	Super B 75.0 ab ⁻¹ $6.6 \times 10^6 D^0 \to \pi^+ \pi^-$
$CP+, K^{\mp}\pi^{\pm}$	N/A	309608	$V(AS)$ 0.0×10 $D \rightarrow 1$ 1
$CP-, K^{\mp}\pi^{\pm}$	N/A	291814	Estimated from $1.5 \times 10^7 D^0 \rightarrow K^+ K^- \pi^- \pi^-$
CP+, CP-	N/A	92526	Phys. Rev. D 78, 011105 (2008)
$CP+, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	113691	
$CP-, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	115525	
$K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	290342	

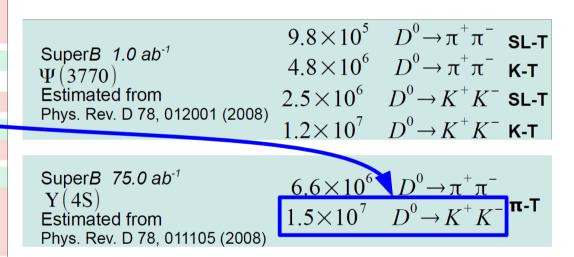
Selected	$\Upsilon(4S)$	$\Psi(3770)$	
decays	$75\mathrm{ab}^{-1}$	$0.5 \mathrm{ab}^{-1}, \ \beta \gamma = 0.238$	
$l^{\pm}X^{\mp}, CP+$	19600000	569395	
$l^{\pm}X^{\mp}, CP-$	30900000	085053	
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494	9.8×10^5 $D^0 \rightarrow \pi^+ \pi^-$ sl-t
	(790000)	(13798)	SuperB 1.0 ab 4.8×10^6 $D^0 \times \pi^+ \pi^ \pi^-$
$l^{\pm}X^{\mp}, K^0_S \pi^+ \pi^-$	86600000	828850	$\Psi(J/J)$
$l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	85300000	1067615	Estimated from 2.5×10^6 $D^0 \rightarrow K^+ K^-$ SL-T Phys. Rev. D 78, 012001 (2008)
	(50)	(51)	$1.2 \times 10^{'}$ $D^{'} \rightarrow K^{+} K^{-}$ K-T
K^{\mp}			
At charm	threshold	N. Neri et al. us	e At charm threshold A. Bevan et al. use 1.0
$CP = 0.5 \text{ ab}^{-1} \text{ c}$	of data an	d semileptonic ta	g ab^{-1} (luminosity x 2) and semileptonic tag T
(CD)		g electrons (only	
		x 10^5 D ⁰ \rightarrow CP	
CP semilepto	nically tag	ged evts.	semileptonically tagged evts.
$K_S^0 \tau$			
1.J			

Selected decays	$\Upsilon(4S)$ $75 \mathrm{ab}^{-1}$	$\Psi(3770)$ 0.5 ab ⁻¹ , $\beta \gamma = 0.238$	
$l^{\pm}X^{\mp}, CP+$ $l^{\pm}X^{\mp}, CP-$	19600000 30900000	569395 085053	
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000 (790000)	4181494 (13798)	SuperB 1.0 ab $9.8 \times 10^{5} D^{0} \to \pi^{+}\pi^{-}$ SL-T
$l^{\pm}X^{\mp}, K^0_S \pi^+ \pi^-$ $l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	86600000 85300000	828850 1067615	SuperB 7.0 ab $\Psi(3770)$ 4.8×10^{6} $D^{0} \rightarrow \pi^{+}\pi^{-}$ K-T Estimated from 2.5×10^{6} $D^{0} \rightarrow K^{+}K^{-}$ SL-T
K [∓] 1	(50)	(51)	Phys. Rev. D 78, 012001 (2008) 1.2×10^7 $D^0 \rightarrow K^+ K^-$ K-T
$\begin{array}{c} At charm \\ CP \\ C$	of data an d by using	N. Neri et al. us d semileptonic ta g electrons (only x 10^5 $D^0 \rightarrow CP$ ged evts.	ab ⁻¹ (luminosity x 2) and semileptonic tag \mathbf{T}). performed by using both electrons and

N.Neri et al. When applyng same consideration of A. Bevan et al. Obtain: $5.7 \times 10^5 \times 2$ (luminosity) x2 (BR)~ 2.3×10^6

Conclusion: Agreement!

