

Measurement of the T Lepton Anomalous Magnetic Moment at B-Factories

Introduction, Status & Perspectives

Benjamin Oberhof INFN & Università di Pisa

3rd SuperB Collaboration Meeting LNF 19-23 March 2012

INFN

Outline

- Measurement interest
- g-2 at B-factories
- Underlying physics
- Observables
- Ongoing work on BaBar & preliminary results
 - Preselection
 - Cross-section
 - Asymmetries
- Polarized beams
- Outlook

Interest of the Measurement

▶ Precision measurement of $a_{e,\mu,\tau} = (g_{e,\mu,\tau} - 2)/2 \rightarrow \text{very sensitive test of SM}$

Different contributions at loop level, dependence on fermion masses

• a_e and a_μ nowadays known with very high precision (see PDG)

 $a_e = (1159.6521810 \pm 0.0000007) \cdot 10^{-6}$

 $a_{\mu} = (1165.92080 \pm 0.00054 \pm 0.00033) \cdot 10^{-6}$

 Measurements of a_i for light leptons based on static interaction with an external field

 \rightarrow impossible for the τ because of it's short lifetime $\tau = (290.6 \pm 1.0) \times 10^{-15}$

The mesaurement from the DELPHI collaboration of e⁺e⁻ → e⁺e⁻τ⁺τ⁻ cross section at LEP2 (arXiv:hep-ex/0406010v1 (2004)) yelds

 $-0.052 < a_{ au} < 0.013$ at 95% CL

▶ SM predicted value: $a_{SM,\tau} = 1177.21(5) \times 10^{-6}$, very precise, but not yet tested!

▶ If Δa_{μ} measured by BNL-E821 due to SUSY even bigger effects expected on a_{τ}

g-2 at B-factories

- ▶ It is not possible to measure interaction of τ with an external field → we have to infer about a_{τ} from cross section and partial widths
- B-factories are (nearly..) an ideal laboratory:
 - \rightarrow high luminosity
 - \rightarrow high production cross section: 0.919 nb at $\sqrt{s} = 10.54 \text{ GeV/c}$
 - \rightarrow negligible contribution from higher order diagrams at $\sqrt{s} \sim m(\Upsilon(4s))$
 - → electro-weak interference effects well known and under control
- Main issues related to CM boost and detector resolution
- In principle different final states could be used for the measurement
- If we use final states in which both *τ*s decay in two bodies we can also use spin correlations (hepex/0709.2496v1 (2007)), (JHEP01 (2009) 62) → possibility to study more observables with high statistics
- In this study we focused on processes of type τ[±] → h[±]ν in particular, at present, only h[±] = π[±] has been investigated

Underlying Physics

- Let's consider $e^+e^- \rightarrow \tau^+\tau^-$ in pure QED
- Most general Lorentz and gauge invariant coupling for the ττγ vertex
 < f(p_)f(p_+)|J^μ|0>=

$$= e\bar{u}(p_{-})[\gamma^{\mu}F_{1} + \frac{1}{2m_{f}}(iF_{2} + F_{3}\gamma^{5})\sigma^{\mu\nu}q_{\nu} - (q^{2}\gamma^{\mu} - q^{\mu}\gamma^{\nu}q_{\nu})\gamma^{5}F_{A}]v(p_{+})$$

- F₁(s) and F₂(s) are the electric and magnetic form factors which depend on energy, F₁(0) = 1, F₂(0) = a_τ
- F₂(0) = a_τ depends also on lepton mass so F_{2,e}(Y(4s)) contribution can be neglected

 $F_2(s) = (2.65 - 2.45i) \cdot 10^{-4}$ at $\sqrt{s} \simeq 10.5$

- ▶ $F_3 \rightarrow$ electric dipole form factor \rightarrow contribution vanishes up to 3 loops in SM
- ▶ $F_A \rightarrow$ anapole form factor \rightarrow suppressed by q^2/M_Z^2 w.r.t. leading QED corrections

Observables: Cross Section

From the previous form for the ττα coupling, the differential cross-section for τ production becomes

