

3rd SuperB Collaboration Meeting Frascati, March 21- 2012

Summary from SVT parallel sessions
TDR status

Giuliana Rizzo Universita' & INFN Pisa

G. Rizzo

SVT -Frascati ,March 22- 2012

SVT Parallel sessions

We do a star May 04, 0,44	
wednesday Mar 21, 9-11	
Introduction	G. Rizzo (PI)
Analog FE for inner layer strips and next pixel submission in Pavia	L. Ratti (PV)
Analog FE for outer layer strips in Milano	L. Bombelli (MI)
FE chip simulation and next pixel submission in Bologna	F. Giorgi (BO)
Wednesday Mar 21, 11:30-13:30	
Next pixel submission activities in Pisa	F. Morsani (PI)
First INMAPS lab tests and beamtest results for analog maps	S. Bettarini (PI)
Update on sensor and fanout design in Trieste	I. Rashevskaya (TS)
Update on activities in UK	A.Bevan (QMUL)
•	
Wednesday Mar 21, 15:00-16:30	
Wednesday Mar 21, 15:00-16:30 Activities in Valencia	A. Oyanguren (IFIC)
Wednesday Mar 21, 15:00-16:30 Activities in Valencia Update on activities in Strasbourg	A. Oyanguren (IFIC) I.Ripp-Baudot (IN2P3)
Wednesday Mar 21, 15:00-16:30Activities in ValenciaUpdate on activities in StrasbourgFastsim performance studies	A. Oyanguren (IFIC) I.Ripp-Baudot (IN2P3) N. Neri (MI)
Wednesday Mar 21, 15:00-16:30 Activities in Valencia Update on activities in Strasbourg Fastsim performance studies Discussions on performance studies and SVT SW development	A. Oyanguren (IFIC) I.Ripp-Baudot (IN2P3) N. Neri (MI) All
Wednesday Mar 21, 15:00-16:30Activities in ValenciaUpdate on activities in StrasbourgFastsim performance studiesDiscussions on performance studies and SVT SW developmentWednesday Mar 21, 17:00-18:30	A. Oyanguren (IFIC) I.Ripp-Baudot (IN2P3) N. Neri (MI) All
Wednesday Mar 21, 15:00-16:30Activities in ValenciaUpdate on activities in StrasbourgFastsim performance studiesDiscussions on performance studies and SVT SW developmentWednesday Mar 21, 17:00-18:30Update on background simulation	A. Oyanguren (IFIC) I.Ripp-Baudot (IN2P3) N. Neri (MI) All R. Cenci (Maryland)
Wednesday Mar 21, 15:00-16:30 Activities in Valencia Update on activities in Strasbourg Fastsim performance studies Discussions on performance studies and SVT SW development Wednesday Mar 21, 17:00-18:30 Update on background simulation SVT Mechanics	A. Oyanguren (IFIC) I.Ripp-Baudot (IN2P3) N. Neri (MI) All R. Cenci (Maryland) F. Bosi (PI)
Wednesday Mar 21, 15:00-16:30 Activities in Valencia Update on activities in Strasbourg Fastsim performance studies Discussions on performance studies and SVT SW development Wednesday Mar 21, 17:00-18:30 Update on background simulation SVT Mechanics Update on HDI design and peripheral electronics	A. Oyanguren (IFIC) I.Ripp-Baudot (IN2P3) N. Neri (MI) All R. Cenci (Maryland) F. Bosi (PI) M. Citterio (MI)

SVT - Background Update

R. Cenci - Maryland

- Many tests done to understand the high SVT rates from Dec. 2011 production
- Total rates (several sources included) were too high for SVT (not only in Layer0)
 - Pairs increased a lot w.r.t May 2011: in L0-1-2 +40-20% x2.5-x4 in L3-4-5!!!!
 - Some reasons understood and fixed, but pairs rates still higher than before +20% in inner layers +80% in outer layers (different material in the I.R. is important for external layers)
 - Touscheck is as high as pair in L1-5. Rad Bhabha not negligible in L3-L5
- Some sources still to be included (beam gas almost ready) and new shielding configuration need to be studied

