LNF SuperB Collaboration Meeting SullSim & Background Parallel session Mar. 22th 2012

FullSim Geometry developments

Alejandro Pérez INFN – Sezione di Pisa

Outline

- New elements included in the geometry
 - Radiation monitor (Rad-mon)
 - Permanent magnets (PM) close to the IP
 - FDIRC shield and FEE
- Geometry fixes and some issues
- Final focus magnetic model fixes
- Summary

Rad-mon

- Started some preliminary studies to design a radiation monitor
- 1st request was some scoring volumes to asses the expected dose
 - Done and committed
- The scoring volumes used for detection with the same set-up used for other FEE boards

PMs close to the IP

Design based on Mike Sullivan's FF drawings

Material

<material formula=" " name="NdFeB_PM" >

<D value="7.4" />

```
<fraction n="0.305" ref="Neodymium" />
```

<fraction n="0.664" ref="Iron" />

```
<fraction n="0.011" ref="Boron" />
```

```
<fraction n="0.003" ref="Aluminum" />
```

```
<fraction n="0.0075" ref="Niobium" />
```

```
<fraction n="0.0095" ref="Dysprosium" />
```

</material>

Alejandro Pérez, LNF SuperB CM, FullSim & Back

PMs close to the IP: BRN implementation

Alejandro Pérez, LNF SuperB CM, FullSim & Backgrounds parallel session Mar 22th 2012

PMs close to the IP: BRN implementation

Particle fluxes on the FDIRC FBLOCK (I)

- Study the flux of particles through interesting regions of the the FDIRC mother boundary (magenta and green regions)
- Try to understand the nature of the particles crossing those boundaries (PID and spectrum)

Particle fluxes on the FDIRC FBLOCK (II)

Particle fluxes on the FDIRC FBLOCK (III)

Particle fluxes on the FDIRC FBLOCK (IV)

FDIRC Lead shield studies (I)

- Shot particles (e^{\pm} , γ , n^{0}) at normal incidence on Lead for
 - Different lead thickness: 5 20 cm (1cm steps)
 - Different incident energies: 50 200 MeV (50MeV steps)
- Study the particle multiplicity and spectrum at the other end of the shield
- Optimization: thickness for which the probability to have more than one particle on the other side of the shield is lower than 10%

Probability(Multiplicity > 0) \leq 10%

Lead with different thickness

FDIRC Lead shield studies (II)

- Multiplicity at the other end of the lead shield due mainly to photons and electrons/positrons (very small contribution from neutrons)
- Higher the energy of the incident photon, thicker must be the lead shield

FDIRC Lead shield studies (II)

- Multiplicity at the other end of the lead shield due mainly to photons and electrons/positrons (very small contribution from neutrons)
- Higher the energy of the incident photon, thicker must be the lead shield
- In order to reduce the photon flux by a factor of 10 for photons up to 150MeV, the lead shield thickness needs to be 14.4cm

FDIRC shield: BRN implementation

- Steel-lead-steel sandwich (2.5-10-2.5 cm) \Rightarrow photons and electrons/positrons
- Boron-loaded (5%) polyethylene (10 cm) \Rightarrow neutrons

FDIRC shield: BRN implementation

- Steel-lead-steel sandwich (2.5-10-2.5 cm) \Rightarrow photons and electrons/positrons
- Boron-loaded (5%) polyethylene (10 cm) ⇒ neutrons

Some geometry problems related with FF and SVT

- Overlaps between SVT, SVT_L0, inner_detector and FF mother volumes
- Overshooting of SVT mother out of inner_detector
- This results in some confusion when instrumenting boundaries
 - \Rightarrow Hit assignment: loss of some hits when instrumenting FF mother boundary

- Added clearances (10µm) at several places to get rid of several overlaps
- Redefined inner_detector and FF boundaries to fix SVT protruding
- Overlaps inside the SVT_L0.gdml: added clearances

- Added clearances (10µm) at several places to get rid of several overlaps
- Redefined inner_detector and FF boundaries to fix SVT protruding
- Overlaps inside the SVT_L0.gdml: added clearances

- Added clearances (10µm) at several places to get rid of several overlaps
- Redefined inner_detector and FF boundaries to fix SVT protruding
- Overlaps inside the SVT_L0.gdml: added clearances

Ran G4 geometry test

http://mailman.fe.infn.it/superbwiki/index.php/Geant4_SuperB_simulation_main_portal/GeoDebug

FF, SVT_L0, Inner_detector and FDIRC shield show no geometry problems, but found several errors like

- Overlapping errors for IFR crates with scintillator
- Overshooting of bwd-EMC FEE crates outside mother volume
- Overlapping of bwd-EMC scintillator and Pb
- Overshooting of fwd-EMC FEE outside mother volume
- Overlapping between sectors FDIRC sectors
- ...
- The individual Overshooting/Overlapping goes from 0.1 10 μm. The individual problems are relatively small but there are many of them
- Could this be the reason of the stuck tracks?
- Maybe adding some clearances will fix this?

FF Magnetic model fixes

Used the BfieldDumper module to spot and fix several problems on the FF Magnetic model. New model seems to be OK

FF Magnetic model fixes

Used the BfieldDumper module to spot and fix several problems on the FF Magnetic model. New model seems to be OK

FF Magnetic model: additional tests (I)

- Use final focus v12 sf11 layout
- Generate particles (10k) with the beam parameters (HER and LER) at the IP:
 - All particles are generated at Z = 0 and at the nominal beam energy

- Feed this particles into Bruno which transport them into the final focus field
- Use scoring cylinders to study beam optics as a function of Z
- Goal: comparison with design values

FF Magnetic model: additional tests (II)

Alejandro Pérez, LNF SuperB CM, FullSim & Backgrounds parallel session Mar 22th 2012

FF Magnetic model: additional tests (II)

Beams $\sigma(X')$ and $\sigma(Y')$

Alejandro Pérez, LNF SuperB CM, FullSim & Backgrounds parallel session Mar 22th 2012

FF Magnetic model: additional tests (II)

Alejandro Pérez, LNF SuperB CM, FullSim & Backgrounds parallel session Mar 22th 2012

Summary and Outlook

- Rad-mon ready for next production
- PM implemented
- FDIRC Shields:
 - Steel-lead-steel (2.5-10-2.5 cm) sandwich
 - Boron-loaded polyethylene shield (10 cm)
- FDIRC FEE:
 - FEE boards implemented and instrumented by Riccardo
 - Ready to study the doses and neutron fluxes
- Spotted and fixed several geometry problems (overshooting/overlapping). SVT_L0 and FF show no problems, but still some others remind
- Spotted some problems with FF magnetic model. They have been fixed and committed
- Next steps: finalize Tungsten shield optimization studies

FDIRC Lead shield studies (III)

- Incident neutrons with kinetic energies from 50 to 200 MeV get multiplied by a factor of ~2.3 for lead thickness of 14cm
- The kinetic energy spectrum of those neutrons has a slight variation with the incident neutron kinetic energy
- Outgoing neutrons have a significant amount of kinetic energy (10 70 MeV)

⇒ Add a Boron-loaded (5%) polyethylene shield Alejandro Pérez, LNF SuperB CM, FullSim & Backgrounds parallel session Mar 22th 2012