 $\frac{d\sigma}{d\cos\theta_{\tau^-}} = \frac{\pi\alpha^2}{2s}\beta[(2-\beta^2\sin^2\theta_{\tau^-})|F_1(s)|^2 + 4\mathcal{R}e(F_2(s))]$

- Choosing hv final states modifies the CS only by an overall factor BR1*BR2
- Theoretically most sensible observable to Re(F₂)
- Actual precision will depend mainly on reconstruction capabilities

Observables: Asymmetries

Reconstruction of t flight direction

• In CM frame τ lies on a cone with opening angle around hadron flight direction

$$\cos\theta_{\pm} = \frac{2E_{\tau^{\pm}}E_{h^{\pm}} - m_{\tau}^2 - m_{h^{\pm}}^2}{|p_{\tau^{\pm}}||p_{h^{\pm}}|}$$

Imposing same primary vertex

$$\begin{aligned} |\vec{P}_{\tau^-}||\vec{p}_{h^-}|\cos\theta_- &= \vec{P}_{\tau^-}\cdot\vec{p}_{h^-} \\ |\vec{P}_{\tau^-}||\vec{p}_{h^+}|\cos\theta_+ &= -\vec{P}_{\tau^-}\cdot\vec{p}_{h^+} \end{aligned}$$

- Using precedent equations we can solve for τ momenta up to a twofold ambiguity
- Possible the solve the ambiguity exactly in symmetric machines using impact parameters (Phys.Lett.B 313 458.)
- Not clear, in general, if it can be efficiently done in B-factories: at present theoretical gain completely lost to efficiency and systematics

STRATEGY \rightarrow

retain both solutions and study how the distributions of observables change

Progress: event pre-selection

9

- Work started for analysis on BaBar data
- Standard BaBar skims for 1-1 events used in preselection
- Preliminary cuts on reconstructed tracks:
 - ▶ 0.41 < θ_{LAB} < 2.46 EMC acceptance</p>
 - Transverse momentum of p_T >0.1 GeV/c
 - Maximum total momentum p_{max} <10GeV/c</p>
- Trigger requirments (or of the following):
 - at least 1 track with p_T >600 MeV/c, doca d_{xy} <1 cm (transverse) d_z <7 cm (longitudinal)
 - at least 2 tracks with $p_T > 250 \text{ MeV}/c$, with $d_{xy} < 1.5 \text{ cm}$ and $d_z < 10 \text{ cm}$
 - at least two clusters (EMC) with E > 350MeV, total invariant mass M_{inv} >1.5GeV/c²
- ► Tau background filter:
 - Two tracks and no net charge, p₁ + p₂ <9GeV/c, E₁ + E₂ <5GeV</p>
 - $E_{CM} p_1 p_2 > 0$ and $(p_1 + p_2)/(E_{CM} - p_1 - p_2) > 0.07$ accounts for neutrino presence
- ► Tau candidate selection: the thrust axis defines the topology.

$$T = \frac{\Sigma_i |\hat{T} \cdot \vec{p}_i|}{\Sigma_i |\vec{p}_i|}$$

The event is divided in 2 non overlapping emispheres.

<u>Overall efficiency</u> <u>on signal ~50%</u>

Progress: Cross section

Progress: asymmetries (1)

- We are interested in azimuthal and polar distributions of hadrons in tau rest frames
- Reconstruction and selection cause distortions
- Individual distributions of hadrons have to be flat independently of g-2 (all effect in primary vertex, none in decay)

Idea is to find reweighting factors for individual angular distributions and THEN look for correlations

Progress: asymmetries (2)

hmthe reco

776190

0.06442

0.5321

Entries

Mean

RMS

h-

04

0.6

02

Polar distributions is

at every sel. step

charge symmetric

asymmetricaly distorted

Reconstruction and pre-

selection effects charge

symmetric due to boost

Remarks:

Polar Distribution

Pre-Sel

-02

8000 r

7000

6000

5000

4000

3000 F

2000

0<u>世</u>

-0.8 -0.6

-0.4

10

Boost effect?