			i i				Ratio rad	Ratio	Ratio
		readout		Strip		Ratio pairs /	bhabha /	touscheck	touscheck
Layers	lato	pitch		rate kHz		total	total	LER/ total	HER/ total
0	1	50		1.21E+03		0.90	0.03	0.06	0.02
0	2	50		1.21E+03		0.82	0.04	0.11	0.04
1	phi	50		7.24E+02		0.58	0.04	0.30	0.07
1	z	100		4.73E+02		0.39	0.04	0.45	0.12
2	phi	55		5.25E+02		0.48	0.05	0.38	0.08
2	z	100		4.54E+02		0.31	0.05	0.52	0.12
3	phi	100		4.19E+02		0.33	0.11	0.47	0.08
3	z	110		2.70E+02		0.23	0.10	0.56	0.11
4	phi	100		9.00E+01		0.35	0.23	0.34	0.08
4	z	210		4.70E+01		0.36	0.20	0.35	0.09
5	phi	100		5.44E+01		0.39	0.21	0.32	0.08
5	z	210		3.08E+01		0.37	0.19	0.35	0.09
	Layers 0 0 1 2 2 3 3 3 4 4 4 5 5 5	Layerslato01021phi1z2phi2z3phi3z4phi4z5phi	Layerslatoreadout pitch015002501phi501z1002phi552z1003phi1003z1104phi1004z2105phi1005z210	Layerslatoreadout pitch015002501phi501z1002phi552z1003phi1003z1104phi1004z2105phi100	Layerslatoreadout pitchStrip rate kHz01501.21E+0302501.21E+031phi507.24E+021z1004.73E+022phi555.25E+022z1004.54E+023z1102.70E+024phi1009.00E+014z2104.70E+015phi1005.44E+01	Layerslatoreadout pitchStrip rate kHz01501.21E+0302501.21E+031phi507.24E+021z1004.73E+022phi555.25E+022z1004.54E+023phi1004.19E+023z1109.00E+014phi1005.44E+015phi1005.44E+01	Layers Iato readout pitch Strip rate kHz Ratio pairs / total 0 1 50 1.21E+03 0.90 0 2 50 1.21E+03 0.82 1 phi 50 7.24E+02 0.58 1 z 100 4.73E+02 0.39 2 phi 55 5.25E+02 0.48 2 z 100 4.54E+02 0.31 3 phi 100 2.70E+02 0.23 4 phi 100 5.44E+01 0.35 5 phi 100 5.44E+01 0.39	Layers Iato readout pitch Strip rate kHz Ratio rad bhabha / total 0 1 50 1.21E+03 0.90 0.03 0 2 50 1.21E+03 0.82 0.04 1 phi 50 7.24E+02 0.58 0.04 1 z 100 4.73E+02 0.39 0.04 2 phi 55 5.25E+02 0.48 0.05 2 z 100 4.54E+02 0.31 0.05 3 phi 100 2.70E+02 0.23 0.10 4 z 210 4.70E+01 0.36 0.20 5 phi 100 5.44E+01 0.39 0.21	LayersIatoreadout pitchStrip rate kHzRatio radRatio touscheck LER/ total01501.21E+030.900.030.0602501.21E+030.820.040.111phi507.24E+020.580.040.301z1004.73E+020.390.040.452phi555.25E+020.480.050.382z1004.19E+020.310.050.523phi1002.70E+020.330.110.473z1105.44E+010.360.200.354phi1005.44E+010.360.200.355phi1005.44E+010.370.190.35

Joint Background Workshop with Bellell in Feb. very useful:

- Discrepancy with Bellell pairs estimate has been solved and our result is still valid.
 - The factor 15 was due to some "problems" in the initial Bellell value and to some misinterpretation of our results by Belle colleagues. The hit rates expected in Layer0 for both experiments is consistent. SuperB estimate also agrees with measurement performed with SVD Belle data.

