

Data processing in the BaBar environment:

2/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

 Configuration done
through Tcl files

 Analysis consists of a
root object (path)
containing sequences

 A sequence may contains
other sequences or
modules

 Module execution follows
the insertion order (serial
execution)

The SuperB Framework should be able to run more
modules in parallel, but…

 How to define which modules can be executed at
the same time?

 How to define an execution path?

Moreover, the analysis path has to be customizable
at the user level, who may want to modify - to a
certain extent - the «default» module sequences, or
insert custom modules

 Scheduling has to be performed dinamically

3/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

Proposed solution: use module dependencies.

Each module has to declare which products it
needs and which it produces.

Example:

Scheduling can then be performed dinamically

4/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

Module = RandomControl
Require = EventList, EventID
Provides = EngineList

Specification of dependencies: just a note.

Requirements and products can be specified at compile time.

5/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

Class Module4 : public Module<module_four, Requires<product_one>,
Provides<product_three, product_four>
{
 bool operator()(Event& e) const {…};
}

(Thanks to F. Giacomini for the example)

Dependencies can also be specified at run time, losing compiler
checks but allowing more flexibility.

Probably a mix of both is the right solution

Using the exposed definition of a module, the Framework can
produce a dependencies graph.

From dependencies graph it’s easy to get the execution order.

6/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

Module = M1
Require =
Provide = P1
Module = M2
Require =
Provide = P2
Module = M3
Require = P1
Provide = P3
Module = M4
Require = P2 P3
Provide = P5

The scheduler just has to:
‣ Checks for each module

if the requirements are
met

‣ In this case, schedules
the execution of the
module

‣ Adds products to the
next level of the graph

‣ Repeats untill all
modules are scheduled

We have developed a working prototype of the scheduling
algorithm that:

 Takes a generic list of modules with dependencies as input

 Produces a generic dependencies graph as output

A TBB graph can then be obtained from the dependencies
graph.

Being a generic graph, the same algorithm can be used to
instruct other schedulers (libdispatch?)

To check both performances and correctness, we have taken
some measurements of the algorithm performances

7/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

Benchmark setup :

 1k module lists

 100 modules per list

 Random requirements
(0-2) and products (0-4)

Population characteristics:

 Tree Depth = 6 ÷ 15

 Tree Rank = 1 ÷ 41

Execution time on an

Intel Core i5-2400:

less than 5ms

8/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

9/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

Here is how a produced dependencies graph looks like

We are investigating the parallelism level of FastSim,
employing an analysis example (PacMC/snippet.tcl)

The analysis is configured employing tens of Tcl files

Each file may define sequences, enable modules, define
parameters or include other Tcl files.

Extraction of sequences, modules and parameters must
be done automatically.

A two stages approach is needed:
 Tcl file parsing to get modules and their parameters
 Source file parsing to get dependencies and defaults

10/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

Current Status:

 Recursively parsing of Tcl file: almost done.

We are able to get near all the modules in the
analysis path, evaluate variables and get parameters
set via «talkto».

 Parsing of associate module source files: still in
progress

At present we are able to manage «standard» ::get
and ::put instructions issued on the proxy, get
parameters type and evaluate some variables.

11/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

A get example:

We are still working to solve some problems:

 Management of non standard get/put

 Variables scope

 OOP Polymorphism (i.e. get proxy type that is a son
of the put type)

 Default values

12/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

 Ifd<<proxyType>>::get (<AbsEvent>, <key>)

Work is still in progress. Currently we can extract partial
graphs of the analysis path like the following one

13/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

Some observations and questions:

 Even if the analysis is still partial, FastSim exposes
some parallelism at the module level. We should try
to exploit it

Regarding the module definition:

 Does the proposed definition of a module with
requirements and products fit our needs?

 In FastSim some modules modify event properties (ex:
BtaSelectCandBase). Is this a requirement we can avoid?

 Is there any module written being aware of its execution
position in a sequence?

14/15 S. Longo – 3rd SuperB Collaboration Meeting – LNF