•

•

•

Progress: asymmetries (3)

Azimuthal Distribution

•Dist. shape originates from different behaviour of px and py due to frame choice

٥,

-1

0

13

-2

Polarized Beams

- Both |F₁|² and Re(F₂) have the same properties under C, P and T
- To extract them we need observables were they enter with different weights
- Using polarized beams one can define observables depending on the decay products of a single tau, linear in F₂, with different behaviour under P
- We can consider longitudinal and transverse polarization states of outgoing tau
- This defines 2 new asymmetry parameters A_N and A_L

O

$$A_{L}^{\pm} = \frac{\sigma_{FB}^{\pm}(+)|_{\text{Pol}} - \sigma_{FB}^{\pm}(-)|_{\text{Pol}}}{\sigma}$$

$$= \mp \alpha_{\perp} \frac{3}{4(3-\beta^{2})} \left[|F_{1}|^{2} + 2 \operatorname{Re} \{F_{2}\} \right]$$

$$r_{FB}^{\pm}(+)|_{\text{Pol}} \equiv \int_{0}^{1} d(\cos\theta_{\pm}^{*}) \frac{d\sigma_{FB}^{S}}{d(\cos\theta_{\pm}^{*})} \Big|_{\text{Pol}(e^{-})} = \mp \alpha_{\pm} Br(\tau^{+} \to h^{+}\bar{\nu}_{\tau})$$

$$\times Br(\tau^{-} \to h^{-}\nu_{\tau}) \frac{\pi\alpha^{2}}{4s} \beta \left[|F_{1}|^{2} + 2 \operatorname{Re} \{F_{2}\} \right]$$

$$r_{FB}^{\pm}(-)|_{\text{Pol}} \equiv \int_{-1}^{0} d(\cos\theta_{\pm}^{*}) \frac{d\sigma_{FB}^{S}}{d(\cos\theta_{\pm}^{*})} \Big|_{Pol(e^{-})} = -\sigma_{FB}^{\pm}(+)|_{\text{Pol}}.$$

$$r_{FB}^{\pm}(-)|_{\text{Pol}} \equiv \int_{-1}^{0} d(\cos\theta_{\pm}^{*}) \frac{d\sigma_{FB}^{S}}{d(\cos\theta_{\pm}^{*})} \Big|_{Pol(e^{-})} = -\sigma_{FB}^{\pm}(+)|_{\text{Pol}}.$$

$$r_{FB}^{\pm}(-)|_{\text{Pol}} = \int_{-1}^{0} d(\cos\theta_{\pm}^{*}) \frac{d\sigma_{FB}^{S}}{d(\cos\theta_{\pm}^{*})} \Big|_{Pol(e^{-})} = -\sigma_{FB}^{\pm}(+)|_{\text{Pol}}.$$

$$r_{FB}^{\pm}(-)|_{\text{Pol}} = \int_{-1}^{0} d(\cos\theta_{\pm}^{*}) \frac{d\sigma_{FB}^{S}}{d(\cos\theta_{\pm}^{*})} \Big|_{Pol(e^{-})} = -\sigma_{FB}^{\pm}(+)|_{\text{Pol}}.$$

Preliminary Conclusions & Work Plan

- The measurement of g-2 seems feasible using asymmetries
- Overall efficiency on signal at this point around 30%
- Asymmetries based on symmetric integration over polar variables A_{NN} A_{TT} better suited due to reconstruction and selection effects
- Actual sensivity will depend mainly on systematics

Open questions & Roadmap:

SuperB

SuperB

SuperB

SuperB

- Study of backgrounds and definition of selection cuts
- Definition and test of reweighting technique
- Preliminary check of sensivity
- Inclusion all hadronic two-body decay channels
- Study possibility to use also leptonic decay channels
- Begin production of events with beam polarization and studies on polarization dependent observables
- Try to solve the ambiguity problem using IP as constraint