Strip FE chip development (I)

Need to develop 2 new chips since existent chips do not match all the requirements : analog info, high rates in inner Layers (2 MHz/strip in L0) & short shaping time (25-100ns), long shaping time (0.5-1 us) in Layers 4-5

- Performance for analog FE channel simulated (PV/BG fast channels for Layer0-3 & MI slower channels for Layers4-5)
- Shaping time reduction under evaluation to mitigate background impact. Shorter shaping time gives:
 - \rightarrow lower inefficiency due to analog dead time
 - better hit time resolution and lower occupancy
- → Selectable shaping time will be implemented

Peaking Time [ns]

25

Strip FE chip development (II)

- Readout architecture simulated VHDL (BO/PI) :
 - Evolution of our readout architecture for pixels
 - Hits stored with their timestamp (TS) and pulse height (TOT) inside in-strip buffers. Only triggered TS hits are readout by peripheral logic and sent to output bus.
- I00% digital efficiency even for high Layer0 striplet rates (2 MHz/strip)

2 MHz/strip : Layer	F. Giorgi (BO)					
buffer size	16	32	64			
buffered hits	3.8 M	12.9 M	12.9 M			
of which triggered	23363	76850	23363			
output triggered hits	14679	76849	23363			
triggered hit lost	8684	1	0			
Efficiency (%)	62.8	99.9987	100			

Readout chip for strips

> FE chip work completed for TDR

Next step: prepare first FE chip submission with IBM 130 nm - Nov. 2012

Update on sensor and fanout design in Trieste

I. Rashevskaya (TS)

- Sensor and fanout geometry defined.
- First detailed table with sensors & fanouts parameters supplied by TS to FE chip designers for noise evaluation. Will be udpated after some measurements.

Li	Se ns a orr	Rea dout	# of bar rel sen sor s in rea	# of ns or s in	Barrel sensor length	Barrel module strip length	Total modul e strip length	Total strip volume	C/L	Rs/L	Poly- silicon R_bias	n-equiv. fluence Ø	Radiation induced current / volume	Max Fanout C	Max Fano ut Rs	Total C	Total Rs	Total R_bi as	Total leakage current	Voltage drop on R_bias	Shapin g time	ENC from Rs	ENC from R_bias	ENC from /_leak	ENC from Rs + Rbias + L leak
		(µm)			(cm)	(cm)	(cm)	(cm/3)	(pF/cm	(ohm/c	(Mohm)	(cm^2)	(nA/cm/3)	(pF)	(ohm)	(pF)	(ohm)	(Moh	(nA)	(mV)	(ns)	(e)	(e)	(e)	(e)
1	n	50	1	1	11.17	11.03	11.03	1.65E-03	2.50	8.6	4	1.0E+11	2.0E+04	4.5	13	23.3	107.9	4.0	35.3	141	100	589	122	202	635
2	n	55	2	2	6.64	13.00	13.00	2.15E-03	2.50	6.7	8	4.5E+10	9.0E+03	3.5	11	25.6	98.1	4.0	21.9	88	100	619	122	159	651
3	р	100	2	2	9.64	19.00	19.00	5.70E-03	1.70	4	8	9.0E+09	1.8E+03	2.5	7.5	34.8	83.5	4.0	14.1	56	200	549	173	180	603
4	a p	100	2	3	11.46	22.64	29.30	8.79E-03	1.70	- 4	8	7.5E+08	1.5E+02	1.1	3.2	50.9	120.4	2.7	7.2	19	500	610	334	203	724
41	b p	100	2	3	11.98	23.68	30.34	9.10E-03	1.70	4	8	7.5E+08	1.5E+02	1.1	3.2	52.7	124.5	2.7	7.4	20	500	642	334	207	753
5	a p	100	3	4	10.22	30.24	36.90	1.11E-02	1.70	4	10	3.5E+08	7.0E+01	1.1	3.2	63.8	150.8	2.5	8.2	20	800	676	437	274	851
51	b p	100	3	4	10.60	31.38	38.04	1.14E-02	1.70	4	10	3.5E+08	7.0E+01	1.1	3.2	65.8	155.3	2.5	8.4	21	800	707	437	278	877

 Very detailed work to assemble and measure sensors capacitance in different bonding configuration (ganging vs pairing). Measurements on fanout prototypes (now in production at CERN) also foreseen.