Selected	$\Upsilon(4S)$	$\Psi(3770)$
decays	$75\mathrm{ab}^{-1}$	$0.5 \mathrm{ab}^{-1}, \beta\gamma = 0.238$
$l^{\pm}X^{\pm}, CP+$	19600000	569395
$l^{\pm}X^{\mp}, CP-$	30900000	685053
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494
	(790000)	(13798)
$l^{\pm}X^{\mp}, K^0_S \pi^+ \pi^-$	86600000	828850
$l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	85300000	1067615
	(50)	(51)
$K^{\mp}\pi^{\pm}, K^{\pm}\pi^{\mp}$	N/A	1067615
	(N/A)	(51)
$CP+, K^{\mp}\pi^{\pm}$	N/A	309608
$CP-, K^{\mp}\pi^{\pm}$	N/A	291814
CP+, CP-	N/A	92526
$CP+, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	113691
$CP-, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	115525
$K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	290342

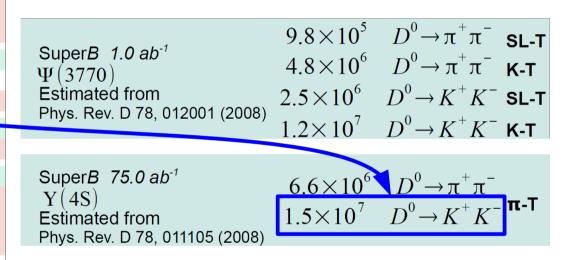

Super <i>B</i> 1.0 ab^{-1} $\Psi(3770)$ Estimated from Phys. Rev. D 78, 012001 (2008)	4.8×10^{6} 2.5×10^{6}	$D^{0} \rightarrow \pi^{+}\pi^{-} \text{ SL-T}$ $D^{0} \rightarrow \pi^{+}\pi^{-} \text{ K-T}$ $D^{0} \rightarrow K^{+}K^{-} \text{ SL-T}$ $D^{0} \rightarrow K^{+}K^{-} \text{ K-T}$
Super <i>B</i> 75.0 ab^{-1} Y(4S) Estimated from Phys. Rev. D 78, 011105 (2008)	6.6×10^{6} 1.5×10^{7}	$\frac{D^0 \to \pi^+ \pi^-}{D^0 \to K^+ K^-} \pi - T$

Selected	$\Upsilon(4S)$	$\Psi(3770)$
decays	$75 {\rm ab}^{-1}$	$0.5 \mathrm{ab^{-1}}, \beta \gamma = 0.238$
$l^{\pm}X^{\pm}, CP+$	19600000	569395
$l^{\pm}X^{\mp}, CP-$	30900000	685053
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494
	(790000)	(13798)
$l^{\pm}X^{\mp}, K^0_S \pi^+ \pi^-$	86600000	828850

SuperB Progress Report (Physics)

TABLE XVI: Event yields and projected statistical uncertainties for various observables for the final *BABAR* sample, a projected 10 fb⁻¹ (approximately five year) LHCb run and for a 75 ab⁻¹ Super*B* run at $\Upsilon(4S)$. For *BABAR*, the yields for published mixing results using both *D*^{*}-tagged and untagged K^-K^+ and for WS $K^+\pi^-$ events are scaled up from published results to the final integrated luminosity of 482 fb⁻¹. LHCb estimates come from Ref. [272].

Decay Mode	BABAR	$\mathrm{Super}B$	LHCB
K^+K^- (D*-tag):			
N (Events)	88×10^3	13.7×10^6	8×10^6
Δy_{CP} (stat)	$\pm 3.9 \times 10^{-3}$	0.28×10^{-3}	0.5×10^{-3}
K^+K^- (no tag):			
N (Events)	330×10^3	51.4×10^6	—
Δy_{CP} (stat)	$\pm 2.3 \times 10^{-3}$	3 $0.19 imes 10^{-3}$	—
$K^+\!\pi^-$ (WS):			
N (Events)	5.1×10^3	$0.79 imes 10^6$	0.23×10^6
$\Delta y'$ (stat)	$\pm 4.4 \times 10^{-3}$	3 0.31×10^{-3}	0.87×10^{-3}
$\Delta x^{\prime 2}$ (stat)	$\pm 3.0 \times 10^{-4}$	0.21×10^{-4}	0.64×10^{-4}


N. Neri et al. expect ~2.0 x 10^7 CP+ evts. A. Bevan et al. Expect ~1.5 x 10^7 CP+ evts. White paper ~ 1.4 x 10^7 CP+ evts.