Backup Slides

BaBar Data Sample

Tau g-2 & BNL821

VALUE	CL%		DOCUMENT ID		TECN	COMMENT
>-0.052and<0.013	OUR LIMIT					
>-0.052 and <0.013	95	1	ABDALLAH	04K	DLPH	e ⁺ e ⁻ → e ⁺ e ⁻ t ⁺ t ⁻ at LEP2
* * * We do not use the	following dat	a for	averages, fits, limits, e	tc. * * *		
<0.107	95	2	ACHARD	04G	L3	e ⁺ e ⁻ → e ⁺ e ⁻ τ ⁺ τ ⁻ at LEP2
>-0.007 and <0.005	95	3	GONZALEZ-SP	00	RVUE	$e^+ e^- \rightarrow \tau^+ \tau^-$ and $W \rightarrow \tau v_{\tau}$
>-0.052 and <0.058	95	4	ACCIARRI	98E	L3	1991 - 1995 LEP runs
>-0.068 and <0.065	95	5	ACKERSTAFF	98N	OPAL	1990 - 1995 LEP runs
>-0.004 and <0.006	95	6	ESCRIBANO	97	RVUE	$Z \rightarrow r^+ r^-$ at LEP
<0.01	96	7	ESCRIBANO	93	RVUE	$Z \rightarrow r^+ r^-$ at LEP
<0.12	90		GRIFOLS	91	RVUE	$Z \rightarrow \tau \tau \gamma$ at LEP
<0.023	95	8	SILVERMAN	83	RVUE	$e^+e^- \rightarrow r^+r^-$ at PETRA

The complete cross section

$$\frac{d\sigma(s^+, s^-)}{d\cos\theta_{\tau^-}} = \frac{d\sigma^0(s^+, s^-)}{d\cos\theta_{\tau^-}} + \frac{d\sigma^S(s^+, s^-)}{d\cos\theta_{\tau^-}} + \frac{d\sigma^{SS}(s^+, s^-)}{d\cos\theta_{\tau^-}}$$
$$\frac{d\sigma^0(s^+, s^-)}{d\cos\theta_{\tau^-}} = \frac{\pi\alpha^2}{8s}\beta[(2 - \beta^2\sin^2\theta_{\tau^-})|F_1(s)|^2 + 4\mathcal{R}e(F_1(s)F_2^*(s))]$$
$$\frac{d\sigma^S(s^+, s^-)}{d\cos\theta_{\tau^-}} = \frac{\pi\alpha^2}{4s}\gamma\beta^3(s^- + s^+)_y(\cos\theta_{\tau^-}\sin\theta_{\tau^-})\mathcal{I}m(F_2(s))$$
$$\frac{d\sigma^{SS}(s^+, s^-)}{d\cos\theta_{\tau^-}} = \frac{\pi\alpha^2}{8s}\beta(s_+^x s_-^x C_{xx} + s_+^y s_-^y C_{yy} + s_+^z s_-^z C_{zz} + (s_+^x s_-^z + s_+^z s_-^x)C_{xz}^+)$$

$$C_{xx} = ((2 - \beta^2)|F_1|^2 + 4\mathcal{R}e(F_2))\sin^2\theta_{\tau^-}$$

$$C_{yy} = -\beta^2|F_1|^2\sin^2\theta_{\tau^-}$$

$$C_{zz} = |F_1|^2(2\cos^2\theta_{\tau^-} + \beta^2\sin^2\theta_{\tau^-} + 4\mathcal{R}e(F_2)\cos^2\theta_{\tau^-})$$

$$C_{xz}^+ = \frac{1}{\gamma}(|F_1|^2 + \gamma^2(2 - \beta^2)\mathcal{R}e(F_2))\sin 2\theta_{\tau^-}$$

Asymmetries: both **rs** measured, symmetric polar integration, Re(F₂)

$$A_{TT} = -\frac{\alpha_{-}\alpha_{+}}{\sigma} (\int_{-\pi/2}^{\pi/2} d\phi_{-} - \int_{\pi/2}^{3/2\pi} d\phi_{-}) (\int_{-\pi/2}^{\pi/2} d\phi_{+} - \int_{\pi/2}^{3/2\pi} d\phi_{+}) d^{2}\sigma_{TT}$$

$$= -\frac{\pi \alpha^{2} \beta}{6s} \frac{\alpha_{-} \alpha_{+}}{\sigma} ((2 - \beta^{2})|F_{1}|^{2} + 4\mathcal{R}e(F_{2})) BR(\tau^{+} \to h^{+}\bar{\nu}_{\tau}) BR(\tau^{-} \to h^{-}\nu_{\tau})$$