STRIP PAIRING		NO	X	2	х	3	х	4
C_First	pF/cm	0.99	1.40	41%	1.51	52%	1.58	59%
neighbouring strips	pF/cm		1.48	5.4%	1.60	6.0%	1.66	5.2%
C _ P side	pF/cm	1.28	1.59	24%	1.67	30%	1.76	37%
	pF/cm		1.66	4.1%	1.78	6.3%	1.84	4.8%
C Total P+N side	pF/cm	1.62	2.25	39%	2.70	66%	3.11	92%
	pF/cm		2.36	4.9%	2.84	5.3%	3.24	4.1%

SVT - Frascati, March 22 - 2012

Hit time resolution and analog efficiency study

L. Ratti (PV) - L. Bombelli (MI)

- Detailed MC simulation, with present FE chip configuration, to evaluate:
 - I. analog efficiency using info on energy deposited per strip (from Bruno)
 - 2. hit time resolution \rightarrow time window cut for reconstruction \rightarrow minimal offline occupancy

Update on Fastsim performance studies

Fastim used to evaluate some effects of high background on SVT performance:

- > low hit efficiency due to analog dead time ~ 90 % in some layers
- resolution worsening due to high offline occupancy
 - hit merging and pat rec confusion algorithms add bkg hits to the track
 - offline occupancy achievable with tight cut on hit time
 - ~4-6% in L0-L3 and ~2.5% in L4-5 (x5-x10 w.r.t. BaBar!)
- Many tests done to check initial discrepancy in background estimates using fullsim vs. fastsim (thanks to M.Rama and A. Perez fro their help)
 - Partly solved, difference anyway expected for the different details implemented.
- Several validation tests performed by Nicola to use fastsim tools for SVT studies.
- Effects on track parameters and vertex resolution studied
- Machinery now in place and first exercise done BUT need to plug in "final" background numbers to evaluate the effect on performance.
- Performance with striplets and pixels will be evaluated

Discussion started but need more manpower on SW to face this issue!

N. Neri (MI)

R&D on pixel for LayerO in Italy (PV/BG/BO/PI)

Next submission with Vertical Integation technology (2 CMOS layers interconnected):

- APSEL_VI: DNW MAPS matrix 128x96
- Superpix1: FE chip for hybrid pixel 32x128 Latest readout architecture implemented
 - Sparsification in-pixel, Fast timestamp 100 ns
- Data push & triggered

21/03/2012

DRIVERS DELAYS

- Target LayerO with 100 MHz/cm2 hit rate Layout in the final stage... Design activity carried out by Luigi Gaioni, Gianluca Traversi (Bergamo) Filippo Giorgi, Alessandro Gabrielli (Bologna), Alessia Manazza (Pavia) and Fabio Morsani (Pisa)

Fabio Morsani - INFN Pisa

...but they haven't lost their sense of humor!

Pixel, you provoked me ...

From behavioral (mental) model to the smallest and fastest cmos in-pixel circuit

No crosstalk! scalability! Faster! Faster! Less power! Less metals for routing! Minimal dead area!

"Pasta, you provoked me and I'll destroy you now, pasta! I'm going to eat you, ahmm!" Design activity carried out by Luigi Gaioni, Gianluca Traversi (Bergamo) Filippo Giorgi, Alessandro Gabrielli (Bologna), Alessia Manazza (Pavia) and Fabio Morsani (Pisa)

Submission in July?

SVT - Frascati, March 22 - 2012

First INMAPS lab tests & beamtest results for 3D analog maps

Update on MAPS activities in UK

Queen Marv

Arachnid Collaboration

- CMOS MAPS R&D programme
 - Continuation of the SPiDeR programme
 - Birmingham, Bristol, Daresbury, DESY, QMUL, RAL
 - Targeting SuperB and ALICE projects as well as generic MAPS development.
- Characterization of several MAPS chips (produced with • INAMPS process for other applications) will give important information on the technology.

..................

A. Bevan (QMUL)

- The design of a MAPS chip with SuperB specs can be done ۲ during this R&D, 🛪
- The team now fully in place

SVT - Frascat

 Planned proton (CERN) and photon (RAL) irradiation programmes during 2012, will start as soon as we have full functionality to test chips in firmware.

Beam Tests

- 3 splits for the Cherwell chips, on standard and hi-res substrates.
- Also plan to perform TPAC irradiation to compare 3T vs. 4T radiation hardness.
- Later in 2012: include electron test beam (DESY) in the programme.