Selected	$\Upsilon(4S)$	$\Psi(3770)$
decays	$75\mathrm{ab}^{-1}$	$0.5 \mathrm{ab^{-1}}, \beta \gamma = 0.238$
$l^{\pm}X^{\pm}, CP+$	19600000	569395
$l^{\pm}X^{\mp}, CP-$	30900000	685053
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494
	(790000)	(13798)
$l^{\pm}X^{\mp}, K^0_S \pi^+ \pi^-$	86600000	828850

Super*B* Progress Report (Physics)

TABLE XVI: Event yields and projected statistical uncertainties for various observables for the final BABAR sample. a projected 10 fb^{-1} (approximately five year) LHCb run and for a 75 ab^{-1} Super B run at $\Upsilon(4S)$. For BABAR, the vields for published mixing results using both D^* -tagged and untagged K^-K^+ and for WS $K^+\pi^-$ events are scaled up from published results to the final integrated luminosity of 482 fb⁻¹. LHCb estimates come from Ref. 272.

Decay Mode	BABAR	$\mathrm{Super}B$	LHCB
K^+K^- (D*-tag)):		
N (Events)		13.7×10^6	
Δy_{CP} (stat)	$\pm 3.9 \times 10^{-3}$	3 0.28 × 10 ⁻³	0.5×10^{-3}
K^+K^- (no tag)	:		
N (Events)		51.4×10^6	—
Δy_{CP} (stat)	$\pm 2.3 \times 10^{-3}$	3 0.19 × 10 ⁻³	_
$K^+\!\pi^-$ (WS):			
N (Events)	5.1×10^3	0.79×10^6	0.23×10^6
$\Delta y'$ (stat)	$\pm 4.4 \times 10^{-3}$	3 0.31 × 10 ⁻³	0.87×10^{-3}
$\Delta x^{\prime 2}$ (stat)	$\pm 3.0 \times 10^{-4}$	4 0.21 × 10 ⁻⁴	0.64×10^{-4}

- N. Neri et al. Expect ~ 2.0×10^7 CP+ evts. A. Bevan et al. Expect ~ 1.5×10^7 CP+ evts. White paper ~
- 1.4×10^7 CP+ evts.

Conclusion: There is a reasonable agreement between yields. However the difference here is about the 20%.

N. Neri et al. Obtain 0.017% sensitivity on x at the Y(4S) and 0.11% at $\psi(3770)$ when using the <u>full set</u> (~3x10⁶ expected events) of two-body decays (pion tag at Y(4S)~3x10⁸, SL tag at charm threshold~7x10⁶)

A. Bevan et al. obtain 0.08% sensitivity on *x* at the Y(4S) and 0.19% at $\psi(3770)$ when using D⁰ \rightarrow K⁺K⁻ (pion tag at Y(4S)~1.5x10⁷, SL tag at charm threshold~2.5x10⁶)

As a consistency check A. Bevan et al. analysis may be implemented using the same number of modes and expected events as for N. Neri et al.

2nd comparison: Sensitivity

N. Neri et al. Obtain 0.017% sensitivity on x at the Y(4S) and 0.11% at $\psi(3770)$ when using the <u>full set</u> (~3x10⁶ expected events) of two-body decays (pion tag at Y(4S)~3x10⁸, SL tag at charm threshold~7x10⁶)

A. Bevan et al. obtain 0.08% sensitivity on *x* at the Y(4S) and 0.19% at $\psi(3770)$ when using D⁰ \rightarrow K⁺K⁻ (pion tag at Y(4S)~1.5x10⁷, SL tag at charm threshold~2.5x10⁶)

As a consistency check A. Bevan et al. analysis may be implemented using the same number of modes and expected events as for N. Neri et al.

 \rightarrow A. Bevan et al. obtain ~0.018% sensitivity on *x* at the Y(4S) and ~0.12% at the $\psi(3770)$

Conclusion: there is consistency between results

General conclusion:

the two studies are consistent with each other given the same number of modes and expected events

The Neri et al. Approach combines many double tagged modes while the Bevan et al. approach is closer to a Bd time dependent analysis

...Many thanks...