$$d^{2}\sigma_{TT} = -\frac{\pi \alpha^{2} \beta}{96s} (\alpha_{-}\alpha_{+}) (\cos \phi_{-} \cos \phi_{+}) \mathcal{X} \mathcal{X} d\phi_{-} d\phi_{+} BR(\tau^{+} \to h^{+}\bar{\nu}_{\tau}) BR(\tau^{-} \to h^{-}\nu_{\tau})$$

$$A_{NN} = -\frac{\alpha_{-}\alpha_{+}}{\sigma} (\int_{0}^{\pi} d\phi_{-} - \int_{\pi}^{2\pi} d\phi_{-}) (\int_{0}^{\pi} d\phi_{+} - \int_{\pi}^{2\pi} d\phi_{+}) d^{2}\sigma_{NN}$$

$$\pi \alpha^{2} \beta \alpha_{-} \alpha_{+} - 2 = 2\pi e^{-\alpha_{+}} d\phi_{-} = 0$$

$$= \frac{\pi \alpha^2 \beta}{6s} \frac{\alpha_- \alpha_+}{\sigma} \beta^2 |F_1|^2 \mathsf{BR}(\tau^+ \to h^+ \bar{\nu}_\tau) \mathsf{BR}(\tau^- \to h^- \nu_\tau)$$

 $d^{2}\sigma_{NN} = -\frac{\pi\alpha^{2}\beta}{96s}(\alpha_{-}\alpha_{+})(\sin\phi_{-}\sin\phi_{+})\mathcal{Y}\mathcal{Y}d\phi_{-}d\phi_{+}\times\mathsf{BR}(\tau^{+}\to h^{+}\bar{\nu}_{\tau})\mathsf{BR}(\tau^{-}\to h^{-}\nu_{\tau})$

Asymmetries: both **TS** measured, asymmetric polar integration, **Re(F**,)

$$A_{LL} = -\frac{\alpha_{-}\alpha_{+}}{\sigma} (\int_{-1}^{0} d\cos\theta_{-}^{*} - \int_{0}^{1} d\cos\theta_{-}^{*}) (\int_{-1}^{0} d\cos\theta_{+}^{*} - \int_{0}^{1} d\cos\theta_{+}^{*}) d^{2}\sigma_{LL}$$

$$= -\frac{\pi\alpha^{2}\beta}{6s} \frac{\alpha_{-}\alpha_{+}}{\sigma} ((1+\beta^{2})|F_{1}|^{2} + 2\mathcal{R}e(F_{2})) BR(\tau^{+} \to h^{+}\bar{\nu}_{\tau}) BR(\tau^{-} \to h^{-}\nu_{\tau})$$

$$d^{2}\sigma_{LL} = -\frac{\pi\alpha^{2}\beta}{6s}(\alpha_{-}\alpha_{+})(\cos\theta_{-}^{*}\cos\theta_{+}^{*})\mathcal{Z}\mathcal{Z}d\theta_{-}^{*}d\theta_{+}^{*}\times\mathsf{BR}(\tau^{+}\to h^{+}\bar{\nu}_{\tau})\mathsf{BR}(\tau^{-}\to h^{-}\nu_{\tau})$$

$$\begin{aligned} A_{LT} &= \left(\int_{-1}^{0} d\cos\theta_{+}^{*} - \int_{0}^{1} d\cos\theta_{+}^{*} \right) \sigma_{LT} \\ &= \frac{\pi \alpha^{2} \beta}{6s} \frac{\alpha_{-} \alpha_{+}}{\sigma} \left[\frac{1}{\gamma} |F_{1}|^{2} + \gamma (2 - \beta^{2} \mathcal{R}e(F_{2})) \right] \mathsf{BR}(\tau^{+} \to h^{+} \bar{\nu}_{\tau}) \mathsf{BR}(\tau^{-} \to h^{-} \nu_{\tau}) \end{aligned}$$