R&D activities on MAPS in Strasbourg

I. Ripp-Baudot (IPHC Strasbourg)

Strasbourg shown a detailed & interesting plan of CMOS MAPS submissions to reach specs for ALICE pixel upgrade with good synergy with SuperB Layer0 specs.

Starting point:

 MIMOSA-28 chip: 0. 35 um process, rolling shutter design →100 us timestamp, Power ~ 200 mW/cm2.

Final goal:

 AROM chip (Accelerated ROlling-Shutter Mimosa chip) 0.18 um process, in-pixel discriminator + optimized rolling shutter

 \rightarrow 1.5 us timestamp, Power ~ 1W /cm2.

Update on HDI design and peripheral electronics

0040

SVT Mechanics

- All the details of the SVT modules in the 3D model of the I.R. (ribs, fanouts ..)
- Good collaboration with QMUL and Milano eng. to complete the design for TDR.
- Progress shown on pixel module support with microchannel cooling.

 Detailed procedure for quick demounting defined

> Many details can be refined but now concentrate on TDR writing.

Activities in Valencia

A. Oyanguren (IFIC - Valencia)

The IFIC's lab.

80m² clean room class 10000 (ISO7) with 25m² class 1000 (ISO6), 1°C controlled temperature and ±5% humidity:

Two wafer probe stations: 1 manual, the other automatic/programable Wire-bonders: one fully automatic, one manual and one test bonder Laser interferometer system, glue dispenser, sensor test cage

> \rightarrow detector characterization, module assembly, bonding, metrology and electrical OA test

> > [ATLAS-SCT endcap module testing, assembly and³QC]

- Group is proposing to contribute to: \succ
 - FEE Electronics design and simulation
 - Silicon sensor testing

People (Valencia + U. Barcelona)

Valencia: -Seniors:

U. Barcelona associates:

Fernando Martínez-Vidal (IP) [Prof.] Arantza Oyanguren [Ten. Track] Victoria Castillo [Full Prof.] Emilio Higón [Full Prof.]

Lluís Garrido [Full Prof.] Eugeni Graugés [Prof.]

Oscar Vives [Prof., theorist co-convener τ group]

-Engineers: José Mazorra de Cos

David Gascón Albert Comerma

-PhD students: Pablo Ruiz Valls

G. Rizzo

SVT-TDR Status

Activities almost completed in all areas to have a consistent design

- Silicon Sensors: geometry defined and detailed measurements of parameters under way for better noise evaluation.
- Fanouts: Layer I-5 prototypes in production at CERN : Layer0 some details still to be defined.
- > <u>FE chip development</u>: simulation activities for TDR completed
 - > Next step: prepare first FE chip submission with IBM 130 nm Nov. 2012
- Peripheral Electronics: progress in the design
 - > Some work still needed but we can tune the level of details we want to give in the TDR!
- DAQ & FEboard: Electronics load reevaluated with new inputs (new geometry and background rates)
- > <u>Performance studies</u>: many progress in the setup of the machinery with fastsim (ready)
 - > SVT Performance with nominal & x5 background with striplets & pixel will be evaluated
- Pixel R&D is continuing
- SVT Mechanics: all the components in the 3D model and quick demounting procedure defined. Need to start the TDR writing even if some details need to be refined.
 - Complete the TDR work in ~I-2 months and concentrate in TDR writing to have a complete draft by the Elba Meeting.