$$d\sigma_{LT} = -\alpha_{-}\alpha_{+}\left(\int_{-\pi/2}^{\pi/2} d\phi_{-} - \int_{\pi/2}^{3/2\pi} d\phi_{-}\right)\left(\int_{0}^{2\pi} d\phi_{+}\right)\left(\int_{-1}^{1} d\cos\theta^{*}\right) d^{4}\sigma^{SS}$$
$$= -\frac{\pi\alpha^{2}\beta}{6s} \frac{\alpha_{-}\alpha_{+}}{\sigma} \mathcal{ZX}\cos\theta^{*}_{+}d\cos\theta^{*}_{+}\mathsf{BR}(\tau^{+} \to h^{+}\bar{\nu}_{\tau})\mathsf{BR}(\tau^{-} \to h^{-}\nu_{\tau}).$$

Asymmetries: single τ measured Im(F₂)

$$\begin{aligned} A_N^{\pm} &= \frac{\sigma_L^{\pm} - \sigma_R^{\pm}}{\sigma} = \pm \alpha_{\pm} \frac{1}{2(3 - \beta^2)} \beta^2 \gamma \mathcal{I}m(F_2(s)) \\ \sigma_L^{\pm} &= \int_{\pi}^{2\pi} d\phi_{\pm} \frac{d\sigma_{FB}}{d\phi_{\pm}}, \ \sigma_R^{\pm} = \int_0^{\pi} d\phi_{\pm} \frac{d\sigma_{FB}}{d\phi_{\pm}} = -\sigma_L^{\pm} \\ \sigma_{FB}(\vec{s}_+, \vec{s}_-) &= 2 \ln (\int_0^1 d\cos\theta_{\tau^-} \frac{d\sigma}{d\Omega_{\tau^-}} - \int_{-1}^0 d\cos\theta_{\tau^-} \frac{d\sigma}{d\Omega_{\tau^-}}) \end{aligned}$$

Asymmetries: polarization

$$\begin{split} A_T^{\pm} &= \frac{\sigma_R^{\pm}|_{\text{Pol}} - \sigma_L^{\pm}|_{\text{Pol}}}{\sigma} \\ A_T^{\pm} &= \frac{\sigma_R^{\pm}|_{\text{Pol}} - \sigma_L^{\pm}|_{\text{Pol}}}{\sigma} \\ &= \pm Br(\tau^+ \to h^+ \bar{\nu}_\tau) Br(\tau^- \to h^- \nu_\tau) \\ &\qquad \times \alpha_{\pm} \frac{(\pi \alpha)^2 \beta}{8s} \frac{1}{\gamma} \left[|F_1|^2 + (2 - \beta^2) \gamma^2 \text{Re} \left\{ F_2 \right\} \right], \\ \sigma_R^{\pm}|_{\text{Pol}} &= \int_{-\pi/2}^{\pi/2} d\phi_{\pm} \left[\frac{d\sigma^S}{d\phi_{\pm}} \Big|_{\text{Pol}(e^-)} \right] = -\sigma_L^{\pm}|_{\text{Pol}}. \\ &\frac{d\sigma^S}{d\phi_{\pm}} \Big|_{\text{Pol}(e^-)} = \mp \frac{\pi^2 \alpha^2 \beta}{16s} Br(\tau^+ \to h^+ \bar{\nu}_\tau) Br(\tau^- \to h^- \nu_\tau) \\ &\qquad \times \frac{1}{\gamma} \left[|F_1|^2 + (2 - \beta^2) \gamma^2 \text{Re} \left\{ F_2 \right\} \right] \left[(\alpha_{\pm}) \cos \phi_{\pm} \right] \end{split}$$

$$\begin{split} \left. \frac{d\sigma_{FB}^S}{d(\cos\theta_{\pm}^*)} \right|_{\mathrm{Pol}(e^-)} &= \mp \frac{\pi \alpha^2 \beta}{2s} Br(\tau^+ \to h^+ \bar{\nu}_{\tau}) Br(\tau^- \to h^- \nu_{\tau}) \\ &\times \left[|F_1|^2 + 2 \operatorname{Re} \left\{ F_2 \right\} \right] \left[(\alpha_{\pm}) \cos\theta_{\pm}^* \right] \,. \end{split}$$