SVT TDR Writing

~ 20 pages in svn

6	Silic	con Ve	rtex Trac	ker				21
	6.1	Verte	x Detecto	or Overview	G.Rizzo - 12 pa	.ges	 	 21
	6.2	Back	grounds		R.Cenci - 4 pages		 	 21
	6.3	Detec	tor Perfo	rmance Studies	N.Neri - 6 pa	ages	 	 21
		6.3.1	Introdu	ction (about 1/2 page)			 	 21
		6.3.2	Impact	of Layer0 on detector	performances (about 2 pa	<i>ges)</i>	 	 21
		6.3.3	Sensitiv	ity studies for time-de	pendent analyses (about \$	2 pages)	 	 21
		6.3.4	Vertexi	ng and Tracking perfor	rmances (about 1 pages)		 	 21
		6.3.5	Particle	Identification (about .	1/2 pages)		 	 21
	6.4	Silico	n Sensors		L. Bosisio - 8 pages .		 	 21
		6.4.1	Require	ements			 	 22
			6.4.1.1	Efficiency			 	 22
			6.4.1.2	Resolution			 	 22
			6.4.1.3	Radiation hardness			 	 22
		6.4.2	Sensor	design			 	 22
			6.4.2.1	Technology choice .			 	 24
			6.4.2.2	Optimization of strip	alayout		 	 24
			6.4.2.3	Wafer sizes and quar	ntities		 	 24
		6.4.3	Prototy	ping and tests			 	 24
	6.5	Fanou	it Circuit	s l	L.Vitale - M.Prest4+4 pag	ges	 	 24
		6.5.1	Fanouts	s for layer0			 	 25
			6.5.1.1	Requirements			 	 25
			6.5.1.2	Technology			 	 25
			6.5.1.3	Design			 	 25
			6.5.1.4	Prototyping and tests	3		 	25
		6.5.2	Fanouts	for outer layers			 	25
			6.5.2.1	Requirements			 	25
			6.5.2.2	Material and product	ion technique		 	25
			6.5.2.3	Design	•		 	25
			6.5.2.4	Tests and prototyping	g		 	25
				· · · · · · · · · · · · · · · · · · ·	,			-

6.6	Electr	onics Readout	28 pages
	6.6.1	Readout chips	V.Re - 10
		6.6.1.1 Electronic Readout for	Strip and Striplet Detectors
		6.6.1.2 Readout chips requirem	ents
		6.6.1.3 Readout Chip Impleme	ntation
		6.6.1.4 R&D for strip readout	chips
	6.6.2	Hybrid Design	M.Citterio - 10
	6.6.3	Data Transmission	M.Citterio - 10
	6.6.4	Power Supply	- 2
6.7	Mecha	unical Support & Assembly	S.Bettarini/F.Bosi - 14 pages 31
	6.7.1	I.R. Constraint	$\cdots \cdots 31$
	6.7.2	Module Assembly	
	6.7.3	Detector Assembly and Installati	on
		6.7.3.1 Half Detector Assembly	31
		6.7.3.2 Mount L0 on the Be-pi	pe and L 1-5 on the W Shielding 31
		6.7.3.3 Installation of Complete	e Assembly into the SuperB Detector 31
		6734 Quick Demounting	
	674	Detector Placement and Survey	39
	0.1.4	67.4.1 Placement accuracy	32
		6742 Survey with tracks	39
	675	Detector Monitoring	32
	0.1.0	6751 Position Monitoring Sw	22 stom 32
		6752 Rediction Monitoring Sys	30
	676	B&D Program	32
	0.1.0	67.61 Cables	39
		6762 hubrid	29
		6.7.6.2 Inportant	
		6.7.6.4 Arch modulos	
		6.7.6.5 Copes and space frame	29
		6.7.6.6 Evil coole model of IP	
6 9	Lover	Ungrade Options	$C \operatorname{Pirro}/\mathrm{I} \operatorname{Patti}_{10} \operatorname{parros}_{22}$
0.0	6 8 1	Technology options	G.Rizzo/L.Ratti - 10 pages
	0.6.1	6 8 1 1 Hybrid pixels	
		6.8.1.2 Doop N well CMOS mo	nolithia gangara 24
		6.8.1.2 Deep N-wen CMOS mo	IOE quadmuple well technology 25
	600	DeD estivity	
	0.8.2	6.8.2.1 Front and electronics f	why hybrid nivels in planar and 2D CMOS
		0.8.2.1 Front-end electronics in	or hybrid pixels in planar and 5D CMOS
		6822 The Argel DNW MAD	$\begin{array}{c} 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$
		6.8.2.3 The Appeld well are down	ale well monolithic sensor 20
	6 8 9	Dediction tolenerses	pre wen mononume sensor
	0.0.3	Nation tolerance	
6.9	Servic	es, Utilities and E.S. & H issues	-8 pages $\ldots \ldots 40$
	6.9.1	Service and Utilities	
	6.9.2	ES&H Issue	

Total weight to move for quick demounting \approx 1400 Kg

,

R&D on pixel for LayerO in Italy (PV/BG/BO/PI)

Pixel technologies under study

SVT - Frascati, March 22 - 2012